Commit Graph

185 Commits

Author SHA1 Message Date
River Riddle
8eccc429b7 Add parser support for named type aliases.
Alias identifiers can be used in the place of the types that they alias, and are defined as:

    type-alias-def ::= '!' alias-name '=' 'type' type
    type-alias ::= '!' alias-name

Example:

    !avx.m128 = type vector<4 x f32>
    ...

    "foo"(%x) : vector<4 x f32> -> ()

    // becomes:

    "foo"(%x) : !avx.m128 -> ()

PiperOrigin-RevId: 228271372
2019-03-29 15:04:05 -07:00
Uday Bondhugula
56b3640b94 Misc readability and doc / code comment related improvements - NFC
- when SSAValue/MLValue existed, code at several places was forced to create additional
  aggregate temporaries of SmallVector<SSAValue/MLValue> to handle the conversion; get
  rid of such redundant code

- use filling ctors instead of explicit loops

- for smallvectors, change insert(list.end(), ...) -> append(...

- improve comments at various places

- turn getMemRefAccess into MemRefAccess ctor and drop duplicated
  getMemRefAccess. In the next CL, provide getAccess() accessors for load,
  store, DMA op's to return a MemRefAccess.

PiperOrigin-RevId: 228243638
2019-03-29 15:02:41 -07:00
River Riddle
3b2c5600d9 Add support for types belonging to unknown dialects. This allows for types to be round tripped even if the dialect that defines them is not linked in. These types will be represented by a new "UnknownType" that uniques them based upon the dialect namespace and raw string type data.
PiperOrigin-RevId: 228184629
2019-03-29 15:01:11 -07:00
Alex Zinenko
92a899f629 Drop all uses of the ForInst induction variable before deleting ForInst
The `for` instruction defines the loop induction variable it uses.  In the
well-formed IR, the induction variable can only be used by the body of the
`for` loop.  Existing implementation was explicitly cleaning the body of the
for loop to remove all uses of the induction variable before removing its
definition.  However, in ill-formed IR that may appear in some stages of
parsing, there may be (invalid) users of the loop induction variable outside
the loop body.  In case of unsuccessful parsing, destructor of the
ForInst-defined Value would assert because there are remaining though invalid
users of this Value.  Explicitly drop all uses of the loop induction Value when
destroying a ForInst.  It is no longer necessary to explicitly clean the body
of the loop, destructor of the block will take care of this.

PiperOrigin-RevId: 228168880
2019-03-29 15:00:26 -07:00
Alex Zinenko
3b7b0040ce FunctionParser::~FunctionParser: avoid iterator invalidation
When destroying a FunctionParser in case of parsing failure, we clean up all
uses of undefined forward-declared references.  This has been implemented as
iteration over the list of uses.  However, deleting one use from the list
invalidates the iterator (`IROperand::drop` sets `nextUse` to `nullptr` while
the iterator reads `nextUse` to advance; therefore only the first use was
deleted from the list).  Get a new iterator before calling drop to avoid
invalidation.

PiperOrigin-RevId: 228168849
2019-03-29 15:00:10 -07:00
Uday Bondhugula
94c2d969ce Rename getAffineBinaryExpr -> getAffineBinaryOpExpr, getBinaryAffineOpExpr ->
getAffineBinaryOpExpr for consistency (NFC)

- this is consistent with the name of the class and getAffineDimExpr/ConstantExpr, etc.

PiperOrigin-RevId: 228164959
2019-03-29 14:59:52 -07:00
Smit Hinsu
d3339ea2b8 Handle parsing failure for splat elements attribute
Currently, it emits the error but does not terminate parsing.

TESTED with unit test

PiperOrigin-RevId: 227886274
2019-03-29 14:56:52 -07:00
River Riddle
54948a4380 Split the standard types from builtin types and move them into separate source files(StandardTypes.cpp/h). After this cl only FunctionType and IndexType are builtin types, but IndexType will likely become a standard type when the ml/cfgfunc merger is done. Mechanical NFC.
PiperOrigin-RevId: 227750918
2019-03-29 14:54:07 -07:00
River Riddle
8abc06f3d5 Implement initial support for dialect specific types.
Dialect specific types are registered similarly to operations, i.e. registerType<...> within the dialect. Unlike operations, there is no notion of a "verbose" type, that is *all* types must be registered to a dialect. Casting support(isa/dyn_cast/etc.) is implemented by reserving a range of type kinds in the top level Type class as opposed to string comparison like operations.

