Value::ResolveValue calls Value::GetValueAsData as part of its
implementation. The latter can receive an optional Module pointer, which
is always null when called from the former. Allow threading in the
Module in Value::ResolveValue.
rdar://115021869
- Allow the definition of synthetic formatters in C++ even when LLDB is built without python scripting support.
- Fix linking problems with the CXXSyntheticChildren
Differential Revision: https://reviews.llvm.org/D158010
Existing callers of `GetChildAtIndex` pass true for can_create. This change
makes true the default value, callers don't have to pass an opaque true.
See also D151966 for the same change to `GetChildMemberWithName`.
Differential Revision: https://reviews.llvm.org/D152031
It turns out all existing callers of `GetChildMemberWithName` pass true for `can_create`.
This change makes `true` the default value, callers don't have to pass an opaque true.
Differential Revision: https://reviews.llvm.org/D151966
Following D151810, this changes `GetChildAtNamePath` to take a path of `StringRef`
values instead of `ConstString`.
Differential Revision: https://reviews.llvm.org/D151813
As with D151615, which changed `GetIndexOfChildMemberWithName` to take a `StringRef`
instead of a `ConstString`, this change does the same for `GetIndexOfChildWithName`.
Differential Revision: https://reviews.llvm.org/D151811
`GetChildMemberWithName` does not need a `ConstString`. This change makes the function
take a `StringRef` instead, which alleviates the need for callers to construct a
`ConstString`. I don't expect this change to improve performance, only ergonomics.
This is in support of Alex's effort to replace `ConstString` where appropriate.
There are related `ValueObject` functions that can also be changed, if this is accepted.
Differential Revision: https://reviews.llvm.org/D151615
This is a user facing action, it is meant to focus the user's attention on
something other than the 0th frame when you stop somewhere where that's
helpful. For instance, stopping in pthread_kill after an assert will select
the assert frame.
This is not something you want to have happen internally in lldb, both
because internally you really don't want the selected frame changing out
from under you, and because the recognizers can do arbitrary work, and that
can cause deadlocks or other unexpected behavior.
However, it's not something that the current code does
explicitly after a stop has been delivered, it's expected to happen implicitly
as part of stopping. I changing this to call SMRF explicitly after a user
stop, but that got pretty ugly quickly.
So I added a bool to control whether to run this and audited all the current
uses to determine whether we're returning to the user or not.
Differential Revision: https://reviews.llvm.org/D148863
We used to make a dynamic value that "pretended to be its parent"
but that's hard for some of the more complex ValueObject types, and
it's better in this case just to return no dynamic value.
Differential Revision: https://reviews.llvm.org/D145629
Reverting because Xcode requires this to be handled elsewhere.
The global variable list gets constructed using the SBAPI
This reverts commit de10c1a824.
Revert while I investigate two CI bot failures;
the more important is the lldb-arm-ubuntu where
the FixAddress is removing the 0th bit so we're
adding the `actual=` decorator on a string pointer,
```
Got output:
(char *) strptr = 0x00400817 (actual=0x400816) ptr = [{ },{H}]
```
in TestDataFormatterSmartArray.py line 229.
This reverts commit 4d635be2db.
On target where metadata is stored in bits that aren't used for
virtual addressing -- AArch64 Top Byte Ignore and pointer authentication
are two examples -- an SBValue object representing a pointer will
return the address with metadata for SBValue::GetValueAsUnsigned.
Users may want to get the virtual address without the metadata;
this new method gives them a way to do this.
Differential Revision: https://reviews.llvm.org/D142792
hold an error should:
(a) return false for IsValid, since that's the current behavior and is
a convenient way to check "should I get the value for this".
(b) preserve the error when an SBValue is made from it, and print the
error in the ValueObjectPrinter.
Make that happen.
Differential Revision: https://reviews.llvm.org/D144664
-flimit-debug-info and other compiler options might end up removing debug info that is needed for debugging. LLDB marks these types as being forcefully completed in the metadata in the TypeSystem. These types should have been complete in the debug info but were not because the compiler omitted them to save space. When we can't find a suitable replacement for the type, we should let the user know that these types are incomplete to indicate there was an issue instead of just showing nothing for a type.
The solution is to display presented in this patch is to display "<incomplete type>" as the summary for any incomplete types. If there is a summary string or function that is provided for a type, but the type is currently forcefully completed, the installed summary will be ignored and we will display "<incomplete type>". This patch also exposes the ability to ask a SBType if it was forcefully completed with:
bool SBType::IsTypeForcefullyCompleted();
This will allow the user interface for a debugger to also detect this issue and possibly mark the variable display up on some way to indicate to the user the type is incomplete.
