[mlir][sparse] Add has_runtime_library test op (#85355)

This commit adds a new test-only op:
`sparse_tensor.has_runtime_library`. The op returns "1" if the sparse
compiler runs in runtime library mode.

This op is useful for writing test cases that require different IR
depending on whether the sparse compiler runs in runtime library or
codegen mode.

This commit fixes a memory leak in `sparse_pack_d.mlir`. This test case
uses `sparse_tensor.assemble` to create a sparse tensor SSA value from
existing buffers. This runtime library reallocates+copies the existing
buffers; the codegen path does not. Therefore, the test requires
additional deallocations when running in runtime library mode.

Alternatives considered:
- Make the codegen path allocate. "Codegen" is the "default" compilation
mode and it is handling `sparse_tensor.assemble` correctly. The issue is
with the runtime library path, which should not allocate. Therefore, it
is better to put a workaround in the runtime library path than to work
around the issue with a new flag in the codegen path.
- Add a `sparse_tensor.runtime_only` attribute to
`bufferization.dealloc_tensor`. Verifying that the attribute can only be
attached to `bufferization.dealloc_tensor` may introduce an unwanted
dependency of `MLIRSparseTensorDialect` on `MLIRBufferizationDialect`.
This commit is contained in:
Matthias Springer
2024-03-15 13:35:48 +09:00
committed by GitHub
parent 5124eedd35
commit e8e8df4c1b
4 changed files with 69 additions and 22 deletions

View File

@@ -1561,6 +1561,19 @@ struct SparseNewConverter : public OpConversionPattern<NewOp> {
}
};
struct SparseHasRuntimeLibraryConverter
: public OpConversionPattern<HasRuntimeLibraryOp> {
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(HasRuntimeLibraryOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto i1Type = rewriter.getI1Type();
rewriter.replaceOpWithNewOp<arith::ConstantOp>(
op, i1Type, rewriter.getIntegerAttr(i1Type, 0));
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
@@ -1572,21 +1585,21 @@ struct SparseNewConverter : public OpConversionPattern<NewOp> {
void mlir::populateSparseTensorCodegenPatterns(
TypeConverter &typeConverter, RewritePatternSet &patterns,
bool createSparseDeallocs, bool enableBufferInitialization) {
patterns.add<SparseAssembleOpConverter, SparseDisassembleOpConverter,
SparseReturnConverter, SparseCallConverter, SparseLvlOpConverter,
SparseCastConverter, SparseExtractSliceConverter,
SparseTensorLoadConverter, SparseExpandConverter,
SparseCompressConverter, SparseInsertConverter,
SparseReorderCOOConverter, SparseReMapConverter,
SparseSliceGetterOpConverter<ToSliceOffsetOp,
StorageSpecifierKind::DimOffset>,
SparseSliceGetterOpConverter<ToSliceStrideOp,
StorageSpecifierKind::DimStride>,
SparseToPositionsConverter, SparseToCoordinatesConverter,
SparseToCoordinatesBufferConverter, SparseToValuesConverter,
SparseConvertConverter, SparseNewConverter,
SparseNumberOfEntriesConverter>(typeConverter,
patterns.getContext());
patterns.add<
SparseAssembleOpConverter, SparseDisassembleOpConverter,
SparseReturnConverter, SparseCallConverter, SparseLvlOpConverter,
SparseCastConverter, SparseExtractSliceConverter,
SparseTensorLoadConverter, SparseExpandConverter, SparseCompressConverter,
SparseInsertConverter, SparseReorderCOOConverter, SparseReMapConverter,
SparseSliceGetterOpConverter<ToSliceOffsetOp,
StorageSpecifierKind::DimOffset>,
SparseSliceGetterOpConverter<ToSliceStrideOp,
StorageSpecifierKind::DimStride>,
SparseToPositionsConverter, SparseToCoordinatesConverter,
SparseToCoordinatesBufferConverter, SparseToValuesConverter,
SparseConvertConverter, SparseNewConverter,
SparseNumberOfEntriesConverter, SparseHasRuntimeLibraryConverter>(
typeConverter, patterns.getContext());
patterns.add<SparseTensorDeallocConverter>(
typeConverter, patterns.getContext(), createSparseDeallocs);
patterns.add<SparseTensorAllocConverter, SparseTensorEmptyConverter>(