Move lldb/test to lldb/packages/Python/lldbsuite/test.

This is the conclusion of an effort to get LLDB's Python code
structured into a bona-fide Python package.  This has a number
of benefits, but most notably the ability to more easily share
Python code between different but related pieces of LLDB's Python
infrastructure (for example, `scripts` can now share code with
`test`).

llvm-svn: 251532
This commit is contained in:
Zachary Turner
2015-10-28 17:43:26 +00:00
parent a8a3bd2100
commit c432c8f856
1492 changed files with 2066 additions and 2037 deletions

View File

@@ -0,0 +1,8 @@
LEVEL = ../../make
CFLAGS_EXTRAS += -D__STDC_LIMIT_MACROS
ENABLE_THREADS := YES
CXX_SOURCES := main.cpp b.cpp c.cpp
MAKE_DSYM :=NO
include $(LEVEL)/Makefile.rules

View File

@@ -0,0 +1,127 @@
"""
Test some SBModule and SBSection APIs.
"""
from __future__ import print_function
import use_lldb_suite
import os, time
import re
import lldb
from lldbtest import *
from lldbutil import symbol_type_to_str
class ModuleAndSectionAPIsTestCase(TestBase):
mydir = TestBase.compute_mydir(__file__)
@add_test_categories(['pyapi'])
def test_module_and_section(self):
"""Test module and section APIs."""
self.build()
exe = os.path.join(os.getcwd(), "a.out")
target = self.dbg.CreateTarget(exe)
self.assertTrue(target, VALID_TARGET)
self.assertTrue(target.GetNumModules() > 0)
# Hide stdout if not running with '-t' option.
if not self.TraceOn():
self.HideStdout()
print("Number of modules for the target: %d" % target.GetNumModules())
for module in target.module_iter():
print(module)
# Get the executable module at index 0.
exe_module = target.GetModuleAtIndex(0)
print("Exe module: %s" % str(exe_module))
print("Number of sections: %d" % exe_module.GetNumSections())
INDENT = ' ' * 4
INDENT2 = INDENT * 2
for sec in exe_module.section_iter():
print(sec)
print(INDENT + "Number of subsections: %d" % sec.GetNumSubSections())
if sec.GetNumSubSections() == 0:
for sym in exe_module.symbol_in_section_iter(sec):
print(INDENT + str(sym))
print(INDENT + "symbol type: %s" % symbol_type_to_str(sym.GetType()))
else:
for subsec in sec:
print(INDENT + str(subsec))
# Now print the symbols belonging to the subsection....
for sym in exe_module.symbol_in_section_iter(subsec):
print(INDENT2 + str(sym))
print(INDENT2 + "symbol type: %s" % symbol_type_to_str(sym.GetType()))
@add_test_categories(['pyapi'])
def test_module_and_section_boundary_condition(self):
"""Test module and section APIs by passing None when it expects a Python string."""
self.build()
exe = os.path.join(os.getcwd(), "a.out")
target = self.dbg.CreateTarget(exe)
self.assertTrue(target, VALID_TARGET)
self.assertTrue(target.GetNumModules() > 0)
# Hide stdout if not running with '-t' option.
if not self.TraceOn():
self.HideStdout()
print("Number of modules for the target: %d" % target.GetNumModules())
for module in target.module_iter():
print(module)
# Get the executable module at index 0.
exe_module = target.GetModuleAtIndex(0)
print("Exe module: %s" % str(exe_module))
print("Number of sections: %d" % exe_module.GetNumSections())
# Boundary condition testings. Should not crash lldb!
exe_module.FindFirstType(None)
exe_module.FindTypes(None)
exe_module.FindGlobalVariables(target, None, 1)
exe_module.FindFunctions(None, 0)
exe_module.FindSection(None)
# Get the section at index 1.
if exe_module.GetNumSections() > 1:
sec1 = exe_module.GetSectionAtIndex(1)
print(sec1)
else:
sec1 = None
if sec1:
sec1.FindSubSection(None)
@add_test_categories(['pyapi'])
def test_module_compile_unit_iter(self):
"""Test module's compile unit iterator APIs."""
self.build()
exe = os.path.join(os.getcwd(), "a.out")
target = self.dbg.CreateTarget(exe)
self.assertTrue(target, VALID_TARGET)
self.assertTrue(target.GetNumModules() > 0)
# Hide stdout if not running with '-t' option.
if not self.TraceOn():
self.HideStdout()
print("Number of modules for the target: %d" % target.GetNumModules())
for module in target.module_iter():
print(module)
# Get the executable module at index 0.
exe_module = target.GetModuleAtIndex(0)
print("Exe module: %s" % str(exe_module))
print("Number of compile units: %d" % exe_module.GetNumCompileUnits())
INDENT = ' ' * 4
INDENT2 = INDENT * 2
for cu in exe_module.compile_unit_iter():
print(cu)

