The current StandardToLLVM conversion patterns only really handle
the Func dialect. The pass itself adds patterns for Arithmetic/CFToLLVM, but
those should be/will be split out in a followup. This commit focuses solely
on being an NFC rename.
Aside from the directory change, the pattern and pass creation API have been renamed:
* populateStdToLLVMFuncOpConversionPattern -> populateFuncToLLVMFuncOpConversionPattern
* populateStdToLLVMConversionPatterns -> populateFuncToLLVMConversionPatterns
* createLowerToLLVMPass -> createConvertFuncToLLVMPass
Differential Revision: https://reviews.llvm.org/D120778
This op is added to allow MLIR code running on multi-GPU systems to
select the GPU they want to execute operations on when no GPU is
otherwise specified.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D119883
OwningRewritePatternList has been deprecated for ~10 months now, we can remove
the leftover using directives at this point.
Differential Revision: https://reviews.llvm.org/D118287
In LLVM IR, the GEP indices that correspond to structures are required to be
i32 constants. MLIR models constants as just values defined by special
operations, and there is no verification that it is the case for structure
indices in GEP. Furthermore, some common transformations such as control flow
simplification may lead to the operands becoming non-constant. Make it possible
to directly supply constant values to LLVM GEPOp to guarantee they remain
constant until the translation to LLVM IR. This is not yet a requirement and
the verifier is not modified, this will be introduced separately.
Reviewed By: wsmoses
Differential Revision: https://reviews.llvm.org/D116757
Precursor: https://reviews.llvm.org/D110200
Removed redundant ops from the standard dialect that were moved to the
`arith` or `math` dialects.
Renamed all instances of operations in the codebase and in tests.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D110797
Add support for dynamic shared memory for GPU launch ops: add an
optional operand to gpu.launch and gpu.launch_func ops to specify the
amount of "dynamic" shared memory to use. Update lowerings to connect
this operand to the GPU runtime.
Differential Revision: https://reviews.llvm.org/D110800
This commits updates the remaining usages of the ArrayRef<Value> based
matchAndRewrite/rewrite methods in favor of the new OpAdaptor
overload.
Differential Revision: https://reviews.llvm.org/D110360
Conversion to the LLVM dialect is being refactored to be more progressive and
is now performed as a series of independent passes converting different
dialects. These passes may produce `unrealized_conversion_cast` operations that
represent pending conversions between built-in and LLVM dialect types.
Historically, a more monolithic Standard-to-LLVM conversion pass did not need
these casts as all operations were converted in one shot. Previous refactorings
have led to the requirement of running the Standard-to-LLVM conversion pass to
clean up `unrealized_conversion_cast`s even though the IR had no standard
operations in it. The pass must have been also run the last among all to-LLVM
passes, in contradiction with the partial conversion logic. Additionally, the
way it was set up could produce invalid operations by removing casts between
LLVM and built-in types even when the consumer did not accept the uncasted
type, or could lead to cryptic conversion errors (recursive application of the
rewrite pattern on `unrealized_conversion_cast` as a means to indicate failure
to eliminate casts).
In fact, the need to eliminate A->B->A `unrealized_conversion_cast`s is not
specific to to-LLVM conversions and can be factored out into a separate type
reconciliation pass, which is achieved in this commit. While the cast operation
itself has a folder pattern, it is insufficient in most conversion passes as
the folder only applies to the second cast. Without complex legality setup in
the conversion target, the conversion infra will either consider the cast
operations valid and not fold them (a separate canonicalization would be
necessary to trigger the folding), or consider the first cast invalid upon
generation and stop with error. The pattern provided by the reconciliation pass
applies to the first cast operation instead. Furthermore, having a separate
pass makes it clear when `unrealized_conversion_cast`s could not have been
eliminated since it is the only reason why this pass can fail.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D109507
The conversion has been incorrectly using the operands of the original
operation instead of the converted operands provided to the matchAndRewrite
call. This may lead to spurious materializations and generally invalid IR if
the producer of the original operands is deleted in the process of conversion.
