Revert "[mlir][sparse] fix sparse tensor rewriting patterns that do not propagate sparse tensor SSA properly."

This reverts commit 70508b614e.

This change depends on a reverted change that broke the windows mlir buildbot; reverting to bring remaining mlir bots to green
This commit is contained in:
Stella Stamenova
2022-11-07 09:00:08 -08:00
parent 058f727a98
commit ec224e3b68
8 changed files with 120 additions and 181 deletions

View File

@@ -356,8 +356,8 @@ public:
RankedTensorType cooTp = getUnorderedCOOFromType(dstTp);
auto cooBuffer =
rewriter.create<AllocTensorOp>(loc, cooTp, dstDynSizes).getResult();
ForeachOp foreachOp = rewriter.create<ForeachOp>(
loc, srcTensor, cooBuffer,
rewriter.create<ForeachOp>(
loc, srcTensor, llvm::None,
[&](OpBuilder &builder, Location loc, ValueRange args, Value v,
ValueRange reduc) {
SmallVector<Value, 4> srcIndices;
@@ -368,11 +368,11 @@ public:
}
translateIndicesArray(builder, loc, op.getReassociationIndices(),
srcIndices, srcSizes, dstSizes, dstIndices);
auto t = builder.create<InsertOp>(loc, v, reduc.front(), dstIndices);
builder.create<sparse_tensor::YieldOp>(loc, t);
builder.create<InsertOp>(loc, v, cooBuffer, dstIndices);
builder.create<sparse_tensor::YieldOp>(loc);
});
auto t = rewriter.create<LoadOp>(loc, foreachOp.getResult(0), true);
rewriter.replaceOpWithNewOp<ConvertOp>(op, dstTp, t);
rewriter.replaceOpWithNewOp<ConvertOp>(op, dstTp, cooBuffer);
return success();
}
};
@@ -442,14 +442,13 @@ struct ConcatenateRewriter : public OpRewritePattern<ConcatenateOp> {
rewriter.create<AllocTensorOp>(loc, cooTp, ValueRange()).getResult();
Value offset = constantIndex(rewriter, loc, 0);
ForeachOp foreachOp;
for (Value input : op.getInputs()) {
// Builds the indexing map.
// Build a for op for each input tensor to append new values into the
// output tensor.
foreachOp = rewriter.create<ForeachOp>(
loc, input, cooBuffer,
rewriter.create<ForeachOp>(
loc, input, llvm::None,
[&](OpBuilder &builder, Location loc, ValueRange args, Value v,
ValueRange reduc) {
SmallVector<Value, 4> indices;
@@ -462,8 +461,8 @@ struct ConcatenateRewriter : public OpRewritePattern<ConcatenateOp> {
idx = builder.create<arith::AddIOp>(loc, idx, offset);
indices.push_back(idx);
}
auto t = builder.create<InsertOp>(loc, v, reduc.front(), indices);
builder.create<sparse_tensor::YieldOp>(loc, t);
builder.create<InsertOp>(loc, v, cooBuffer, indices);
builder.create<sparse_tensor::YieldOp>(loc);
});
// Accumulates the offset. Note that only static-shaped inputs are allowed
// by concatenate op verifier, which saves us from computing the offset
@@ -472,10 +471,7 @@ struct ConcatenateRewriter : public OpRewritePattern<ConcatenateOp> {
assert(!ShapedType::isDynamic(d));
offset = rewriter.create<arith::AddIOp>(loc, offset,
constantIndex(rewriter, loc, d));
cooBuffer = foreachOp.getResult(0);
}
cooBuffer = rewriter.create<LoadOp>(loc, cooBuffer, true);
rewriter.replaceOpWithNewOp<ConvertOp>(op, rtp, cooBuffer);
return success();
}
@@ -606,8 +602,8 @@ private:
srcTp = getUnorderedCOOFromType(srcTp);
tmpCoo =
rewriter.create<AllocTensorOp>(loc, srcTp, dynSrcSizes).getResult();
auto foreachOp = rewriter.create<ForeachOp>(
loc, src, tmpCoo,
rewriter.create<ForeachOp>(
loc, src, llvm::None,
[&](OpBuilder &builder, Location loc, ValueRange args, Value v,
ValueRange reduc) {
SmallVector<Value, 4> indices;
@@ -615,10 +611,10 @@ private:
uint64_t dim = toStoredDim(encSrc, i);
indices.push_back(args[dim]);
}
auto t = builder.create<InsertOp>(loc, v, reduc.front(), indices);
builder.create<sparse_tensor::YieldOp>(loc, t);
builder.create<InsertOp>(loc, v, tmpCoo, indices);
builder.create<sparse_tensor::YieldOp>(loc);
});
src = rewriter.create<LoadOp>(loc, foreachOp.getResult(0), true);
src = tmpCoo;
}
// Sort the COO tensor so that its elements are ordered via increasing
@@ -657,31 +653,29 @@ private:
getDynamicSizes(dstTp, srcSizes, dynDstSizes);
Value dst =
rewriter.create<AllocTensorOp>(loc, dstTp, dynDstSizes).getResult();
auto foreachOp = rewriter.create<ForeachOp>(
loc, src, dst,
[&](OpBuilder &builder, Location loc, ValueRange args, Value v,
ValueRange reduc) {
SmallVector<Value, 4> indices;
for (int64_t i = 0, e = srcTp.getRank(); i < e; i++) {
uint64_t dim = toStoredDim(encDst, i);
indices.push_back(args[dim]);
}
auto t = builder.create<InsertOp>(loc, v, reduc.front(), indices);
builder.create<sparse_tensor::YieldOp>(loc, t);
});
rewriter.create<ForeachOp>(loc, src, llvm::None,
[&](OpBuilder &builder, Location loc,
ValueRange args, Value v, ValueRange reduc) {