View File

@@ -0,0 +1,3 @@
int b_function(int input) {
return input * 2;
}

View File

@@ -0,0 +1,3 @@
int c_function(int input) {
return input * 3;
}

View File

@@ -0,0 +1,136 @@
//===-- main.cpp ------------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C includes
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
// C++ includes
#include <chrono>
#include <mutex>
#include <random>
#include <thread>
std::thread g_thread_1;
std::thread g_thread_2;
std::thread g_thread_3;
std::mutex g_mask_mutex;
typedef enum {
eGet,
eAssign,
eClearBits
} MaskAction;
uint32_t mask_access (MaskAction action, uint32_t mask = 0);
uint32_t
mask_access (MaskAction action, uint32_t mask)
{
static uint32_t g_mask = 0;
std::lock_guard<std::mutex> lock(g_mask_mutex);
switch (action)
{
case eGet:
break;
case eAssign:
g_mask |= mask;
break;
case eClearBits:
g_mask &= ~mask;
break;
}
return g_mask;
}
void *
thread_func (void *arg)
{
uint32_t thread_index = *((uint32_t *)arg);
uint32_t thread_mask = (1u << (thread_index));
printf ("%s (thread index = %u) startng...\n", __FUNCTION__, thread_index);
std::default_random_engine generator;
std::uniform_int_distribution<int> distribution(0, 3000000);
while (mask_access(eGet) & thread_mask)
{
// random micro second sleep from zero to 3 seconds
int usec = distribution(generator);
printf ("%s (thread = %u) doing a usleep (%d)...\n", __FUNCTION__, thread_index, usec);
std::chrono::microseconds duration(usec);
std::this_thread::sleep_for(duration);
printf ("%s (thread = %u) after usleep ...\n", __FUNCTION__, thread_index); // Set break point at this line.
}
printf ("%s (thread index = %u) exiting...\n", __FUNCTION__, thread_index);
return NULL;
}
int main (int argc, char const *argv[])
{
int err;
void *thread_result = NULL;
uint32_t thread_index_1 = 1;
uint32_t thread_index_2 = 2;
uint32_t thread_index_3 = 3;
uint32_t thread_mask_1 = (1u << thread_index_1);
uint32_t thread_mask_2 = (1u << thread_index_2);
uint32_t thread_mask_3 = (1u << thread_index_3);
// Make a mask that will keep all threads alive
mask_access (eAssign, thread_mask_1 | thread_mask_2 | thread_mask_3); // And that line.
// Create 3 threads
g_thread_1 = std::thread(thread_func, (void*)&thread_index_1);
g_thread_2 = std::thread(thread_func, (void*)&thread_index_2);
g_thread_3 = std::thread(thread_func, (void*)&thread_index_3);
char line[64];
while (mask_access(eGet) != 0)
{
printf ("Enter thread index to kill or ENTER for all:\n");
fflush (stdout);
// Kill threads by index, or ENTER for all threads
if (fgets (line, sizeof(line), stdin))
{
if (line[0] == '\n' || line[0] == '\r' || line[0] == '\0')
{
printf ("Exiting all threads...\n");
break;
}
int32_t index = strtoul (line, NULL, 0);
switch (index)
{
case 1: mask_access (eClearBits, thread_mask_1); break;
case 2: mask_access (eClearBits, thread_mask_2); break;
case 3: mask_access (eClearBits, thread_mask_3); break;
}
continue;
}
break;
}
// Clear all thread bits to they all exit
mask_access (eClearBits, UINT32_MAX);
// Join all of our threads
g_thread_1.join();
g_thread_2.join();
g_thread_3.join();
return 0;
}