This will allow the bindings to be built as a library and reused in out-of-tree
projects that want to provide bindings on top of MLIR bindings.
Reviewed By: stellaraccident, mikeurbach
Differential Revision: https://reviews.llvm.org/D101075
The patch extends the OpDSL with support for:
- Constant values
- Capture scalar parameters
- Access the iteration indices using the index operation
- Provide predefined floating point and integer types.
Up to now the patch only supports emitting the new nodes. The C++/yaml path is not fully implemented. The fill_rng_2d operation defined in emit_structured_generic.py makes use of the new DSL constructs.
Differential Revision: https://reviews.llvm.org/D101364
This adds a method to directly invoke `mlirOperationDestroy` on the
MlirOperation wrapped by a PyOperation.
Reviewed By: stellaraccident, mehdi_amini
Differential Revision: https://reviews.llvm.org/D101422
Previously, this API would return the PyObjectRef, rather than the
underlying PyOperation.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D101416
This adds `mlirOperationSetOperand` to the IR C API, similar to the
function to get an operand.
In the Python API, this adds `operands[index] = value` syntax, similar
to the syntax to get an operand with `operands[index]`.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D101398
Add the `getCapsule()` and `createFromCapsule()` methods to the
PyValue class, as well as the necessary interoperability.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D101090
Expose the debug flag as a readable and assignable property of a
dedicated class instead of a write-only function. Actually test the fact
of setting the flag. Move test to a dedicated file, it has zero relation
to context_managers.py where it was added.
Arguably, it should be promoted from mlir.ir to mlir module, but we are
not re-exporting the latter and this functionality is purposefully
hidden so can stay in IR for now. Drop unnecessary export code.
Refactor C API and put Debug into a separate library, fix it to actually
set the flag to the given value.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D100757
When Linalg named ops support was added, captures were omitted
from the body builder. This revision adds support for captures
which allows us to write FillOp in a more idiomatic fashion using
the _linalg_ops_ext mixin support.
This raises an issue in the generation of `_linalg_ops_gen.py` where
```
@property
def result(self):
return self.operation.results[0] if len(self.operation.results) > 1 else None
```.
The condition should be `== 1`.
This will be fixed in a separate commit.
Differential Revision: https://reviews.llvm.org/D100363
This offers the ability to pass numpy arrays to the corresponding
memref argument.
Reviewed By: mehdi_amini, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D100077
This CL introduces a generic attribute (called "encoding") on tensors.
The attribute currently does not carry any concrete information, but the type
system already correctly determines that tensor<8xi1,123> != tensor<8xi1,321>.
The attribute will be given meaning through an interface in subsequent CLs.
See ongoing discussion on discourse:
[RFC] Introduce a sparse tensor type to core MLIR
https://llvm.discourse.group/t/rfc-introduce-a-sparse-tensor-type-to-core-mlir/2944
A sparse tensor will look something like this:
```
// named alias with all properties we hold dear:
#CSR = {
// individual named attributes
}
// actual sparse tensor type:
tensor<?x?xf64, #CSR>
```
I see the following rough 5 step plan going forward:
(1) introduce this format attribute in this CL, currently still empty
(2) introduce attribute interface that gives it "meaning", focused on sparse in first phase
(3) rewrite sparse compiler to use new type, remove linalg interface and "glue"
(4) teach passes to deal with new attribute, by rejecting/asserting on non-empty attribute as simplest solution, or doing meaningful rewrite in the longer run
(5) add FE support, document, test, publicize new features, extend "format" meaning to other domains if useful
Reviewed By: stellaraccident, bondhugula
Differential Revision: https://reviews.llvm.org/D99548
Add the `getCapsule()` and `createFromCapsule()` methods to the PyOperation class.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D99927
This revision tightens up the handling of attributes for both named
and generic linalg ops.
To demonstrate the IR validity, a working e2e Linalg example is added.
Differential Revision: https://reviews.llvm.org/D99430
This revision adds support to properly add the body of registered
builtin named linalg ops.
At this time, indexing_map and iterator_type support is still
missing so the op is not executable yet.
Differential Revision: https://reviews.llvm.org/D99578
This exposes the ability to register Python functions with the JIT and
exposes them to the MLIR jitted code. The provided test case illustrates
the mechanism.
Differential Revision: https://reviews.llvm.org/D99562
* Also adds some verbiage about upgrading `pip` itself, since this is a
common source of issues.
Differential Revision: https://reviews.llvm.org/D99522
Provide a registration mechanism for Linalg dialect-specific passes in C
API and Python bindings. These are being built into the dialect library
but exposed in separate headers (C) or modules (Python).
Differential Revision: https://reviews.llvm.org/D99431
* This has the API I want but I am not thrilled with the implementation. There are various things that could be improved both about the way that Python builders are mapped and the way the Linalg ops are factored to increase code sharing between C++/Python.
