Thus far IntegerType has been signless: a value of IntegerType does
not have a sign intrinsically and it's up to the specific operation
to decide how to interpret those bits. For example, std.addi does
two's complement arithmetic, and std.divis/std.diviu treats the first
bit as a sign.
This design choice was made some time ago when we did't have lots
of dialects and dialects were more rigid. Today we have much more
extensible infrastructure and different dialect may want different
modelling over integer signedness. So while we can say we want
signless integers in the standard dialect, we cannot dictate for
others. Requiring each dialect to model the signedness semantics
with another set of custom types is duplicating the functionality
everywhere, considering the fundamental role integer types play.
This CL extends the IntegerType with a signedness semantics bit.
This gives each dialect an option to opt in signedness semantics
if that's what they want and helps code sharing. The parser is
modified to recognize `si[1-9][0-9]*` and `ui[1-9][0-9]*` as
signed and unsigned integer types, respectively, leaving the
original `i[1-9][0-9]*` to continue to mean no indication over
signedness semantics. All existing dialects are not affected (yet)
as this is a feature to opt in.
More discussions can be found at:
https://groups.google.com/a/tensorflow.org/d/msg/mlir/XmkV8HOPWpo/7O4X0Nb_AQAJ
Differential Revision: https://reviews.llvm.org/D72533
Summary:
This revision adds EDSC support for VectorOps to enable the creation of a `vector_matmul` declaratively. The `vector_matmul` is a simple configuration
of the `vector.contract` op that follows the StructuredOps abstraction.
Differential Revision: https://reviews.llvm.org/D74284
Summary:
Previously, vector.contract did not allow an empty set of
free or batch dimensions (K = 0) which defines a basic
reduction into a scalar (like a dot product). This CL
relaxes that restriction. Also adds constraints on
element type of operands and results. With tests.
Reviewers: nicolasvasilache, andydavis1, rriddle
Reviewed By: andydavis1
Subscribers: merge_guards_bot, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74014
Summary:
Add ShapeCastOp to the vector ops dialect.
The shape_cast operation casts between an n-D source vector shape and a k-D result vector shape (the element type remains the same).
Reviewers: nicolasvasilache, aartbik
Reviewed By: nicolasvasilache
Subscribers: Joonsoo, merge_guards_bot, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73635
Summary: This revision add support for accepting a few type constraints, e.g. AllTypesMatch, when inferring types for operands and results. This is used to remove the c++ parsers for several additional operations.
Differential Revision: https://reviews.llvm.org/D73735
Summary:
This revision switches over many operations to use the declarative methods for defining the assembly specification. This updates operations in the NVVM, ROCDL, Standard, and VectorOps dialects.
Differential Revision: https://reviews.llvm.org/D73407
for (const auto &x : llvm::zip(..., ...))
->
for (auto x : llvm::zip(..., ...))
The return type of zip() is a wrapper that wraps a tuple of references.
> warning: loop variable 'p' is always a copy because the range of type 'detail::zippy<detail::zip_shortest, ArrayRef<long> &, ArrayRef<long> &>' does not return a reference [-Wrange-loop-analysis]
This is an initial step to refactoring the representation of OpResult as proposed in: https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ
This change will make it much simpler to incrementally transition all of the existing code to use value-typed semantics.
PiperOrigin-RevId: 286844725
Update vector transfer_read/write ops to operatate on memrefs with vector element type.
This handle cases where the memref vector element type represents the minimal memory transfer unit (or multiple of the minimal memory transfer unit).
PiperOrigin-RevId: 286482115
Adds vector ReshapeOp to the VectorOps dialect. An aggregate vector reshape operation, which aggregates multiple hardware vectors, can enable optimizations during decomposition (e.g. loading one input hardware vector and performing multiple rotate and scatter store operations to the vector output).
PiperOrigin-RevId: 286440658
Introduces some centralized methods to move towards
consistent use of i32 as vector subscripts.
Note: sizes/strides/offsets attributes are still i64
PiperOrigin-RevId: 286434133
Similar to insert/extract vector instructions but
(1) work on 1-D vectors only
(2) allow for a dynamic index
%c3 = constant 3 : index
%0 = vector.insertelement %arg0, %arg1[%c : index] : vector<4xf32>
%1 = vector.extractelement %arg0[%c3 : index] : vector<4xf32>
PiperOrigin-RevId: 285792205
ExtractSlicesOp extracts slices of its vector operand and with a specified tiling scheme.
This operation centralizes the tiling scheme around a single op, which simplifies vector op unrolling and subsequent pattern rewrite transformations.
PiperOrigin-RevId: 285761129
This change allows for DialectConversion to attempt folding as a mechanism to legalize illegal operations. This also expands folding support in OpBuilder::createOrFold to generate new constants when folding, and also enables it to work in the context of a PatternRewriter.
PiperOrigin-RevId: 285448440
This cleans up the implementation of the various operation print methods. This is done via a combination of code cleanup, adding new streaming methods to the printer(e.g. operand ranges), etc.
PiperOrigin-RevId: 285285181
For example
%0 = vector.shuffle %x, %y [3 : i32, 2 : i32, 1 : i32, 0 : i32] : vector<2xf32>, vector<2xf32>
yields a vector<4xf32> result with a permutation of the elements of %x and %y
PiperOrigin-RevId: 284657191
This CL starts extracting commonalities between dialects that use the structured ops abstractions. Also fixes an OSS build issue where StringRef were incorrectly used with constexpr.
PiperOrigin-RevId: 284591114
This CL uses the newly expanded matcher support to easily detect when a linalg.generic has a multiply-accumulate body. A linalg.generic with such a body is rewritten as a vector contraction.
This CL additionally limits the rewrite to the case of matrix multiplication on contiguous and statically shaped memrefs for now.
Before expanding further, we should harden the infrastructure for expressing custom ops with the structured ops abstraction.
PiperOrigin-RevId: 284566659
Since these operations lower to [insert|extract][element|value] at LLVM
dialect level, neither element nor value would correctly reflect the meaning.
PiperOrigin-RevId: 284240727
Updates vector ContractionOp to use proper vector masks (produced by CreateMaskOp/ConstantMaskOp).
Leverages the following canonicalizations in unrolling unit test: CreateMaskOp -> ConstantMaskOp, StridedSliceOp(ConstantMaskOp) -> ConstantMaskOp
Removes IndexTupleOp (no longer needed now that we have vector mask ops).
Updates all unit tests.
PiperOrigin-RevId: 284182168
Adds a ConstantMaskOp to the vector ops dialect.
Adds the following canonicalization patterns:
CreateMaskOp -> ConstantMaskOp
StridedSliceOp(ConstantMaskOp) -> ConstantMaskOp
PiperOrigin-RevId: 283816752
Since second argument is always fully overwritten and
shape is define in "to" clause, it is not needed.
Also renamed "into" to "to" now that arg is dropped.
PiperOrigin-RevId: 282686475
This CL uses the recently added op to finish the implementation of Vector -> Vector unrolling by replacing the "fake join op" by a series of InsertStridedSliceOp.
Test is updated accordingly
PiperOrigin-RevId: 282451126
This new op is the counterpart of vector.StridedSliceOp and will be used for in the pattern rewrites for vector unrolling.
PiperOrigin-RevId: 282447414