diff --git a/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp b/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp index b9cc82d10679..055466ac660c 100644 --- a/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp +++ b/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp @@ -28,23 +28,6 @@ static cl::opt UseFSRMForMemcpy("x86-use-fsrm-for-memcpy", cl::Hidden, cl::init(false), cl::desc("Use fast short rep mov in memcpy lowering")); -/// Returns the best type to use with repmovs/repstos depending on alignment. -static MVT getOptimalRepType(const X86Subtarget &Subtarget, Align Alignment) { - uint64_t Align = Alignment.value(); - assert((Align != 0) && "Align is normalized"); - assert(isPowerOf2_64(Align) && "Align is a power of 2"); - switch (Align) { - case 1: - return MVT::i8; - case 2: - return MVT::i16; - case 4: - return MVT::i32; - default: - return Subtarget.is64Bit() ? MVT::i64 : MVT::i32; - } -} - bool X86SelectionDAGInfo::isBaseRegConflictPossible( SelectionDAG &DAG, ArrayRef ClobberSet) const { // We cannot use TRI->hasBasePointer() until *after* we select all basic @@ -61,139 +44,6 @@ bool X86SelectionDAGInfo::isBaseRegConflictPossible( return llvm::is_contained(ClobberSet, TRI->getBaseRegister()); } -/// Emit a single REP STOSB instruction for a particular constant size. -static SDValue emitRepstos(const X86Subtarget &Subtarget, SelectionDAG &DAG, - const SDLoc &dl, SDValue Chain, SDValue Dst, - SDValue Val, SDValue Size, MVT AVT) { - const bool Use64BitRegs = Subtarget.isTarget64BitLP64(); - unsigned AX = X86::AL; - switch (AVT.getSizeInBits()) { - case 8: - AX = X86::AL; - break; - case 16: - AX = X86::AX; - break; - case 32: - AX = X86::EAX; - break; - default: - AX = X86::RAX; - break; - } - - const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX; - const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI; - - SDValue InGlue; - Chain = DAG.getCopyToReg(Chain, dl, AX, Val, InGlue); - InGlue = Chain.getValue(1); - Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InGlue); - InGlue = Chain.getValue(1); - Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InGlue); - InGlue = Chain.getValue(1); - - SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); - SDValue Ops[] = {Chain, DAG.getValueType(AVT), InGlue}; - return DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops); -} - -/// Emit a single REP STOSB instruction for a particular constant size. -static SDValue emitRepstosB(const X86Subtarget &Subtarget, SelectionDAG &DAG, - const SDLoc &dl, SDValue Chain, SDValue Dst, - SDValue Val, uint64_t Size) { - return emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val, - DAG.getIntPtrConstant(Size, dl), MVT::i8); -} - -/// Returns a REP STOS instruction, possibly with a few load/stores to implement -/// a constant size memory set. In some cases where we know REP MOVS is -/// inefficient we return an empty SDValue so the calling code can either -/// generate a store sequence or call the runtime memset function. -static SDValue emitConstantSizeRepstos(SelectionDAG &DAG, - const X86Subtarget &Subtarget, - const SDLoc &dl, SDValue Chain, - SDValue Dst, SDValue Val, uint64_t Size, - EVT SizeVT, Align Alignment, - bool isVolatile, bool AlwaysInline, - MachinePointerInfo DstPtrInfo) { - /// In case we optimize for size, we use repstosb even if it's less efficient - /// so we can save the loads/stores of the leftover. - if (DAG.getMachineFunction().getFunction().hasMinSize()) { - if (auto *ValC = dyn_cast(Val)) { - // Special case 0 because otherwise we get large literals, - // which causes larger encoding. - if ((Size & 31) == 0 && (ValC->getZExtValue() & 255) == 0) { - MVT BlockType = MVT::i32; - const uint64_t BlockBits = BlockType.getSizeInBits(); - const uint64_t BlockBytes = BlockBits / 8; - const uint64_t BlockCount = Size / BlockBytes; - - Val = DAG.getConstant(0, dl, BlockType); - // repstosd is same size as repstosb - return emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val, - DAG.getIntPtrConstant(BlockCount, dl), BlockType); - } - } - return emitRepstosB(Subtarget, DAG, dl, Chain, Dst, Val, Size); - } - - if (Size > Subtarget.getMaxInlineSizeThreshold()) - return SDValue(); - - // If not DWORD aligned or size is more than the threshold, call the library. - // The libc version is likely to be faster for these cases. It can use the - // address value and run time information about the CPU. - if (Alignment < Align(4)) - return SDValue(); - - MVT BlockType = MVT::i8; - uint64_t BlockCount = Size; - uint64_t BytesLeft = 0; - if (auto *ValC = dyn_cast(Val)) { - BlockType = getOptimalRepType(Subtarget, Alignment); - uint64_t Value = ValC->getZExtValue() & 255; - const uint64_t BlockBits = BlockType.getSizeInBits(); - - if (BlockBits >= 16) - Value = (Value << 8) | Value; - - if (BlockBits >= 32) - Value = (Value << 16) | Value; - - if (BlockBits >= 64) - Value = (Value << 32) | Value; - - const uint64_t BlockBytes = BlockBits / 8; - BlockCount = Size / BlockBytes; - BytesLeft = Size % BlockBytes; - Val = DAG.getConstant(Value, dl, BlockType); - } - - SDValue RepStos = - emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val, - DAG.getIntPtrConstant(BlockCount, dl), BlockType); - /// RepStos can process the whole length. - if (BytesLeft == 0) - return RepStos; - - // Handle the last 1 - 7 bytes. - SmallVector Results; - Results.push_back(RepStos); - unsigned Offset = Size - BytesLeft; - EVT AddrVT = Dst.getValueType(); - - Results.push_back( - DAG.getMemset(Chain, dl, - DAG.getNode(ISD::ADD, dl, AddrVT, Dst, - DAG.getConstant(Offset, dl, AddrVT)), - Val, DAG.getConstant(BytesLeft, dl, SizeVT), Alignment, - isVolatile, AlwaysInline, - /* CI */ nullptr, DstPtrInfo.getWithOffset(Offset))); - - return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results); -} - SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset( SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val, SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline, @@ -209,14 +59,97 @@ SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset( return SDValue(); ConstantSDNode *ConstantSize = dyn_cast(Size); - if (!ConstantSize) - return SDValue(); - const X86Subtarget &Subtarget = DAG.getMachineFunction().getSubtarget(); - return emitConstantSizeRepstos( - DAG, Subtarget, dl, Chain, Dst, Val, ConstantSize->getZExtValue(), - Size.getValueType(), Alignment, isVolatile, AlwaysInline, DstPtrInfo); + + // If not DWORD aligned or size is more than the threshold, call the library. + // The libc version is likely to be faster for these cases. It can use the + // address value and run time information about the CPU. + if (Alignment < Align(4) || !ConstantSize || + ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold()) + return SDValue(); + + uint64_t SizeVal = ConstantSize->getZExtValue(); + SDValue InGlue; + EVT AVT; + SDValue Count; + unsigned