To show how this is diplayed, we can look at the existing output first for the example source file from the file: lldb/test/API/functionalities/limit-debug-info/main.cpp
(lldb) frame variable inherits_from_one inherits_from_two one_as_member two_as_member array_of_one array_of_two shadowed_one
(InheritsFromOne) ::inherits_from_one = (member = 47)
(InheritsFromTwo) ::inherits_from_two = (member = 47)
(OneAsMember) ::one_as_member = (one = member::One @ 0x0000000100008028, member = 47)
(TwoAsMember) ::two_as_member = (two = member::Two @ 0x0000000100008040, member = 47)
(array::One [3]) ::array_of_one = ([0] = array::One @ 0x0000000100008068, [1] = array::One @ 0x0000000100008069, [2] = array::One @ 0x000000010000806a)
(array::Two [3]) ::array_of_two = ([0] = array::Two @ 0x0000000100008098, [1] = array::Two @ 0x0000000100008099, [2] = array::Two @ 0x000000010000809a)
(ShadowedOne) ::shadowed_one = (member = 47)
(lldb) frame variable --show-types inherits_from_one inherits_from_two one_as_member two_as_member array_of_one array_of_two shadowed_one
(InheritsFromOne) ::inherits_from_one = {
(int) member = 47
}
(InheritsFromTwo) ::inherits_from_two = {
(int) member = 47
}
(OneAsMember) ::one_as_member = {
(member::One) one = {}
(int) member = 47
}
(TwoAsMember) ::two_as_member = {
(member::Two) two = {}
(int) member = 47
}
(array::One [3]) ::array_of_one = {
(array::One) [0] = {}
(array::One) [1] = {}
(array::One) [2] = {}
}
(array::Two [3]) ::array_of_two = {
(array::Two) [0] = {}
(array::Two) [1] = {}
(array::Two) [2] = {}
}
(ShadowedOne) ::shadowed_one = {
(int) member = 47
}
With this patch in place we can now see any classes that were forcefully completed to let us know that we are missing information:
(lldb) frame variable inherits_from_one inherits_from_two one_as_member two_as_member array_of_one array_of_two shadowed_one
(InheritsFromOne) ::inherits_from_one = (One = <incomplete type>, member = 47)
(InheritsFromTwo) ::inherits_from_two = (Two = <incomplete type>, member = 47)
(OneAsMember) ::one_as_member = (one = <incomplete type>, member = 47)
(TwoAsMember) ::two_as_member = (two = <incomplete type>, member = 47)
(array::One[3]) ::array_of_one = ([0] = <incomplete type>, [1] = <incomplete type>, [2] = <incomplete type>)
(array::Two[3]) ::array_of_two = ([0] = <incomplete type>, [1] = <incomplete type>, [2] = <incomplete type>)
(ShadowedOne) ::shadowed_one = (func_shadow::One = <incomplete type>, member = 47)
(lldb) frame variable --show-types inherits_from_one inherits_from_two one_as_member two_as_member array_of_one array_of_two shadowed_one
(InheritsFromOne) ::inherits_from_one = {
(One) One = <incomplete type> {}
(int) member = 47
}
(InheritsFromTwo) ::inherits_from_two = {
(Two) Two = <incomplete type> {}
(int) member = 47
}
(OneAsMember) ::one_as_member = {
(member::One) one = <incomplete type> {}
(int) member = 47
}
(TwoAsMember) ::two_as_member = {
(member::Two) two = <incomplete type> {}
(int) member = 47
}
(array::One[3]) ::array_of_one = {
(array::One) [0] = <incomplete type> {}
(array::One) [1] = <incomplete type> {}
(array::One) [2] = <incomplete type> {}
}
(array::Two[3]) ::array_of_two = {
(array::Two) [0] = <incomplete type> {}
(array::Two) [1] = <incomplete type> {}
(array::Two) [2] = <incomplete type> {}
}
(ShadowedOne) ::shadowed_one = {
(func_shadow::One) func_shadow::One = <incomplete type> {}
(int) member = 47
}
Differential Revision: https://reviews.llvm.org/D138259
After D134378, we started seeing crashes with incomplete types (in the
context of shared libraries).