* Landing this as-is since it at least makes the InitTensorOp usable with the right API. Will refactor underneath in follow-ons.
Differential Revision: https://reviews.llvm.org/D99000
In particular for Graph Regions, the terminator needs is just a
historical artifact of the generalization of MLIR from CFG region.
Operations like Module don't need a terminator, and before Module
migrated to be an operation with region there wasn't any needed.
To validate the feature, the ModuleOp is migrated to use this trait and
the ModuleTerminator operation is deleted.
This patch is likely to break clients, if you're in this case:
- you may iterate on a ModuleOp with `getBody()->without_terminator()`,
the solution is simple: just remove the ->without_terminator!
- you created a builder with `Builder::atBlockTerminator(module_body)`,
just use `Builder::atBlockEnd(module_body)` instead.
- you were handling ModuleTerminator: it isn't needed anymore.
- for generic code, a `Block::mayNotHaveTerminator()` may be used.
Differential Revision: https://reviews.llvm.org/D98468
* Moves this out of a test case where it was being developed to good effect and generalizes it.
* Having tried a number of things like this, I think this balances concerns reasonably well.
Differential Revision: https://reviews.llvm.org/D98989
* IRModules.cpp -> (IRCore.cpp, IRAffine.cpp, IRAttributes.cpp, IRTypes.cpp).
* The individual pieces now compile in the 5-15s range whereas IRModules.cpp was starting to approach a minute (didn't capture a before time).
* More fine grained splitting is possible, but this represents the most obvious.
Differential Revision: https://reviews.llvm.org/D98978
* Makes the wrapped functions of the `@linalg_structured_op` decorator callable such that they emit IR imperatively when invoked.
* There are numerous TODOs that I will keep working through to achieve generality.
* Will true up exception handling tests as the feature progresses (for things that are actually errors once everything is implemented).
* Includes the addition of an `isinstance` method on concrete types in the Python API.
Differential Revision: https://reviews.llvm.org/D98754
A previous commit moved multiple ops from Standard to MemRef dialect.
Some of these ops are exercised in Python bindings. Enable bindings for
the newly created MemRef dialect and update a test accordingly.
Based on the following discussion:
https://llvm.discourse.group/t/rfc-memref-memory-shape-as-attribute/2229
The goal of the change is to make memory space property to have more
expressive representation, rather then "magic" integer values.
It will allow to have more clean ASM form:
```
gpu.func @test(%arg0: memref<100xf32, "workgroup">)
// instead of
gpu.func @test(%arg0: memref<100xf32, 3>)
```
Explanation for `Attribute` choice instead of plain `string`:
* `Attribute` classes allow to use more type safe API based on RTTI.
* `Attribute` classes provides faster comparison operator based on
pointer comparison in contrast to generic string comparison.
* `Attribute` allows to store more complex things, like structs or dictionaries.
It will allows to have more complex memory space hierarchy.
This commit preserve old integer-based API and implements it on top
of the new one.
Depends on D97476
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D96145
* Only leaf packages are non-namespace packages. This allows most of the top levels to be split into different directories or deployment packages. In the previous state, the presence of __init__.py files at each level meant that the entire tree could only ever exist in one physical directory on the path.
* This changes the API usage slightly: `import mlir` will no longer do a deep import of `mlir.ir`, etc. This may necessitate some client code changes.
* Dialect gen code was restructured so that the user is responsible for providing the `my_dialect.py` file, which then must import its peer `_my_dialect_ops_gen`. This gives complete control of the dialect namespace to the user instead of to tablegen code, allowing further dialect-specific python APIs.
* Correspondingly, the previous extension modules `_my_dialect.py` are now `_my_dialect_ops_ext.py`.
* Now that the `linalg` namespace is open, moved the `linalg_opdsl` tool into it.
* This may require some corresponding downstream adjustments to npcomp, circt, et al:
* Probably some shallow imports need to be converted to deep imports (i.e. not `import mlir` brings in the world).
* Each tablegen generated dialect now needs an explicit `foo.py` which does a `from ._foo_ops_gen import *`. This is similar to the way that generated code operates in the C++ world.
* If providing dialect op extensions, those need to be moved from `_foo.py` -> `_foo_ops_ext.py`.
Differential Revision: https://reviews.llvm.org/D98096
* Mostly imported from experimental repo as-is with cosmetic changes.
* Temporarily left out emission code (for building ops at runtime) to keep review size down.
* Documentation and lit tests added fresh.
* Sample op library that represents current Linalg named ops included.
Differential Revision: https://reviews.llvm.org/D97995
This offers the ability to create a JIT and invoke a function by passing
ctypes pointers to the argument and the result.