To support derived types a few hooks need to be implemented:

In the concrete type class:
    - static char typeID;
      * A unique identifier for the type used during registration.

In the Dialect:
    - typeParseHook and typePrintHook must be implemented to provide parser support.

The syntax for dialect extended types is as follows:
 dialect-type:  '!' dialect-namespace '<' '"' type-specific-data '"' '>'

The 'type-specific-data' is information used to identify different types within the dialect, e.g:
 - !tf<"variant"> // Tensor Flow Variant Type
 - !tf<"string">  // Tensor Flow String Type

TensorFlow/TensorFlowControl types are now implemented as dialect specific types as a proof
 of concept.

PiperOrigin-RevId: 227580052
2019-03-29 14:53:07 -07:00
Chris Lattner
8ebd64b32f Update the g3docs to reflect the merging of CFG and ML functions.
PiperOrigin-RevId: 227562943
2019-03-29 14:51:52 -07:00
Chris Lattner
bbf362b784 Eliminate extfunc/cfgfunc/mlfunc as a concept, and just use 'func' instead.
The entire compiler now looks at structural properties of the function (e.g.
does it have one block, does it contain an if/for stmt, etc) so the only thing
holding up this difference is round tripping through the parser/printer syntax.
Removing this shrinks the compile by ~140LOC.

This is step 31/n towards merging instructions and statements.  The last step
is updating the docs, which I will do as a separate patch in order to split it
from this mostly mechanical patch.

PiperOrigin-RevId: 227540453
2019-03-29 14:51:37 -07:00
Chris Lattner
50a356d118 Simplify FunctionPass to only have a runOnFunction hook, instead of having a
runOnCFG/MLFunction override locations.  Passes that care can handle this
filtering if they choose.  Also, eliminate one needless difference between
CFG/ML functions in the parser.

This is step 30/n towards merging instructions and statements.

PiperOrigin-RevId: 227515912
2019-03-29 14:50:53 -07:00
Chris Lattner
aaa1d77e96 Clean up and improve the parser handling of basic block labels, now that we
have a designator.  This improves diagnostics and merges handling between CFG
and ML functions more.  This also eliminates hard coded parser knowledge of
terminator keywords, allowing dialects to define their own terminators.

PiperOrigin-RevId: 227239398
2019-03-29 14:46:13 -07:00
Chris Lattner
37579ae8c4 Introduce ^ as a basic block sigil, eliminating an ambiguity on the MLIR
syntax.

PiperOrigin-RevId: 227234174
2019-03-29 14:45:59 -07:00
Chris Lattner
4a96a11d6d Enhance parsing of CFG and Ext functions to optionally allow named arguments in
the function signature, giving them common functionality to ml functions.  This
is a strictly additive patch that adds new capability without changing behavior
in a significant way (other than a few diagnostic cleanups).  A subsequent
patch will change the printer to use this behavior, which will require updating
a ton of testcases.  :)

This exposes the fact that we need to make a grammar change for block
arguments, as is tracked by b/122119779

This is step 23/n towards merging instructions and statements, and one of the
first steps towards eliminating the "cfg vs ml" distinction at a syntax and
semantic level.

PiperOrigin-RevId: 227228342
2019-03-29 14:45:28 -07:00
Chris Lattner
5b9c3f7cdb Tidy up references to "basic blocks" that should refer to blocks now. NFC.
PiperOrigin-RevId: 227196077
2019-03-29 14:44:59 -07:00
Chris Lattner
be9ee4a98e Merge parser logic for CFG and ML functions, shrinking the code
by ~80 lines.  This causes a slight change to diagnostics, but
is otherwise behavior preserving.

This is step 22/n towards merging instructions and statements, MFC.

PiperOrigin-RevId: 227187857
2019-03-29 14:44:44 -07:00
Chris Lattner
456ad6a8e0 Standardize naming of statements -> instructions, revisting the code base to be
consistent and moving the using declarations over.  Hopefully this is the last
truly massive patch in this refactoring.