BytesLeft = 0; + if (auto *ValC = dyn_cast(Val)) { + unsigned ValReg; + uint64_t Val = ValC->getZExtValue() & 255; + + // If the value is a constant, then we can potentially use larger sets. + if (Alignment >= Align(4)) { + // DWORD aligned + AVT = MVT::i32; + ValReg = X86::EAX; + Val = (Val << 8) | Val; + Val = (Val << 16) | Val; + if (Subtarget.is64Bit() && Alignment >= Align(8)) { // QWORD aligned + AVT = MVT::i64; + ValReg = X86::RAX; + Val = (Val << 32) | Val; + } + } else if (Alignment == Align(2)) { + // WORD aligned + AVT = MVT::i16; + ValReg = X86::AX; + Val = (Val << 8) | Val; + } else { + // Byte aligned + AVT = MVT::i8; + ValReg = X86::AL; + Count = DAG.getIntPtrConstant(SizeVal, dl); + } + + if (AVT.bitsGT(MVT::i8)) { + unsigned UBytes = AVT.getSizeInBits() / 8; + Count = DAG.getIntPtrConstant(SizeVal / UBytes, dl); + BytesLeft = SizeVal % UBytes; + } + + Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, dl, AVT), + InGlue); + InGlue = Chain.getValue(1); + } else { + AVT = MVT::i8; + Count = DAG.getIntPtrConstant(SizeVal, dl); + Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Val, InGlue); + InGlue = Chain.getValue(1); + } + + bool Use64BitRegs = Subtarget.isTarget64BitLP64(); + Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RCX : X86::ECX, + Count, InGlue); + InGlue = Chain.getValue(1); + Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RDI : X86::EDI, + Dst, InGlue); + InGlue = Chain.getValue(1); + + SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); + SDValue Ops[] = {Chain, DAG.getValueType(AVT), InGlue}; + SDValue RepStos = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops); + + /// RepStos can process the whole length. + if (BytesLeft == 0) + return RepStos; + + // Handle the last 1 - 7 bytes. + SmallVector Results; + Results.push_back(RepStos); + unsigned Offset = SizeVal - BytesLeft; + EVT AddrVT = Dst.getValueType(); + EVT SizeVT = Size.getValueType(); + + Results.push_back( + DAG.getMemset(Chain, dl, + DAG.getNode(ISD::ADD, dl, AddrVT, Dst, + DAG.getConstant(Offset, dl, AddrVT)), + Val, DAG.getConstant(BytesLeft, dl, SizeVT), Alignment, + isVolatile, AlwaysInline, + /* CI */ nullptr, DstPtrInfo.getWithOffset(Offset))); + + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results); } /// Emit a single REP MOVS{B,W,D,Q} instruction. @@ -249,6 +182,24 @@ static SDValue emitRepmovsB(const X86Subtarget &Subtarget, SelectionDAG &DAG, DAG.getIntPtrConstant(Size, dl), MVT::i8); } +/// Returns the best type to use with repmovs depending on alignment. +static MVT getOptimalRepmovsType(const X86Subtarget &Subtarget, + Align Alignment) { + uint64_t Align = Alignment.value(); + assert((Align != 0) && "Align is normalized"); + assert(isPowerOf2_64(Align) && "Align is a power of 2"); + switch (Align) { + case 1: + return MVT::i8; + case 2: + return MVT::i16; + case 4: + return MVT::i32; + default: + return Subtarget.is64Bit() ? MVT::i64 : MVT::i32; + } +} + /// Returns a REP MOVS instruction, possibly with a few load/stores to implement /// a constant size memory copy. In some cases where we know REP MOVS is /// inefficient we return an empty SDValue so the calling code can either @@ -258,10 +209,6 @@ static SDValue emitConstantSizeRepmov( SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, EVT SizeVT, Align Alignment, bool isVolatile, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) { - /// In case we optimize for size, we use