This might simplify frontend implementation by avoiding recomputation for the same value.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D154244
We previously only support packing two array (values and coordinates) into COO tensors.
This patch allows packing inputs into arbitrary sparse tensor format.
It also deletes the "implicit" data canonicalization performed inside sparse compiler,
but instead requires users to canonicalize the data before passing it to the sparse compiler.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D150916
This commit is part of the migration of towards the new STEA syntax/design. In particular, this commit includes the following changes:
* Renaming compiler-internal functions/methods:
* `SparseTensorEncodingAttr::{getDimLevelType => getLvlTypes}`
* `Merger::{getDimLevelType => getLvlType}` (for consistency)
* `sparse_tensor::{getDimLevelType => buildLevelType}` (to help reduce confusion vs actual getter methods)
* Renaming external facets to match:
* the STEA parser and printer
* the C and Python bindings
* PyTACO
However, the actual renaming of the `DimLevelType` itself (along with all the "dlt" names) will be handled in a separate commit.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D150330
The old "pointer/index" names often cause confusion since these names clash with names of unrelated things in MLIR; so this change rectifies this by changing everything to use "position/coordinate" terminology instead.
In addition to the basic terminology, there have also been various conventions for making certain distinctions like: (1) the overall storage for coordinates in the sparse-tensor, vs the particular collection of coordinates of a given element; and (2) particular coordinates given as a `Value` or `TypedValue<MemRefType>`, vs particular coordinates given as `ValueRange` or similar. I have striven to maintain these distinctions
as follows:
* "p/c" are used for individual position/coordinate values, when there is no risk of confusion. (Just like we use "d/l" to abbreviate "dim/lvl".)
* "pos/crd" are used for individual position/coordinate values, when a longer name is helpful to avoid ambiguity or to form compound names (e.g., "parentPos"). (Just like we use "dim/lvl" when we need a longer form of "d/l".)
I have also used these forms for a handful of compound names where the old name had been using a three-letter form previously, even though a longer form would be more appropriate. I've avoided renaming these to use a longer form purely for expediency sake, since changing them would require a cascade of other renamings. They should be updated to follow the new naming scheme, but that can be done in future patches.
* "coords" is used for the complete collection of crd values associated with a single element. In the runtime library this includes both `std::vector` and raw pointer representations. In the compiler, this is used specifically for buffer variables with C++ type `Value`, `TypedValue<MemRefType>`, etc.
The bare form "coords" is discouraged, since it fails to make the dim/lvl distinction; so the compound names "dimCoords/lvlCoords" should be used instead. (Though there may exist a rare few cases where is is appropriate to be intentionally ambiguous about what coordinate-space the coords live in; in which case the bare "coords" is appropriate.)
There is seldom the need for the pos variant of this notion. In most circumstances we use the term "cursor", since the same buffer is reused for a 'moving' pos-collection.
* "dcvs/lcvs" is used in the compiler as the `ValueRange` analogue of "dimCoords/lvlCoords". (The "vs" stands for "`Value`s".) I haven't found the need for it, but "pvs" would be the obvious name for a pos-`ValueRange`.
The old "ind"-vs-"ivs" naming scheme does not seem to have been sustained in more recent code, which instead prefers other mnemonics (e.g., adding "Buf" to the end of the names for `TypeValue<MemRefType>`). I have cleaned up a lot of these to follow the "coords"-vs-"cvs" naming scheme, though haven't done an exhaustive cleanup.
* "positions/coordinates" are used for larger collections of pos/crd values; in particular, these are used when referring to the complete sparse-tensor storage components.
I also prefer to use these unabbreviated names in the documentation, unless there is some specific reason why using the abbreviated forms helps resolve ambiguity.
In addition to making this terminology change, this change also does some cleanup along the way:
* correcting the dim/lvl terminology in certain places.
* adding `const` when it requires no other code changes.
* miscellaneous cleanup that was entailed in order to make the proper distinctions. Most of these are in CodegenUtils.{h,cpp}
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D144773
We will support symmetric MTX without expanding the data in the sparse tensor
storage.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D144059
This change adds a new `SparseTensorType` class for making the "dim" vs "lvl" distinction more overt, and for abstracting over the differences between sparse-tensors and dense-tensors. In addition, this change also adds new type aliases `Dimension`, `Level`, and `FieldIndex` to make code more self-documenting.
Although the diff is very large, the majority of the changes are mechanical in nature (e.g., changing types to use the new aliases, updating variable names to match, etc). Along the way I also made many variables `const` when they could be; the majority of which required only adding the keyword. A few places had conditional definitions of these variables, requiring actual code changes; however, that was only done when the overall change was extremely local and easy to extract. All these changes are included in the current patch only because it would be too onerous to split them off into a separate patch.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D143800
Currently, all the non-stable sorting algorithms are implemented via the
straightforward quick sort. This will be fixed in the following PR.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D142678
The attribute tells the operator to handle symmetric structures for 2D tensors.
By default, the operator assumes the input tensor is not symmetric.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D138230
This patch re-commit D137468 and D137463, which were reverted by mistakes.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D137579
This prepare a subsequent revision that will generalize
the insertion code generation. Similar to the support lib,
insertions become much easier to perform with some "cursor"
bookkeeping. Note that we, in the long run, could perhaps
avoid storing the "cursor" permanently and use some
retricted-scope solution (alloca?) instead. However,
that puts harder restrictions on insertion-chain operations,
so for now we follow the more straightforward approach.
Reviewed By: Peiming
Differential Revision: https://reviews.llvm.org/D136800
The indices for insert/compress were previously provided as
a memref<?xindex> with proper rank, since that matched the
argument for the runtime support libary better. However, with
proper codegen coming, providing the indices as SSA values
is much cleaner. This also brings the sparse_tensor.insert
closer to unification with tensor.insert, planned in the
longer run.
Reviewed By: Peiming
Differential Revision: https://reviews.llvm.org/D134404
The new select operation allows filtering of sparse tensors
by conditionally keeping or removing each element. This
can be used to remove negative values or select the upper
triangle of a matrix.
The select op has a single region which operates on a single
value and must return a boolean True to keep or False to drop.
Reviewed by: aartbik
Differential Revision: https://reviews.llvm.org/D133569
This change goes not impact any semantics yet, but it
is in preparation for implementing the unordered and not-unique
properties. Changing lex_insert to insert is a first step.
Reviewed By: Peiming
Differential Revision: https://reviews.llvm.org/D133531
The "sparsification" pass does not need the ability to use runtime values for
the dimension, so the only source for variability would have been user code.
Restricting the dimension to constants simplifies code generation.
Reviewed By: Peiming, wrengr
Differential Revision: https://reviews.llvm.org/D133458
Introduce new sparse_tensor.storage_get/set to access memory that stores the handle of a sparse tensor. The sparse tensor storage are represented as a tuple, these operation will later be eliminated and the tuple will be flattened after sparse tensor codegen
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D133049
This op used to belong to the sparse dialect, but there are use cases for dense bufferization as well. (E.g., when a tensor alloc is returned from a function and should be deallocated at the call site.) This change moves the op to the bufferization dialect, which now has an `alloc_tensor` and a `dealloc_tensor` op.
Differential Revision: https://reviews.llvm.org/D129985
A new sparse_tensor operation allows for
custom reduction code to be injected during
linalg.generic lowering for sparse tensors.
An identity value is provided to indicate
the starting value of the reduction. A single
block region is required to contain the
custom reduce computation.
Reviewed by: aartbik
Differential Revision: https://reviews.llvm.org/D128004