This is step 21/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227178245
2019-03-29 14:44:30 -07:00
Chris Lattner
315a466aed Rename BasicBlock and StmtBlock to Block, and make a pass cleaning it up. I did not make an effort to rename all of the 'bb' names in the codebase, since they are still correct and any specific missed once can be fixed up on demand.
The last major renaming is Statement -> Instruction, which is why Statement and
Stmt still appears in various places.

This is step 19/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227163082
2019-03-29 14:43:58 -07:00
Chris Lattner
69d9e990fa Eliminate the using decls for MLFunction and CFGFunction standardizing on
Function.

This is step 18/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227139399
2019-03-29 14:43:13 -07:00
Chris Lattner
d798f9bad5 Rename BBArgument -> BlockArgument, Op::getOperation -> Op::getInst(),
StmtResult -> InstResult, StmtOperand -> InstOperand, and remove the old names.

This is step 17/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227121537
2019-03-29 14:42:40 -07:00
Chris Lattner
5187cfcf03 Merge Operation into OperationInst and standardize nomenclature around
OperationInst.  This is a big mechanical patch.

This is step 16/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227093712
2019-03-29 14:42:23 -07:00
Feng Liu
9b20a4ccdf add a method to get FloatAttr value as double
Sometimes we have to get the raw value of the FloatAttr to invoke APIs from
non-MLIR libraries (i.e. in the tpu_ops.inc and convert_tensor.cc files). Using
`FloatAttr::getValue().convertToFloat()` and
`FloatAttr::getValue().convertToDouble()` is not safe because interally they
checke the semantics of the APFloat in the attribute, and the semantics is not
always specified (the default value is f64 then convertToFloat will fail) or
inferred incorrectly (for example, using 1.0 instead of 1.f for IEEEFloat).
Calling these convert methods without knowing the semantics can usually crash
the compiler.

This new method converts the value of a FloatAttr to double even if it loses
precision. Currently this method can be used to read in f32 data from arrays.

PiperOrigin-RevId: 227076616
2019-03-29 14:41:34 -07:00
Chris Lattner
4c05f8cac6 Merge CFGFuncBuilder/MLFuncBuilder/FuncBuilder together into a single new
FuncBuilder class.  Also rename SSAValue.cpp to Value.cpp

This is step 12/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227067644
2019-03-29 14:40:22 -07:00
Chris Lattner
3f190312f8 Merge SSAValue, CFGValue, and MLValue together into a single Value class, which
is the new base of the SSA value hierarchy.  This CL also standardizes all the
nomenclature and comments to use 'Value' where appropriate.  This also eliminates a large number of cast<MLValue>(x)'s, which is very soothing.

This is step 11/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227064624
2019-03-29 14:40:06 -07:00
Chris Lattner
776b035646 Eliminate the Instruction, BasicBlock, CFGFunction, MLFunction, and ExtFunction classes, using the Statement/StmtBlock hierarchy and Function instead.
This *only* changes the internal data structures, it does not affect the user visible syntax or structure of MLIR code.  Function gets new "isCFG()" sorts of predicates as a transitional measure.

This patch is gross in a number of ways, largely in an effort to reduce the amount of mechanical churn in one go.  It introduces a bunch of using decls to keep the old names alive for now, and a bunch of stuff needs to be renamed.

This is step 10/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227044402
2019-03-29 14:39:49 -07:00
Chris Lattner
3bd8ff6699 Eliminate the MLFuncArgument class representing arguments to MLFunctions: use the
BlockArgument arguments of the entry block instead.  This makes MLFunctions and
CFGFunctions work more similarly.

This is step 7/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 226966975
2019-03-29 14:38:04 -07:00
Chris Lattner
d613f5ab65 Refactor MLFunction to contain a StmtBlock for its body instead of inheriting
from it.  This is necessary progress to squaring away the parent relationship
that a StmtBlock has with its enclosing if/for/fn, and makes room for functions
to have more than one block in the future.  This also removes IfClause and ForStmtBody.

This is step 5/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 226936541
2019-03-29 14:36:35 -07:00
Chris Lattner
1301f907a1 Refactor ForStmt: having it contain a StmtBlock instead of subclassing
StmtBlock.  This is more consistent with IfStmt and also conceptually makes
more sense - a forstmt "isn't" its body, it contains its body.

