This is an initial step to refactoring the representation of OpResult as proposed in: https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ
This change will make it much simpler to incrementally transition all of the existing code to use value-typed semantics.
PiperOrigin-RevId: 286844725
- fix store to load forwarding for a certain set of cases (where
forwarding shouldn't have happened); use AffineValueMap difference
based MemRefAccess equality checking; utility logic is also greatly
simplified
- add missing equality/inequality operators for AffineExpr ==/!= ints
- add == != operators on MemRefAccess
Closestensorflow/mlir#136
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/136 from bondhugula:store-load-forwarding d79fd1add8bcfbd9fa71d841a6a9905340dcd792
PiperOrigin-RevId: 270457011
This change refactors and cleans up the implementation of the operation walk methods. After this refactoring is that the explicit template parameter for the operation type is no longer needed for the explicit op walks. For example:
op->walk<AffineForOp>([](AffineForOp op) { ... });
is now accomplished via:
op->walk([](AffineForOp op) { ... });
PiperOrigin-RevId: 266209552
Switch to C++14 standard method as llvm::make_unique has been removed (
https://reviews.llvm.org/D66259). Also mark some targets as c++14 to ease next
integrates.
PiperOrigin-RevId: 263953918
Since raw pointers are always passed around for IR construct without
implying any ownership transfer, it can be error prone to have implicit
ownership transferred the same way.
For example this code can seem harmless:
Pass *pass = ....
pm.addPass(pass);
pm.addPass(pass);
pm.run(module);
PiperOrigin-RevId: 263053082
These methods will allow replacing the uses of results with an existing operation, with the same number of results, or a range of values. This removes a number of hand-rolled result replacement loops and simplifies replacement for operations with multiple results.
PiperOrigin-RevId: 262206600
In most places, this is just a name change (with the exception of affine.dma_start swapping the operand positions of its tag memref and num_elements operands).
Significant code changes occur here:
*) Vectorization: LoopAnalysis.cpp, Vectorize.cpp
*) Affine Transforms: Transforms/Utils/Utils.cpp
PiperOrigin-RevId: 256395088
Move the data members out of Function and into a new impl storage class 'FunctionStorage'. This allows for Function to become value typed, which will greatly simplify the transition of Function to FuncOp(given that FuncOp is also value typed).
PiperOrigin-RevId: 255983022
a pointer. This makes it consistent with all the other methods in
FunctionPass, as well as with ModulePass::getModule(). NFC.
PiperOrigin-RevId: 240257910
inherited constructors, which is cleaner and means you can now use DimOp()
to get a null op, instead of having to use Instruction::getNull<DimOp>().
This removes another 200 lines of code.
PiperOrigin-RevId: 240068113
- change this for consistency - everything else similar takes/returns a
Function pointer - the FuncBuilder ctor,
Block/Value/Instruction::getFunction(), etc.
- saves a whole bunch of &s everywhere
PiperOrigin-RevId: 236928761
An analysis can be any class, but it must provide the following:
* A constructor for a given IR unit.
struct MyAnalysis {
// Compute this analysis with the provided module.
MyAnalysis(Module *module);
};
Analyses can be accessed from a Pass by calling either the 'getAnalysisResult<AnalysisT>' or 'getCachedAnalysisResult<AnalysisT>' methods. A FunctionPass may query for a cached analysis on the parent module with 'getCachedModuleAnalysisResult'. Similary, a ModulePass may query an analysis, it doesn't need to be cached, on a child function with 'getFunctionAnalysisResult'.
By default, when running a pass all cached analyses are set to be invalidated. If no transformation was performed, a pass can use the method 'markAllAnalysesPreserved' to preserve all analysis results. As noted above, preserving specific analyses is not yet supported.
PiperOrigin-RevId: 236505642
This CL changes dialect op source files (.h, .cpp, .td) to follow the following
convention:
<full-dialect-name>/<dialect-namespace>Ops.{h|cpp|td}
Builtin and standard dialects are specially treated, though. Both of them do
not have dialect namespace; the former is still named as BuiltinOps.* and the
latter is named as Ops.*.
Purely mechanical. NFC.
PiperOrigin-RevId: 236371358
- use getAccessMap() instead of repeating it
- fold getMemRefRegion into MemRefRegion ctor (more natural, avoid heap
allocation and unique_ptr where possible)
- change extractForInductionVars - MutableArrayRef -> ArrayRef for the
arguments. Since the method is just returning copies of 'Value *', the client
can't mutate the pointers themselves; it's fine to mutate the 'Value''s
themselves, but that doesn't mutate the pointers to those.
- change the way extractForInductionVars returns (see b/123437690)
PiperOrigin-RevId: 232359277
loops), (2) take into account fast memory space capacity and lower 'dmaDepth'
to fit, (3) add location information for debug info / errors
- change dma-generate pass to work on blocks of instructions (start/end
iterators) instead of 'for' loops; complete TODOs - allows DMA generation for
straightline blocks of operation instructions interspersed b/w loops
- take into account fast memory capacity: check whether memory footprint fits
in fastMemoryCapacity parameter, and recurse/lower the depth at which DMA
generation is performed until it does fit in the provided memory
- add location information to MemRefRegion; any insufficient fast memory
capacity errors or debug info w.r.t dma generation shows location information
- allow DMA generation pass to be instantiated with a fast memory capacity
option (besides command line flag)
- change getMemRefRegion to return unique_ptr's
- change getMemRefFootprintBytes to work on a 'Block' instead of 'ForInst'
- other helper methods; add postDomInstFilter option for
replaceAllMemRefUsesWith; drop forInst->walkOps, add Block::walkOps methods
Eg. output
$ mlir-opt -dma-generate -dma-fast-mem-capacity=1 /tmp/single.mlir
/tmp/single.mlir:9:13: error: Total size of all DMA buffers' for this block exceeds fast memory capacity
for %i3 = (d0) -> (d0)(%i1) to (d0) -> (d0 + 32)(%i1) {
^
$ mlir-opt -debug-only=dma-generate -dma-generate -dma-fast-mem-capacity=400 /tmp/single.mlir
/tmp/single.mlir:9:13: note: 8 KiB of DMA buffers in fast memory space for this block
for %i3 = (d0) -> (d0)(%i1) to (d0) -> (d0 + 32)(%i1) {
PiperOrigin-RevId: 232297044