Background: dyld binaries often have extra symbols in their symbol table like "malloc" and "free" for the early bringup of dyld and we often don't want to set breakpoints in dynamic linker binaries. We also don't want to call the "malloc" or "free" function in dyld when a user writes an expression like "(void *)malloc(123)" so we need to avoid doing name lookups in dyld. We mark Modules as being dynamic link editors and this helps do correct lookups for breakpoints by name and function lookups.
<rdar://problem/19716267>
llvm-svn: 228261
redirecting output to a path that will work well on host or target.
copying file from output location to location on local host that
test will read from
llvm-svn: 228217
Why? Debugger::FormatPrompt() would run through the format prompt every time and parse it and emit it piece by piece. It also did formatting differently depending on which key/value pair it was parsing.
The new code improves on this with the following features:
1 - Allow format strings to be parsed into a FormatEntity::Entry which can contain multiple child FormatEntity::Entry objects. This FormatEntity::Entry is a parsed version of what was previously always done in Debugger::FormatPrompt() so it is more efficient to emit formatted strings using the new parsed FormatEntity::Entry.
2 - Allows errors in format strings to be shown immediately when setting the settings (frame-format, thread-format, disassembly-format
3 - Allows auto completion by implementing a new OptionValueFormatEntity and switching frame-format, thread-format, and disassembly-format settings over to using it.
4 - The FormatEntity::Entry for each of the frame-format, thread-format, disassembly-format settings only replaces the old one if the format parses correctly
5 - Combines all consecutive string values together for efficient output. This means all "${ansi.*}" keys and all desensitized characters like "\n" "\t" "\0721" "\x23" will get combined with their previous strings
6 - ${*.script:} (like "${var.script:mymodule.my_var_function}") have all been switched over to use ${script.*:} "${script.var:mymodule.my_var_function}") to make the format easier to parse as I don't believe anyone was using these format string power user features.
7 - All key values pairs are defined in simple C arrays of entries so it is much easier to add new entries.
These changes pave the way for subsequent modifications where we can modify formats to do more (like control the width of value strings can do more and add more functionality more easily like string formatting to control the width, printf formats and more).
llvm-svn: 228207
Summary:
Both LLDB and LLGS are leaking file descriptors into the debugged process. This plugs the leak by
closing the unneeded descriptors. In one case I use O_CLOEXEC, which I hope is supported on
relevant platforms. I also added a regression test and plugged a fd leak in dosep.py.
Reviewers: vharron, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D7372
llvm-svn: 228130
number of bytes to write into the inferior process, the "default byte size" will be 1.
In that case, we want to copy the entire file into memory. The code was looking for
a default byte size of 0 to indicate that the user had not provided a specific # of
bytes to copy; adjust that to 1 to match the actual default value.
<rdar://problem/18074973>
llvm-svn: 228067
Summary:
The Android dynamic linker reports only the basename of each SO entry, so for
the above check to be successful, we need to compare it to the basename of the
main executable.
This also has a nasty side-effect when working with older version of
Android (verified on platform version 16), and debugging PIE
executables: the dynamic linker has a bug and reports the load address
of the main executable (which is a shared object, because PIE) to be 0.
We then try to update the list of loaded sections for all shared
objects, including the main executable, and set the load address to 0,
which breaks everything that relies on resolving addresses in the main
executable (breakpoints, stepping, etc). This commit also fixes that broken
behavior when debugging on older Androids. This bug doesn't happen on newer
Android versions (verified for Android L).
Test Plan: Run test suite on linux.
Reviewers: clayborg, tfiala, richard.mitton
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D7188
llvm-svn: 228057
This was causing code that opened multiple targets to try and get a path to debugserver from the GDB remote communication class, and it would get the LLDB path and some instances would return empty strings and it would cause debugserver to not be found.
<rdar://problem/18756927>
llvm-svn: 227935
Remove implicit stop action on $vCont package for threads where no
explicit action or default action specified based on the specification
(they have to stay in there original state).
llvm-svn: 227933
NativeProcessLinux::MonitorSignal was automatically resuming threads
that stopped due to a signal. This is inconsistent with the
behavior of lldb and gdb. This change removes the automatic resume.
Fixes
TestSendSignal.py
TestSignalsAPI.py
if PLATFORM_LINUX_FORCE_LLGS_LOCAL is in the environment vars.
llvm-svn: 227918
Note this code path should not happen - it implies a bug in another part of
the code. For the thread to receive the stop signal as it is handled, the
and for it to already have a stop reason, it implies the kernel was able to
tell the thread that it stopped while it was stopped. More likely this
seems to indicate a bug where an actual thread start was not getting correctly
logged. If it does get hit, we'll want to understand the sequence to figure
out if it is truly legitimate or if it implies another bug.
llvm-svn: 227916
It looks like Shawn's fix addresses what the initial hijacking was trying
to accomplish per conversations with Greg and Jim. The hijacking was
causing several tests to hang (#61, #62, #63, #64, #67, possibly more).