When trying to print a `std::vector<int> &` with only debug info for a
declaration, we now try to use the formatter after D134378. With an
incomplete type, this somehow goes into infinite recursion with the
frames
```
lldb_private::ValueObject::Dereference
lldb_private::ValueObjectSynthetic::CreateSynthFilter
lldb_private::ValueObjectSynthetic::ValueObjectSynthetic
lldb_private::ValueObject::CalculateSyntheticValue
lldb_private::ValueObject::HasSyntheticValue
```
This has to do with `FrontEndWantsDereference` that some STL formatters
set, causing recursion between the formatter (which tries to dereference),
and dereferencing (which wants to know if there's a formatter to avoid dereferencing).
The reason this only started appearing after D134378 was because
previously with incomplete types, for names with `<`, lldb would attempt
to parse template parameter DIEs, which were empty, then create an empty
`ClassTemplateSpecializationDecl` which overrode the name used to lookup
a formatter in `FormattersMatchData()` to not include template
parameters (e.g. `std::vector<> &`). After D134378 we don't create a
`ClassTemplateSpecializationDecl` when there are no template parameters
and the name to lookup a formatter is the original name (e.g.
`std::vector<int> &`).
The code to try harder with incomplete child compiler types was added in
D79554 for ObjC purposes.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D137983
This reverts commit 0205aa4a02 because it
breaks TestArray.py:
a->c = <parent failed to evaluate: parent is NULL>
I decided to revert instead of disable the test because it looks like a
legitimate issue with the patch.
This change fixes two issues in ValueObject::GetExpressionPath method:
1. Accessing members of struct references used to produce expression
paths such as "str.&str.member" (instead of the expected
"str.member"). This is fixed by assigning the flag tha the child
value is a dereference when calling Dereference() on references
and adjusting logic in expression path creation.
2. If the parent of member access is dereference, the produced
expression path was "*(ptr).member". This is incorrect, since it
dereferences the member instead of the pointer. This is fixed by
wrapping dereference expression into parenthesis, resulting with
"(*ptr).member".
Reviewed By: werat, clayborg
Differential Revision: https://reviews.llvm.org/D132734
This change fixes two issues in ValueObject::GetExpressionPath method:
1. Accessing members of struct references used to produce expression
paths such as "str.&str.member" (instead of the expected
"str.member"). This is fixed by assigning the flag tha the child
value is a dereference when calling Dereference() on references
and adjusting logic in expression path creation.
2. If the parent of member access is dereference, the produced
expression path was "*(ptr).member". This is incorrect, since it
dereferences the member instead of the pointer. This is fixed by
wrapping dereference expression into parenthesis, resulting with
"(*(ptr)).member".
Reviewed By: werat, clayborg
Differential Revision: https://reviews.llvm.org/D132734
Currently, all data buffers are assumed to be writable. This is a
problem on macOS where it's not allowed to load unsigned binaries in
memory as writable. To be more precise, MAP_RESILIENT_CODESIGN and
MAP_RESILIENT_MEDIA need to be set for mapped (unsigned) binaries on our
platform.
Binaries are mapped through FileSystem::CreateDataBuffer which returns a
DataBufferLLVM. The latter is backed by a llvm::WritableMemoryBuffer
because every DataBuffer in LLDB is considered to be writable. In order
to use a read-only llvm::MemoryBuffer I had to split our abstraction
around it.
This patch distinguishes between a DataBuffer (read-only) and
WritableDataBuffer (read-write) and updates LLDB to use the appropriate
one.
rdar://74890607
Differential revision: https://reviews.llvm.org/D122856
Applied modernize-use-default-member-init clang-tidy check over LLDB.
It appears in many files we had already switched to in class member init but
never updated the constructors to reflect that. This check is already present in
the lldb/.clang-tidy config.
Differential Revision: https://reviews.llvm.org/D121481
Embedded nul characters are still printed, and they don't terminate the
string. See also D111634.
Differential Revision: https://reviews.llvm.org/D120803
Most of our code was including Log.h even though that is not where the
"lldb" log channel is defined (Log.h defines the generic logging
infrastructure). This worked because Log.h included Logging.h, even
though it should.
After the recent refactor, it became impossible the two files include
each other in this direction (the opposite inclusion is needed), so this
patch removes the workaround that was put in place and cleans up all
files to include the right thing. It also renames the file to LLDBLog to
better reflect its purpose.
When we know the bounds of the array, print any embedded nuls instead of
treating them as terminators. An exception to this rule is made for the
nul character at the very end of the string. We don't print that, as
otherwise 99% of the strings would end in \0. This way the strings
usually come out the same as how the user typed it into the compiler
(char foo[] = "with\0nuls"). It also matches how they come out in gdb.