Reviewed By: csigg
Differential Revision: https://reviews.llvm.org/D109356
Create a gpu memset op and corresponding CUDA and ROCm wrappers.
Reviewed By: herhut, lorenrose1013
Differential Revision: https://reviews.llvm.org/D107548
SymbolRefAttr is fundamentally a base string plus a sequence
of nested references. Instead of storing the string data as
a copies StringRef, store it as an already-uniqued StringAttr.
This makes a lot of things simpler and more efficient because:
1) references to the symbol are already stored as StringAttr's:
there is no need to copy the string data into MLIRContext
multiple times.
2) This allows pointer comparisons instead of string
comparisons (or redundant uniquing) within SymbolTable.cpp.
3) This allows SymbolTable to hold a DenseMap instead of a
StringMap (which again copies the string data and slows
lookup).
This is a moderately invasive patch, so I kept a lot of
compatibility APIs around. It would be nice to explore changing
getName() to return a StringAttr for example (right now you have
to use getNameAttr()), and eliminate things like the StringRef
version of getSymbol.
Differential Revision: https://reviews.llvm.org/D108899
The verifier of the llvm.call operation was not checking for mismatches between
the number of operation results and the number of results in the signature of
the callee. Furthermore, it was possible to construct an llvm.call operation
producing an SSA value of !llvm.void type, which should not exist. Add the
verification and treat !llvm.void result type as absence of call results.
Update the GPU conversions to LLVM that were mistakenly assuming that it was
fine for llvm.call to produce values of !llvm.void type and ensure these calls
do not produce results.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D106937
The dialect-specific cast between builtin (ex-standard) types and LLVM
dialect types was introduced long time before built-in support for
unrealized_conversion_cast. It has a similar purpose, but is restricted
to compatible builtin and LLVM dialect types, which may hamper
progressive lowering and composition with types from other dialects.
Replace llvm.mlir.cast with unrealized_conversion_cast, and drop the
operation that became unnecessary.
Also make unrealized_conversion_cast legal by default in
LLVMConversionTarget as the majority of convesions using it are partial
conversions that actually want the casts to persist in the IR. The
standard-to-llvm conversion, which is still expected to run last, cleans
up the remaining casts standard-to-llvm conversion, which is still
expected to run last, cleans up the remaining casts
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D105880
After the MemRef has been split out of the Standard dialect, the
conversion to the LLVM dialect remained as a huge monolithic pass.
This is undesirable for the same complexity management reasons as having
a huge Standard dialect itself, and is even more confusing given the
existence of a separate dialect. Extract the conversion of the MemRef
dialect operations to LLVM into a separate library and a separate
conversion pass.
Reviewed By: herhut, silvas
Differential Revision: https://reviews.llvm.org/D105625
This class and classes that extend it are general utilities for any dialect
that is being converted into the LLVM dialect. They are in no way specific to
Standard-to-LLVM conversion and should not make their users depend on it.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D105542
In particular for Graph Regions, the terminator needs is just a
historical artifact of the generalization of MLIR from CFG region.
Operations like Module don't need a terminator, and before Module
migrated to be an operation with region there wasn't any needed.
To validate the feature, the ModuleOp is migrated to use this trait and
the ModuleTerminator operation is deleted.
This patch is likely to break clients, if you're in this case:
- you may iterate on a ModuleOp with `getBody()->without_terminator()`,
the solution is simple: just remove the ->without_terminator!
- you created a builder with `Builder::atBlockTerminator(module_body)`,
just use `Builder::atBlockEnd(module_body)` instead.
- you were handling ModuleTerminator: it isn't needed anymore.
- for generic code, a `Block::mayNotHaveTerminator()` may be used.
Differential Revision: https://reviews.llvm.org/D98468
This doesn't change APIs, this just cleans up the many in-tree uses of these
names to use the new preferred names. We'll keep the old names around for a
couple weeks to help transitions.
Differential Revision: https://reviews.llvm.org/D99127
This updates the codebase to pass the context when creating an instance of
OwningRewritePatternList, and starts removing extraneous MLIRContext
parameters. There are many many more to be removed.
Differential Revision: https://reviews.llvm.org/D99028