Differential Revision: https://reviews.llvm.org/D97523
`verifyConstructionInvariants` is intended to allow for verifying the invariants of an attribute/type on construction, and `getChecked` is intended to enable more graceful error handling aside from an assert. There are a few problems with the current implementation of these methods:
* `verifyConstructionInvariants` requires an mlir::Location for emitting errors, which is prohibitively costly in the situations that would most likely use them, e.g. the parser.
This creates an unfortunate code duplication between the verifier code and the parser code, given that the parser operates on llvm::SMLoc and it is an undesirable overhead to pre-emptively convert from that to an mlir::Location.
* `getChecked` effectively requires duplicating the definition of the `get` method, creating a quite clunky workflow due to the subtle different in its signature.
This revision aims to talk the above problems by refactoring the implementation to use a callback for error emission. Using a callback allows for deferring the costly part of error emission until it is actually necessary.
Due to the necessary signature change in each instance of these methods, this revision also takes this opportunity to cleanup the definition of these methods by:
* restructuring the signature of `getChecked` such that it can be generated from the same code block as the `get` method.
* renaming `verifyConstructionInvariants` to `verify` to match the naming scheme of the rest of the compiler.
Differential Revision: https://reviews.llvm.org/D97100
This follows up on the introduction of C API for the same object and is similar
to AffineExpr and AffineMap.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D95437
The `getCapsule` and `createFromCapsule` comments incorrectly state the `PyMlirContext` and `MlirContext` in `PyLocation`, `PyAttribute`, and `PyType` classes.
Differential Revision: https://reviews.llvm.org/D95413
* As discussed, fixes the ordering or (operands, results) -> (results, operands) in various `create` like methods.
* Fixes a syntax error in an ODS accessor method.
* Removes the linalg example in favor of a test case that exercises the same.
* Fixes FuncOp visibility to properly use None instead of the empty string and defaults it to None.
* Implements what was documented for requiring that trailing __init__ args `loc` and `ip` are keyword only.
* Adds a check to `InsertionPoint.insert` so that if attempting to insert past the terminator, an exception is raised telling you what to do instead. Previously, this would crash downstream (i.e. when trying to print the resultant module).
* Renames `_ods_build_default` -> `build_generic` and documents it.
* Removes `result` from the list of prohibited words and for single-result ops, defaults to naming the result `result`, thereby matching expectations and what is already implemented on the base class.
* This was intended to be a relatively small set of changes to be inlined with the broader support for ODS generating the most specific builder, but it spidered out once actually testing various combinations, so rolling up separately.
Differential Revision: https://reviews.llvm.org/D95320
* Matches how all of the other shaped types are declared.
* No super principled reason fro this ordering beyond that it makes the one that was different be like the rest.
* Also matches ordering of things like ndarray, et al.
Reviewed By: ftynse, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D94812
* This isn't exclusive with other mechanisms for more ODS centric op definitions, but based on discussions, we feel that we will always benefit from a python escape hatch, and that is the most natural way to write things that don't fit the mold.
* I suspect this facility needs further tweaking, and once it settles, I'll document it and add more tests.
* Added extensions for linalg, since it is unusable without them and continued to evolve my e2e example.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D94752
* This allows us to hoist trait level information for regions and sized-variadic to class level attributes (_ODS_REGIONS, _ODS_OPERAND_SEGMENTS, _ODS_RESULT_SEGMENTS).
* Eliminates some splicey python generated code in favor of a native helper for it.
* Makes it possible to implement custom, variadic and region based builders with one line of python, without needing to manually code access to the segment attributes.
* Needs follow-on work for region based callbacks and support for SingleBlockImplicitTerminator.
* A follow-up will actually add ODS support for generating custom Python builders that delegate to this new method.
* Also includes the start of an e2e sample for constructing linalg ops where this limitation was discovered (working progressively through this example and cleaning up as I go).
Differential Revision: https://reviews.llvm.org/D94738
An invalid permutation will trigger a C++ assertion when attempting to create an AffineMap from the permutation.
This patch adds an `isPermutation` function to check the given permutation before creating the AffineMap.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D94492
* We've got significant missing features in order to use most of these effectively (i.e. custom builders, region-based builders).
* We presently also lack a mechanism for actually registering these dialects but they can be use with contexts that allow unregistered dialects for further prototyping.
Differential Revision: https://reviews.llvm.org/D94368
This wasn't possible before because there was no support for affine expressions
as maps. Now that this support is available, provide the mechanism for
constructing maps with a layout and inspecting it.
Rework the `get` method on MemRefType in Python to avoid needing an explicit
memory space or layout map. Remove the `get_num_maps`, it is too low-level,
using the length of the now-avaiable pseudo-list of layout maps is more
pythonic.
Depends On D94297
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D94302