Fixes#86546 and removes the macro `LIBC_HAS_BUILTIN`. This was
necessary to support older compilers that did not support
`__has_builtin`. All of the compilers we support already have this
builtin.
See: https://libc.llvm.org/compiler_support.html
All uses now use `__has_builtin` directly
cc @nickdesaulniers
Summary:
Currently we print `null` for the null pointer in a `%s` expression.
Although it's not defined by the standard, other implementations choose
to use `(null)` to indicate this. We also currently print `(nullptr)` so
I think it's more consistent to use parens in both cases.
Continuing #84689, this one required more changes than the others, so I
am making it a separate PR.
Extends some stuff in `str_to_float.h`, `str_to_integer.h` to work on
types wider than `unsigned long long` and `uint64_t`.
cc @lntue for review.
- Allow `FMod` template to have different computational types and make
it work for 80-bit long double.
- Switch to use `uint64_t` as the intermediate computational types for
`float`, significantly reduce the latency of `fmodf` when the exponent
difference is large.
Summary:
After the overhaul of the GPU build the documentation pages were a
little stale. This updates them with more in-depth information on
building the GPU runtimes and using them. Specifically using them goes
through the differences between the offloading and direct compilation
modes.
As encountered with <sys/queue.h>, we need a policy for how to handle
implementing functions that users need, but has no specific standard. In
that case, we should treat existing implementations as the standard and
try to match their behavior as best as possible.
This patch adds the r, R, k, and K conversion specifiers to printf, with
accompanying tests. They are guarded behind the
LIBC_COPT_PRINTF_DISABLE_FIXED_POINT flag as well as automatic fixed
point support detection.
Summary:
This directory is leftover from when we handled both AMDGPU and NVPTX in
the same build and merged them into a pseudo triple. Now the only thing
it contains is the RPC server header. This gets rid of it, but now that
it's in the base install directory we should make it clear that it's an
LLVM libc header.
Summary:
This is a massive patch because it reworks the entire build and
everything that depends on it. This is not split up because various bots
would fail otherwise. I will attempt to describe the necessary changes
here.
This patch completely reworks how the GPU build is built and targeted.
Previously, we used a standard runtimes build and handled both NVPTX and
AMDGPU in a single build via multi-targeting. This added a lot of
divergence in the build system and prevented us from doing various
things like building for the CPU / GPU at the same time, or exporting
the startup libraries or running tests without a full rebuild.
The new appraoch is to handle the GPU builds as strict cross-compiling
runtimes. The first step required
https://github.com/llvm/llvm-project/pull/81557 to allow the `LIBC`
target to build for the GPU without touching the other targets. This
means that the GPU uses all the same handling as the other builds in
`libc`.
The new expected way to build the GPU libc is with
`LLVM_LIBC_RUNTIME_TARGETS=amdgcn-amd-amdhsa;nvptx64-nvidia-cuda`.
The second step was reworking how we generated the embedded GPU library
by moving it into the library install step. Where we previously had one
`libcgpu.a` we now have `libcgpu-amdgpu.a` and `libcgpu-nvptx.a`. This
patch includes the necessary clang / OpenMP changes to make that not
break the bots when this lands.
We unfortunately still require that the NVPTX target has an `internal`
target for tests. This is because the NVPTX target needs to do LTO for
the provided version (The offloading toolchain can handle it) but cannot
use it for the native toolchain which is used for making tests.
This approach is vastly superior in every way, allowing us to treat the
GPU as a standard cross-compiling target. We can now install the GPU
utilities to do things like use the offload tests and other fun things.
Some certain utilities need to be built with
`--target=${LLVM_HOST_TRIPLE}` as well. I think this is a fine
workaround as we
will always assume that the GPU `libc` is a cross-build with a
functioning host.
Depends on https://github.com/llvm/llvm-project/pull/81557