This is step 1/N towards merging BasicBlock and StmtBlock.  This is required
because in the new regime StmtBlock will have a use list (just like BasicBlock
does) of operands, and ForStmt already has a use list for its induction
variable.

This is a mechanical patch, NFC.

PiperOrigin-RevId: 226684158
2019-03-29 14:35:19 -07:00
Alex Zinenko
49c81ebcb0 Densify storage for f16, f32 and support f16 semantics in FloatAttrs
Existing implementation always uses 64 bits to store floating point values in
DenseElementsAttr.  This was due to FloatAttrs always a `double` for storage
independently of the actual type.  Recent commits added support for FloatAttrs
with the proper f32 type and floating semantics and changed the bitwidth
reporting on FloatType.

Use the existing infrastructure for densely storing 16 and 32-bit values in
DenseElementsAttr storage to store f16 and f32 values.  Move floating semantics
definition to the FloatType level.  Properly support f16 / IEEEhalf semantics
at the FloatAttr level and in the builder.

Note that bf16 is still stored as a 64-bit value with IEEEdouble semantics
because APFloat does not have first-class support for bf16 types.

PiperOrigin-RevId: 225981289
2019-03-29 14:32:14 -07:00
Alex Zinenko
df9bd857b1 Type system: replace Type::getBitWidth with getIntOrFloatBitWidth
As MLIR moves towards dialect-specific types, a generic Type::getBitWidth does
not make sense for all of them.  Even with the current type system, the bit
width is not defined (and causes the method in question to abort) for all
TensorFlow types.

This commit restricts the bit width definition to primitive standard types that
have a number of bits appearing verbatim in their type, i.e., integers and
floats.  As a side effect, it delegates the decision on the bit width of the
`index` to the backends.  Existing backends currently hardcode it to 64 bits.

The Type::getBitWidth method is replaced by Type::getIntOrFloatBitWidth that
only applies to integers and floats.  The call sites are updated to use the new
method, where applicable, or rewritten so as not rely on it.  Incidentally,
this fixes a utility method that did not account for memrefs being allowed to
have vectors as element types in the size computation.

As an observation, several places in the code use Type in places where a more
specific type could be used instead.  Some of those are fixed by this commit.

PiperOrigin-RevId: 225844792
2019-03-29 14:30:43 -07:00
Jacques Pienaar
49c4d2a630 Fix builder getFloatAttr of double to use F64 type and use fltSemantics in FloatAttr.
Store FloatAttr using more appropriate fltSemantics (mostly fixing up F32/F64 storage, F16/BF16 pending). Previously F32 type was used incorrectly for double (the storage was double). Also add query method that returns fltSemantics for IEEE fp types and use that to verify that the APfloat given matches the type:
* FloatAttr created using APFloat is verified that the semantics of the type and APFloat matches;
* FloatAttr created using double has the APFloat created to match the semantics of the type;

Change parsing of tensor negative splat element to pass in the element type expected. Misc other changes to account for the storage type matching the attribute.

PiperOrigin-RevId: 225821834
2019-03-29 14:29:58 -07:00
Smit Hinsu
adca59e4f7 Return bool from all emitError methods similar to Operation::emitOpError
This simplifies call-sites returning true after emitting an error. After the
conversion, dropped braces around single statement blocks as that seems more
common.

Also, switched to emitError method instead of emitting Error kind using the
emitDiagnostic method.

TESTED with existing unit tests

PiperOrigin-RevId: 224527868
2019-03-29 14:22:06 -07:00
Uday Bondhugula
9f77faae87 Strided DMA support for DmaStartOp
- add optional stride arguments for DmaStartOp
- add DmaStartOp::verify(), and missing test cases for DMA op's in
  test/IR/memory-ops.mlir.

PiperOrigin-RevId: 224232466
2019-03-29 14:18:37 -07:00
Lei Zhang
b572322859 Add isIntOrIndex() and isIntOrIndexOrFloat() into Type
The checks for `isa<IndexType>() || isa<IntegerType>()` and
`isa<IndexType>() || isa<IntegerType>() || isa<FloatType>()`
are frequently used, so it's useful to have some helper
methods for them.

PiperOrigin-RevId: 224133596
2019-03-29 14:17:38 -07:00
River Riddle
8b6bc09f48 Merge OperationInst functionality into Instruction.
We do some limited renaming here but define an alias for OperationInst so that a follow up cl can solely perform the large scale renaming.