This resolves a FIXME left from D111399, and leaves another FIXME for dealing
with nul characters in "escape-non-printables=false" mode. In this mode the
characters cause the entire summary string to be terminated prematurely.
Differential Revision: https://reviews.llvm.org/D111634
This converts a default constructor's member initializers into C++11
default member initializers. This patch was automatically generated with
clang-tidy and the modernize-use-default-member-init check.
$ run-clang-tidy.py -header-filter='lldb' -checks='-*,modernize-use-default-member-init' -fix
This is a mass-refactoring patch and this commit will be added to
.git-blame-ignore-revs.
Differential revision: https://reviews.llvm.org/D103483
The C headers are deprecated so as requested in D102845, this is replacing them
all with their (not deprecated) C++ equivalent.
Reviewed By: shafik
Differential Revision: https://reviews.llvm.org/D103084
This patch moves the Declaration class from the Symbol library to the
Core library. This will allow to use it in a more generic fashion and
aims to lower the dependency cycles when it comes to the linking.
The patch also does some cleaning up by making column information
permanent and removing the LLDB_ENABLE_DECLARATION_COLUMNS directives.
Differential revision: https://reviews.llvm.org/D101556
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Commiting this patch for Augusto Noronha who is getting set
up still.
This patch changes Target::ReadMemory so the default behavior
when a read is in a Section that is read-only is to fetch the
data from the local binary image, instead of reading it from
memory. Update all callers to use their old preferences
(the old prefer_file_cache bool) using the new API; we should
revisit these calls and see if they really intend to read
live memory, or if reading from a read-only Section would be
equivalent and important for performance-sensitive cases.
rdar://30634422
Differential revision: https://reviews.llvm.org/D100338
NFC refactoring that moves the definitions of all the trivial getters/setters to the header file
which is what we usually do in LLVM.
Reviewed By: #lldb, JDevlieghere
Differential Revision: https://reviews.llvm.org/D97298
`ValueObject.h` contains the `ValueObject::ValueObjectManager` type which is
just a typedef for the ClusterManager that takes care of the whole ValueObject
memory management. However, there is also `ValueObjectManager` defined in the
same header which is only used in the curses UI implementation and consists
mostly of dead and completely untested code.
This code been around since a while (it was added in 2016 as
8369b28da0), so I think we shouldn't just revert
the whole patch.
Instead this patch just moves the class to its own header that it isn't just
hiding in the ValueObject header and renames it to `ValueObjectUpdater` that it
at least has a unique name (which I hope also slightly better reflects the
purpose of this class). I also deleted all the dead code branches and functions.
Reviewed By: #lldb, mib, JDevlieghere
Differential Revision: https://reviews.llvm.org/D97287
Those functions aren't called anywhere. For debugging purposes we usually
have Dump() methods (which already exist in some semi-functional form in
ValueObject).
ValueObject inherits from UserID which is just a bad idea:
* The inheritance gives ValueObject some member functions that are at best
misleading (such as `Clear()` which doesn't clear any value beside `id`).
* It allows passing ValueObject to the overloaded operators for UserID (such as
`==` or `<<` which won't actually compare or print anything in the ValueObject).
* It exposes the `SetID` and `Clear` which both allow users to change the
internal id value.
Similar to D91699 which did the same for Process
Reviewed By: #lldb, JDevlieghere
Differential Revision: https://reviews.llvm.org/D97205
Just code cleanup for ValueObject constructors:
* Use default member initializers where possible.
* Doxygenify the comments for membersa nd constructors where needed.
* Delete the default constructor which isn't defined.
* Initialize the bitfields via a utility struct instead of doing this in the
different constructors.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D97199
The comment for ValueType claims that all values <1 are errors, but
not all switch statements take this into account. This patch
introduces an explicit Error case and deletes all default: cases, so
we get warned about incomplete switch coverage.
https://reviews.llvm.org/D96537
This class and it's surroundings contain a lot of shady code, but as far
as I can tell all of that code is unreachable (there is no code actually
setting the value to eValueTypeVector).
According to history this class was introduced in 2012 in
r167033/0665a0f09. At that time, the code seemed to serve some purpose,
and it had two entry points (in Value::SetContext and
ClangExpressionDeclMap::LookupDecl). The first entry point was deleted
in D17897 and the second one in r179842/44342735.
The stated purpose of the patch introducing this class was to fix
TestRegisters.py, and "expr $xmm0" in particular. Both of these things
function perfectly well these days without this class.