These tests now just fail rather than hang with this modification.
llvm-svn: 227914
* When the thread state coordinator is told to skip sending a stop request
for a running thread that is ignored (e.g. the thread that steps in a
step operation is technically running and should not have a stop sent
to it, since it will stop of its own accord per the kernel step operation),
ensure the deferred signal notification logic still waits for the
skipped thread. (i.e. we want to defer the notification until the
stepping thread is indeed stopped, we just don't want to send it a tgkill).
* Add ThreadStateCoordinator::RequestResumeAsNeeded(). This variant of the
RequestResume() method does not call the error function when the thread
is already running. Instead, it just logs that the thread is already
running and skips the resume operation. This is useful for the case of
vCont;c handling, where we tell all threads that they should be running.
At the place we're calling, all we know is "we want this thread running if
it isn't already," and that's exactly what this command does.
* Formatting change (minor) in NativeThreadLinux logging.
llvm-svn: 227913
See https://github.com/tfiala/lldb/issues/75. Not fixed yet but
continuing to push this further.
Fixes:
* Resume() now skips doing deferred notifications if we're doing a
vCont;{c,C}. In this case, we're trying to start something up,
not defer a stop notification. The default thread action stop
mode pickup was triggering a stop because it had at least one
stop, which was wrong in the case of a continue. (Bug introduced
by previous change.)
* Added a variant to ThreadStateCoordinator to specify a set of
thread ids to be skipped when triggering stop notifications to
non-stopped threads on a deferred signal call. For the case of
a stepping thread, it is actually told to step (and is running)
for a brief moment, but the thread state coordinator would think
it needed to send the stepping thread a stop, which id doesn't
need to do. This facility allows me to get around that cleanly.
With this change, behavior is now reduced to something I think is
essentially a different bug:
* Doing a step into libc code from my code crashes llgs.
* Doing a next out of a function in my own code crashes llgs.
llvm-svn: 227912
Tracked down while working on https://github.com/tfiala/lldb/issues/75.
This is not a complete fix for that issue, but moves us farther along.
Fixes:
* When a thread step is requested via vCont:{s,S}, Resume() now marks
the stepping thread as (1) currently stepping and (2) does trigger
the deferred signal for the stepped thread. This fixes a bug where
we were actually triggering a deferred stop cycle here for the non-stepping
thread since the single step thread was not part of the Resume()
deferred signal mechanism. The stepping thread is also marked in
the thread state coordinator as running (via a resume callback).
* When we get the SIGTRAP signal for the step completion, we don't
do a deferred signal call - that happened during the vCont:{s,S}
processing in Resume() already. Now we just need to mark that
the stepping thread is now stopped. If this is the last thread
in the set that needs to stop, it will trigger the process/delegate
stop call that will notify lldb. Otherwise, that'll happen when
the final thead we're waiting for stops.
Misc:
* Fixed up thread stop logging to use a leading 0 (0x%PRIx32) so
we don't get log lines like 0x5 for 0x05 SIGTRAP.
llvm-svn: 227911
* Fixed bug in run loop where run loop return enum was being treated
erroneously like an int, causing the TSC event loop to terminate
prematurely.
* Added an explicit scope in NativeProcessLinux::Resume() for the
threads lock lifetime. (This was likely unnecessary but is
more explicit.)
* Fixed a bug in ThreadStateCoordinator where resume execution was
not updating the internal state about the thread assumed to be
running now. I'll add a test and upstream this in a moment.
* Added a verbose logging mechanism to event processing within
ThreadStateCoordinator. It is currently enabled when the
'log enable lldb thread' is true upon inferior launch/attach.
llvm-svn: 227909
create its own threads with 8MB additional maximum stack size.
Extra room is needed for the bookkeeping needed for this
instrumentation.
llvm-svn: 227421
for executable binaries on the local filesystem so the user doesn't
need to provide the path to the correct binary manually.
Also have lldb search for kexts/the kernel in the current working
directory in addition to all the usual places.
<rdar://problem/18126501>
llvm-svn: 227419
./dotest.py -A x86_64 -C clang -v -t -f TestImageListMultiArchitecture.test_image_list_shows_multiple_architectures
The problem was that if the platform wasn't compatible with the current file in the "target create" command, it wasn't finding a platform that was like it used to.
Also, the currently selected platform was being used upload the file _before_ the target was created which was incorrect as "target create a.out" might switch platforms if its architecture doesn't match, so I moved the uploading to happen after the target was created so we use the right platform (the one in the target, not the selected one).
llvm-svn: 227380