PiperOrigin-RevId: 221726963
2019-03-29 13:59:37 -07:00
Jacques Pienaar
711047c0cd Add Type to int/float attributes.
* Optionally attach the type of integer and floating point attributes to the attributes, this allows restricting a int/float to specific width.
  - Currently this allows suffixing int/float constant with type [this might be revised in future].
  - Default to i64 and f32 if not specified.
* For index types the APInt width used is 64.
* Change callers to request a specific attribute type.
* Store iN type with APInt of width N.
* This change does not handle the folding of constants of different types (e.g., doing int type promotions to support constant folding i3 and i32), and instead restricts the constant folding to only operate on the same types.

PiperOrigin-RevId: 221722699
2019-03-29 13:59:23 -07:00
River Riddle
503caf0722 Replace TerminatorInst with builtin terminator operations.
Note: Terminators will be merged into the operations list in a follow up patch.
PiperOrigin-RevId: 221670037
2019-03-29 13:58:55 -07:00
River Riddle
1807ba3c2c Add functionality for parsing/managing operation terminator successors.
Follow up patches will work to remove TerminatorInst.

PiperOrigin-RevId: 221640621
2019-03-29 13:58:27 -07:00
Alex Zinenko
d030433443 ConvertToCFG: properly remap nested function attributes.
Array attributes can nested and function attributes can appear anywhere at that
level.  They should be remapped to point to the generated CFGFunction after
ML-to-CFG conversion, similarly to plain function attributes.  Extract the
nested attribute remapping functionality from the Parser to Utils.  Extract out
the remapping function for individual Functions from the module remapping
function.  Use these new functions in the ML-to-CFG conversion pass and in the
parser.

PiperOrigin-RevId: 221510997
2019-03-29 13:57:58 -07:00
Alex Zinenko
be6ea23aee Optionally emit errors from IntegerType factory functions.
Similarly to other types, introduce "get" and "getChecked" static member
functions for IntegerType.  The latter emits errors to the error handler
registered with the MLIR context and returns a null type for the caller to
handle errors gracefully.  This deduplicates type consistency checks between
the parser and the builder.  Update the parser to call IntegerType::getChecked
for error reporting instead of the builder that would simply assert.

This CL completes the type system error emission refactoring: the parser now
only emits syntax-related errors for types while type factory systems may emit
type consistency errors.

PiperOrigin-RevId: 221165207
2019-03-29 13:55:50 -07:00
Alex Zinenko
cab24dc211 Homogenize branch instruction arguments.
Branch instruction arguments were defined and used inconsistently across
different instructions, in both the spec and the implementation.  In
particular, conditional and unconditional branch instructions were using
different syntax in the implementation.  This led to the IR we produce not
being accepted by the parser. Update the printer to use common syntax: `(`
list-of-SSA-uses `:` list-of-types `)`.  The motivation for choosing this
syntax as opposed to the one in the spec, `(` list-of-SSA-uses `)` `:`
list-of-types is double-fold.  First, it is tricky to differentiate the label
of the false branch from the type while parsing conditional branches (which is
what apparently motivated the implementation to diverge from the spec in the
first place).  Second, the ongoing convergence between terminator instructions
and other operations prompts for consistency between their operand list syntax.
After this change, the only remaining difference between the two is the use of
parentheses.  Update the comment of the parser that did not correspond to the
code.  Remove the unused isParenthesized argument from parseSSAUseAndTypeList.

Update the spec accordingly.  Note that the examples in the spec were _not_
using the EBNF defined a couple of lines above them, but were using the current
syntax.  Add a supplementary example of a branch to a basic block with multiple
arguments.

PiperOrigin-RevId: 221162655
2019-03-29 13:55:36 -07:00
Jacques Pienaar
25e6b541cd Switch IntegerAttr to use APInt.
Change the storage type to APInt from int64_t for IntegerAttr (following the change to APFloat storage in FloatAttr). Effectively a direct change from int64_t to 64-bit APInt throughout (the bitwidth hardcoded). This change also adds a getInt convenience method to IntegerAttr and replaces previous getValue calls with getInt calls.

While this changes updates the storage type, it does not update all constant folding calls.