SmallVector<Value, 4> indices;
for (int64_t i = 0, e = srcTp.getRank(); i < e;
i++) {
uint64_t dim = toStoredDim(encDst, i);
indices.push_back(args[dim]);
}
builder.create<InsertOp>(loc, v, dst, indices);
builder.create<sparse_tensor::YieldOp>(loc);
});
// Release the temporary COO if it is created. Note that tmpCoo is
// invalidated due to foreach and updated to src.
// Release the temporary COO if it is created.
if (tmpCoo)
rewriter.create<DeallocTensorOp>(loc, src);
rewriter.create<DeallocTensorOp>(loc, tmpCoo);
// Directly replace op with dst results in bufferization error message
// "sparse tensor allocation should not escape function".
// As such, we insert a trivial tensor convert which will be removed by
// codegen.
rewriter.setInsertionPointAfter(op);
auto t = rewriter.create<LoadOp>(loc, foreachOp.getResult(0), true);
rewriter.replaceOpWithNewOp<ConvertOp>(op, dstTp, t);
rewriter.replaceOpWithNewOp<ConvertOp>(op, dstTp, dst);
return success();
}
};
@@ -700,8 +694,6 @@ public:
int64_t rank = rtp.getRank();
auto enc = getSparseTensorEncoding(rtp);
SmallVector<Value> reduc = op.getInitArgs();
// 1. Generates loop for the sparse input.
SparseTensorLoopEmitter loopEmitter(ValueRange{input});
loopEmitter.initializeLoopEmit(rewriter, loc);
@@ -709,9 +701,7 @@ public:
// TODO: provide utility function for loop sequences that only contains
// one for loop?
loopEmitter.enterNewLoopSeq(rewriter, loc, 0, static_cast<size_t>(i));
// Note that reduc will be taken care of by loop emitter and get updated
// in place.
loopEmitter.enterLoopOverTensorAtDim(rewriter, loc, 0, i, reduc);
loopEmitter.enterLoopOverTensorAtDim(rewriter, loc, 0, i);
}
SmallVector<Value, 4> coords;
@@ -726,7 +716,15 @@ public:
: rewriter.create<memref::LoadOp>(loc, vals, coords);
// 2. Inline the block in the foreach operator.
Block::iterator inlinePos = rewriter.getInsertionPoint();
Block *srcBlock = op.getBody();
// Remove sparse_tensor.yield.
rewriter.eraseOp(srcBlock->getTerminator());
for (int64_t i = 0; i < rank; i++) {
loopEmitter.exitCurrentLoop(rewriter, loc);
loopEmitter.exitCurrentLoopSeq();
}
SmallVector<Value, 4> args;
// Remap coordinates.
@@ -736,33 +734,11 @@ public:
}
// Remap value.
args.push_back(val);
// Remap reduction variables.
args.append(reduc);
// Remove sparse_tensor.yield.
SmallVector<Value> reducValue = srcBlock->getTerminator()->getOperands();
rewriter.eraseOp(srcBlock->getTerminator());
// Inline body.
if (!reducValue.empty()) {
rewriter.mergeBlocks(srcBlock, rewriter.getBlock(), args);
} else {
// This is annoying, since scf.for inserts a implicit yield op when
// there is no reduction variable upon creation, in this case we need to
// merge the block *before* the yield op.
rewriter.mergeBlockBefore(srcBlock, &*rewriter.getInsertionPoint(), args);
}
for (int64_t i = 0; i < rank; i++) {
// Link the reduction chain. Note that loop emitter update the reducValue
// in place.
loopEmitter.exitCurrentLoop(rewriter, loc, reducValue);
loopEmitter.exitCurrentLoopSeq();
}
// Replace the foreach operator with the value returned by the outtermost
// for loop.
rewriter.replaceOp(op, reducValue);
rewriter.mergeBlockBefore(srcBlock, &*inlinePos, args);
// delete the foreach operator.
rewriter.eraseOp(op);
return success();
}
};
@@ -825,8 +801,7 @@ struct NewRewriter : public OpRewritePattern<NewOp> {
.getResult(0);
Type eltTp = dstTp.getElementType();
Value value = genAllocaScalar(rewriter, loc, eltTp);
scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, c0, nnz, c1,
ArrayRef<Value>(cooBuffer));
scf::ForOp forOp = rewriter.create<scf::ForOp>(loc, c0, nnz, c1);
rewriter.setInsertionPointToStart(forOp.getBody());
SmallString<18> getNextFuncName{"getSparseTensorReaderNext",
@@ -841,17 +816,13 @@ struct NewRewriter : public OpRewritePattern<NewOp> {
loc, indices, constantIndex(rewriter, loc, i)));
}
Value v = rewriter.create<memref::LoadOp>(loc, value);
auto t = rewriter.create<InsertOp>(loc, v, forOp.getRegionIterArg(0),
indicesArray);
rewriter.create<scf::YieldOp>(loc, ArrayRef<Value>(t));
rewriter.create<InsertOp>(loc, v, cooBuffer, indicesArray);
rewriter.setInsertionPointAfter(forOp);
// Link SSA chain.
cooBuffer = forOp.getResult(0);
// Release the sparse tensor reader.
createFuncCall(rewriter, loc, "delSparseTensorReader", {}, {reader},
EmitCInterface::Off);
cooBuffer = rewriter.create<LoadOp>(loc, cooBuffer, true);
Value newOp = rewriter.replaceOpWithNewOp<ConvertOp>(op, dstTp, cooBuffer);
// Release the unordered COO tensor buffer.