repmovsb even if it's less efficient - /// so we can save the loads/stores of the leftover. - if (DAG.getMachineFunction().getFunction().hasMinSize()) - return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size); /// TODO: Revisit next line: big copy with ERMSB on march >= haswell are very /// efficient. @@ -275,10 +222,10 @@ static SDValue emitConstantSizeRepmov( assert(!Subtarget.hasERMSB() && "No efficient RepMovs"); /// We assume runtime memcpy will do a better job for unaligned copies when /// ERMS is not present. - if (!AlwaysInline && (Alignment < Align(4))) + if (!AlwaysInline && (Alignment.value() & 3) != 0) return SDValue(); - const MVT BlockType = getOptimalRepType(Subtarget, Alignment); + const MVT BlockType = getOptimalRepmovsType(Subtarget, Alignment); const uint64_t BlockBytes = BlockType.getSizeInBits() / 8; const uint64_t BlockCount = Size / BlockBytes; const uint64_t BytesLeft = Size % BlockBytes; @@ -292,6 +239,11 @@ static SDValue emitConstantSizeRepmov( assert(BytesLeft && "We have leftover at this point"); + /// In case we optimize for size we use repmovsb even if it's less efficient + /// so we can save the loads/stores of the leftover. + if (DAG.getMachineFunction().getFunction().hasMinSize()) + return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size); + // Handle the last 1 - 7 bytes. SmallVector Results; Results.push_back(RepMovs); @@ -330,7 +282,7 @@ SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy( if (UseFSRMForMemcpy && Subtarget.hasFSRM()) return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, Size, MVT::i8); - /// Handle constant sizes + /// Handle constant sizes, if (ConstantSDNode *ConstantSize = dyn_cast(Size)) return emitConstantSizeRepmov(DAG, Subtarget, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), diff --git a/llvm/test/CodeGen/X86/memcpy-struct-by-value.ll b/llvm/test/CodeGen/X86/memcpy-struct-by-value.ll index f6b1e4870009..8bc4098b0f7c 100644 --- a/llvm/test/CodeGen/X86/memcpy-struct-by-value.ll +++ b/llvm/test/CodeGen/X86/memcpy-struct-by-value.ll @@ -78,9 +78,9 @@ define void @test2(ptr nocapture %x) nounwind minsize { ; NOFAST32-NEXT: pushl %esi ; NOFAST32-NEXT: subl $4100, %esp # imm = 0x1004 ; NOFAST32-NEXT: movl {{[0-9]+}}(%esp), %esi -; NOFAST32-NEXT: movl $4096, %ecx # imm = 0x1000 +; NOFAST32-NEXT: movl $1024, %ecx # imm = 0x400 ; NOFAST32-NEXT: movl %esp, %edi -; NOFAST32-NEXT: rep;movsb (%esi), %es:(%edi) +; NOFAST32-NEXT: rep;movsl (%esi), %es:(%edi) ; NOFAST32-NEXT: calll foo@PLT ; NOFAST32-NEXT: addl $4100, %esp # imm = 0x1004 ; NOFAST32-NEXT: popl %esi @@ -106,9 +106,9 @@ define void @test2(ptr nocapture %x) nounwind minsize { ; NOFAST: # %bb.0: ; NOFAST-NEXT: subq $4104, %rsp # imm = 0x1008 ; NOFAST-NEXT: movq %rdi, %rsi -; NOFAST-NEXT: movl $4096, %ecx # imm = 0x1000 +; NOFAST-NEXT: movl $512, %ecx # imm = 0x200 ; NOFAST-NEXT: movq %rsp, %rdi -; NOFAST-NEXT: rep;movsb (%rsi), %es:(%rdi) +; NOFAST-NEXT: rep;movsq (%rsi), %es:(%rdi) ; NOFAST-NEXT: callq foo@PLT ; NOFAST-NEXT: addq $4104, %rsp # imm = 0x1008 ; NOFAST-NEXT: retq diff --git a/llvm/test/CodeGen/X86/memcpy.ll b/llvm/test/CodeGen/X86/memcpy.ll index ff026b142ecf..6ec9b2016305 100644 --- a/llvm/test/CodeGen/X86/memcpy.ll +++ b/llvm/test/CodeGen/X86/memcpy.ll @@ -202,16 +202,14 @@ define void @test3_minsize(ptr nocapture %A, ptr nocapture %B) nounwind minsize ; DARWIN-LABEL: test3_minsize: ; DARWIN: ## %bb.0: ; DARWIN-NEXT: pushq $64 -; DARWIN-NEXT: popq %rcx -; DARWIN-NEXT: rep;movsb (%rsi), %es:(%rdi) -; DARWIN-NEXT: retq +; DARWIN-NEXT: popq %rdx +; DARWIN-NEXT: jmp _memcpy ## TAILCALL ; ; LINUX-LABEL: test3_minsize: ; LINUX: # %bb.0: ; LINUX-NEXT: pushq $64 -; LINUX-NEXT: popq %rcx -; LINUX-NEXT: rep;movsb (%rsi), %es:(%rdi) -; LINUX-NEXT: retq +; LINUX-NEXT: popq %rdx +; LINUX-NEXT: jmp memcpy@PLT # TAILCALL ; ; LINUX-SKL-LABEL: test3_minsize: ; LINUX-SKL: # %bb.0: @@ -251,16 +249,14 @@ define void @test3_minsize_optsize(ptr nocapture %A, ptr nocapture %B) nounwind ; DARWIN-LABEL: test3_minsize_optsize: ; DARWIN: ## %bb.0: ; DARWIN-NEXT: pushq $64 -; DARWIN-NEXT: popq %rcx -; DARWIN-NEXT: rep;movsb (%rsi), %es:(%rdi) -; DARWIN-NEXT: retq +; DARWIN-NEXT: popq %rdx +; DARWIN-NEXT: jmp _memcpy ## TAILCALL ; ; LINUX-LABEL: test3_minsize_optsize: ; LINUX: # %bb.0: ; LINUX-NEXT: pushq $64 -; LINUX-NEXT: popq %rcx -; LINUX-NEXT: rep;movsb (%rsi), %es:(%rdi) -; LINUX-NEXT: retq +; LINUX-NEXT: popq %rdx +; LINUX-NEXT: jmp memcpy@PLT # TAILCALL ; ; LINUX-SKL-LABEL: test3_minsize_optsize: ; LINUX-SKL: # %bb.0: diff --git a/llvm/test/CodeGen/X86/memset-minsize.ll b/llvm/test/CodeGen/X86/memset-minsize.ll index d66500ea31a0..cc0f2156262b 100644 --- a/llvm/test/CodeGen/X86/memset-minsize.ll +++ b/llvm/test/CodeGen/X86/memset-minsize.ll @@ -27,9 +27,11 @@ entry: define void @medium_memset_to_rep_stos(ptr %ptr) minsize nounwind { ; CHECK-LABEL: medium_memset_to_rep_stos: ; CHECK: # %bb.0: # %entry -; CHECK-NEXT: movl $128, %ecx -; CHECK-NEXT: xorl %eax, %eax -; CHECK-NEXT: rep;stosl %eax, %es:(%rdi) +; CHECK-NEXT: pushq %rax +; CHECK-NEXT: movl $512, %edx # imm = 0x200 +; CHECK-NEXT: xorl %esi, %esi +; CHECK-NEXT: callq memset@PLT +; CHECK-NEXT: popq %rax ; CHECK-NEXT: retq entry: call void @llvm.memset.p0.i32(ptr align 4 %ptr, i8 0, i32 512, i1 false) @@ -39,9 +41,11 @@ entry: define void @large_memset_to_rep_stos(ptr %ptr) minsize nounwind { ; CHECK-LABEL: large_memset_to_rep_stos: ; CHECK: # %bb.0: # %entry -; CHECK-NEXT: movl $1024, %ecx # imm = 0x400 -; CHECK-NEXT: xorl %eax, %eax -; CHECK-NEXT: rep;stosl %eax, %es:(%rdi) +; CHECK-NEXT: pushq %rax +; CHECK-NEXT: movl $4096, %edx # imm = 0x1000 +; CHECK-NEXT: xorl %esi, %esi +; CHECK-NEXT: callq memset@PLT +; CHECK-NEXT: popq %rax ; CHECK-NEXT: retq entry: call void @llvm.memset.p0.i32(ptr align 4 %ptr, i8 0, i32 4096, i1 false) @@ -51,9 +55,11 @@ entry: define void @huge_memset_to_rep_stos(ptr %ptr) minsize nounwind { ; CHECK-LABEL: huge_memset_to_rep_stos: ; CHECK: # %bb.0: # %entry -; CHECK-NEXT: movl $2048, %ecx # imm = 0x800 -; CHECK-NEXT: xorl %eax, %eax -; CHECK-NEXT: rep;stosl %eax, %es:(%rdi) +; CHECK-NEXT: pushq %rax +; CHECK-NEXT: movl $8192, %edx # imm = 0x2000 +; CHECK-NEXT: xorl %esi, %esi +; CHECK-NEXT: callq memset@PLT +; CHECK-NEXT: popq %rax ; CHECK-NEXT: retq entry: call void @llvm.memset.p0.i32(ptr align 4 %ptr, i8 0, i32 8192, i1 false) @@ -63,9 +69,11 @@ entry: define void @odd_length_memset_to_rep_stos(ptr %ptr) minsize nounwind { ; CHECK-LABEL: odd_length_memset_to_rep_stos: ; CHECK: # %bb.0: # %entry -; CHECK-NEXT: movl $255, %ecx -; CHECK-NEXT: xorl %eax, %eax -; CHECK-NEXT: rep;stosb %al, %es:(%rdi) +; CHECK-NEXT: pushq %rax +; CHECK-NEXT: movl $255, %edx +; CHECK-NEXT: xorl %esi, %esi +; CHECK-NEXT: callq memset@PLT +; CHECK-NEXT: popq %rax ; CHECK-NEXT: retq entry: call void @llvm.memset.p0.i32(ptr align 4 %ptr, i8 0, i32 255, i1 false) @@ -75,10 +83,11 @@ entry: define void @align_1_memset_to_rep_stos(ptr %ptr) minsize nounwind { ; CHECK-LABEL: align_1_memset_to_rep_stos: ; CHECK: # %bb.0: # %entry -; CHECK-NEXT: pushq $64 -; CHECK-NEXT: popq %rcx -; CHECK-NEXT: xorl %eax, %eax -; CHECK-NEXT: rep;stosl %eax, %es:(%rdi) +; CHECK-NEXT: pushq %rax +; CHECK-NEXT: movl $256, %edx # imm = 0x100 +; CHECK-NEXT: xorl %esi, %esi +; CHECK-NEXT: callq memset@PLT +; CHECK-NEXT: popq %rax ; CHECK-NEXT: retq entry: call void @llvm.memset.p0.i32(ptr align 1 %ptr, i8 0, i32 256, i1 false) @@ -88,10 +97,11 @@ entry: define void @align_2_memset_to_rep_stos(ptr %ptr) minsize nounwind { ; CHECK-LABEL: align_2_memset_to_rep_stos: ; CHECK: # %bb.0: # %entry -; CHECK-NEXT: pushq $64 -; CHECK-NEXT: popq %rcx -; CHECK-NEXT: xorl %eax, %eax -; CHECK-NEXT: rep;stosl %eax, %es:(%rdi) +; CHECK-NEXT: pushq %rax +; CHECK-NEXT: movl $256, %edx # imm = 0x100 +; CHECK-NEXT: xorl %esi, %esi +; CHECK-NEXT: callq memset@PLT +; CHECK-NEXT: popq %rax ; CHECK-NEXT: retq entry: call void @llvm.memset.p0.i32(ptr align 2 %ptr, i8 0, i32 256, i1 false) @@ -101,10 +111,11 @@ entry: define void @align_4_memset_to_rep_stos(ptr %ptr) minsize nounwind { ; CHECK-LABEL: align_4_memset_to_rep_stos: ; CHECK: # %bb.0: # %entry -; CHECK-NEXT: pushq $64 -; CHECK-NEXT: popq %rcx -; CHECK-NEXT: xorl %eax, %eax -; CHECK-NEXT: rep;stosl %eax, %es:(%rdi) +; CHECK-NEXT: pushq %rax +; CHECK-NEXT: movl $256, %edx # imm = 0x100 +; CHECK-NEXT: xorl %esi, %esi +; CHECK-NEXT: callq memset@PLT +; CHECK-NEXT: popq %rax ; CHECK-NEXT: retq entry: call void @llvm.memset.p0.i32(ptr align 4 %ptr, i8 0, i32 256, i1 false) @@ -114,10 +125,11 @@ entry: define void @align_8_memset_to_rep_stos(ptr %ptr) minsize nounwind { ; CHECK-LABEL: align_8_memset_to_rep_stos: ; CHECK: # %bb.0: # %entry -; CHECK-NEXT: pushq $64 -; CHECK-NEXT: popq %rcx -; CHECK-NEXT: xorl %eax, %eax -; CHECK-NEXT: rep;stosl %eax, %es:(%rdi) +; CHECK-NEXT: pushq %rax +; CHECK-NEXT: movl $256, %edx # imm = 0x100 +; CHECK-NEXT: xorl %esi, %esi +; CHECK-NEXT: callq memset@PLT +; CHECK-NEXT: popq %rax ; CHECK-NEXT: retq entry: call void @llvm.memset.p0.i32(ptr align 8 %ptr, i8 0, i32 256, i1 false) @@ -127,10 +139,10 @@ entry: define void @small_memset_to_rep_stos_64(ptr %ptr) minsize nounwind { ; CHECK-LABEL: small_memset_to_rep_stos_64: ; CHECK: # %bb.0: # %entry -; CHECK-NEXT: pushq $32 +; CHECK-NEXT: pushq $16 ; CHECK-NEXT: popq %rcx ; CHECK-NEXT: xorl %eax, %eax -; CHECK-NEXT: rep;stosl %eax, %es:(%rdi) +; CHECK-NEXT: rep;stosq %rax, %es:(%rdi) ; CHECK-NEXT: retq entry: call void @llvm.memset.p0.i64(ptr align 8 %ptr, i8 0, i64 128, i1 false) diff --git a/llvm/test/CodeGen/X86/memset-vs-memset-inline.ll b/llvm/test/CodeGen/X86/memset-vs-memset-inline.ll index e34682aa0fcb..b8fdd936b438 100644 --- a/llvm/test/CodeGen/X86/memset-vs-memset-inline.ll +++ b/llvm/test/CodeGen/X86/memset-vs-memset-inline.ll @@ -163,14 +163,3 @@ define void @inlined_set_doesnt_call_external_function(ptr %a, i8 %value) nounwi tail call void @llvm.memset.inline.p0.i64(ptr %a, i8 %value, i64 1024, i1 0) ret void } - -define void @memset_inlined_insize(ptr %a) nounwind minsize { -; CHECK-LABEL: memset_inlined_insize: -; CHECK: # %bb.0: -; CHECK-NEXT: movl $1024, %ecx # imm = 0x400 -; CHECK-NEXT: movb $42, %al -; CHECK-NEXT: rep;stosb %al, %es:(%rdi) -; CHECK-NEXT: retq - tail call void @llvm.memset.inline.p0.i64(ptr %a, i8 42, i64 1024, i1 0) - ret void -}