PiperOrigin-RevId: 221082788
2019-03-29 13:55:08 -07:00
Smit Hinsu
8946854128 Handle VectorOrTensorType parse failure instead of crashing
This was unsafe after cr/219372163 and seems to be the only such case in the
change. All other usage of dyn_cast are either handling the nullptr or are
implicitly safe.  For example, they are being extracted from operand or result
SSAValue.

TESTED with unit test

PiperOrigin-RevId: 220905942
2019-03-29 13:54:10 -07:00
Alex Zinenko
dafa6929d3 Clean up TensorType construction.
This CL introduces the following related changes:
- move tensor element type validity checking to a static member function
  TensorType::isValidElementType
- introduce get/getChecked similarly to MemRefType, where the checked function
  emits errors and returns nullptrs;
- remove duplicate element type validity checking from the parser and rely on
  the type constructor to emit errors instead.

PiperOrigin-RevId: 220694831
2019-03-29 13:52:59 -07:00
Alex Zinenko
8e711246e4 Clean up VectorType construction.
This CL introduces the following related changes:
- factor out element type validity checking to a static member function
  VectorType::isValidElementType;
- introduce get/getChecked similarly to MemRefType, where the checked function
  emits errors and returns nullptrs;
- remove duplicate element type validity checking from the parser and rely on
  the type constructor to emit errors instead.

PiperOrigin-RevId: 220693828
2019-03-29 13:52:46 -07:00
River Riddle
2fa4bc9fc8 Implement value type abstraction for locations.
Value type abstraction for locations differ from others in that a Location can NOT be null. NOTE: dyn_cast returns an Optional<T>.

PiperOrigin-RevId: 220682078
2019-03-29 13:52:31 -07:00
Alex Zinenko
846e48d16f Allow vector types to have index elements.
It is unclear why vector types were not allowed to have "index" as element
type.  Index values are integers, although of unknown bit width, and should
behave as such.  Vectors of integers are allowed and so are tensors of indices
(for indirection purposes), it is more consistent to also have vectors of
indices.

PiperOrigin-RevId: 220630123
2019-03-29 13:51:33 -07:00
Alex Zinenko
ac2a655e87 Enable arithmetics for index types.
Arithmetic and comparison instructions are necessary to implement, e.g.,
control flow when lowering MLFunctions to CFGFunctions.  (While it is possible
to replace some of the arithmetics by affine_apply instructions for loop
bounds, it is still necessary for loop bounds checking, steps, if-conditions,
non-trivial memref subscripts, etc.)  Furthermore, working with indirect
accesses in, e.g., lookup tables for large embeddings, may require operating on
tensors of indexes.  For example, the equivalents to C code "LUT[Index[i]]" or
"ResultIndex[i] = i + j" where i, j are loop induction variables require the
arithmetics on indices as well as the possibility to operate on tensors
thereof.  Allow arithmetic and comparison operations to apply to index types by
declaring them integer-like.  Allow tensors whose element type is index for
indirection purposes.

The absence of vectors with "index" element type is explicitly tested, but the
only justification for this restriction in the CL introducing the test is
"because we don't need them".  Do NOT enable vectors of index types, although
it makes vector and tensor types inconsistent with respect to allowed element
types.

PiperOrigin-RevId: 220614055
2019-03-29 13:51:19 -07:00
Alex Zinenko
4aeb0a872c Uniformize MemRefType well-formedness checks.
Introduce a new public static member function, MemRefType::getChecked, intended
for the users that want detailed error messages to be emitted during MemRefType
construction and can gracefully handle these errors.  This function takes a
Location of the "MemRef" token if known.  The parser is one user of getChecked
that has location information, it outputs errors as compiler diagnostics.
Other users may pass in an instance of UnknownLoc and still have error messages
emitted.  Compiler-internal users not expecting the MemRefType construction to
fail should call MemRefType::get, which now aborts on failure with a generic
message.

Both "getChecked" and "get" call to a static free function that does actual
construction with well-formedness checks, optionally emits errors and returns
nullptr on failure.

The location information passed to getChecked has voluntarily coarse precision.
The error messages are intended for compiler engineers and do not justify
heavier API than a single location.  The text of the messages can be written so
that it pinpoints the actual location of the error within a MemRef declaration.

PiperOrigin-RevId: 219765902
2019-03-29 13:47:49 -07:00