if we have a kernel binary, set the target's architecture to match.
Include the target's architecture in the ModuleSpec when we're searching for the
kext binaries on the local system -- otherwise we won't get a specific slice of
a fat file picked out for us and we won't use the returned Module correctly.
Remove the redundant attempt to find a file on the local filesystem from this method.
In ProcessGDBRemote::CheckForKernel(), if we have a kernel binary in memory, mark
the canJIT as false. There is no jitting code in kernel debug sessions.
llvm-svn: 165357
remove the duplicates of this code in ProcessGDBRemote and ProcessKDP.
These two Process plugins will hardcode their DynamicLoader name to be
the DynamicLoaderDarwinKernel so the correct DynamicLoader is picked,
and return the kernel load address as the ImageInfosAddress.
<rdar://problem/12417038>
llvm-svn: 165080
the Symbols::LocateExecutableObjectFile method to locate kexts and
kernels instead of copying them out of the memory of the remote
system. This is the fix for <rdar://problem/12416384>.
Fix a variable shadowing problem in
Symbols::LocateMacOSXFilesUsingDebugSymbols which caused the symbol
rich executable binaries to not be found even if they were listed
in the dSYM Info.plist.
Change Symbols::DownloadObjectAndSymbolFile to ignore dsymForUUID's
negative cache - this is typically being called by the user and we
should try even if there's a incorrect entry in the negative cache.
llvm-svn: 165061
loaded at a random offset).
To get the kernel's UUID and load address I need to send a kdp
packet so I had to implement the kernel relocation (and attempt to
find the kernel if none was provided to lldb already) in ProcessKDP
-- but this code really properly belongs in DynamicLoaderDarwinKernel.
I also had to add an optional Stream to ConnectRemote so
ProcessKDP::DoConnectRemote can print feedback about the remote kernel's
UUID, load address, and notify the user if we auto-loaded the kernel via
the UUID.
<rdar://problem/7714201>
llvm-svn: 164881
Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes:
- Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file".
- modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly
- Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was.
- modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile()
Cleaned up header includes a bit as well.
llvm-svn: 162860
setting breakpoints. That's dangerous, since while we are setting a breakpoint,
the target might hit the dyld load notification, and start removing modules from
the list. This change adds a GetMutex accessor to the ModuleList class, and
uses it whenever we are accessing the target's ModuleList (as returned by GetImages().)
<rdar://problem/11552372>
llvm-svn: 157668
"break set" commands to set this per breakpoint. Also, some CreateBreakpoint API's in the lldb_private
namespace had "internal" first and "skip_prologue" second. "internal should always be last. Fixed that.
rdar://problem/11484729
llvm-svn: 157225
Switch over to the "*-apple-macosx" for desktop and "*-apple-ios" for iOS triples.
Also make the selection process for auto selecting platforms based off of an arch much better.
llvm-svn: 156354
the migration to ModuleSpec objects this broke and is now fixed.
Also fixed a case in the darwin kernel dynamic loader where we just need to
trust the load address of the kernel if we can't read it from memory.
llvm-svn: 153164
load notification for the first load) then we will set it the runtime to NULL and won't re-search for it.
Added a way for the dynamic loader to force a re-search, since it knows the world has changed.
llvm-svn: 152453
This fix really needed to happen as a previous fix I had submitted for
calculating symbol sizes made many symbols appear to have zero size since
the function that was calculating the symbol size was calling another function
that would cause the calculation to happen again. This resulted in some symbols
having zero size when they shouldn't. This could then cause infinite stack
traces and many other side affects.
llvm-svn: 152244
so that we don't break it with code changes.
After doing this I was able to fix the POSIX-DYLD plug-in so that it builds
after recent ModuleSpec changes.
llvm-svn: 151536
more of the local path, platform path, associated symbol file, UUID, arch,
object name and object offset. This allows many of the calls that were
GetSharedModule to reduce the number of arguments that were used in a call
to these functions. It also allows a module to be created with a ModuleSpec
which allows many things to be specified prior to any accessors being called
on the Module class itself.
I was running into problems when adding support for "target symbol add"
where you can specify a stand alone debug info file after debugging has started
where I needed to specify the associated symbol file path and if I waited until
after construction, the wrong symbol file had already been located. By using
the ModuleSpec it allows us to construct a module with as little or as much
information as needed and not have to change the parameter list.
llvm-svn: 151476
I started work on being able to add symbol files after a debug session
had started with a new "target symfile add" command and quickly ran into
problems with stale Address objects in breakpoint locations that had
lldb_private::Section pointers into modules that had been removed or
replaced. This also let to grabbing stale modules from those sections.
So I needed to thread harded the Address, Section and related objects.
To do this I modified the ModuleChild class to now require a ModuleSP
on initialization so that a weak reference can created. I also changed
all places that were handing out "Section *" to have them hand out SectionSP.
All ObjectFile, SymbolFile and SymbolVendors were inheriting from ModuleChild
so all of the find plug-in, static creation function and constructors now
require ModuleSP references instead of Module *.
Address objects now have weak references to their sections which can
safely go stale when a module gets destructed.
This checkin doesn't complete the "target symfile add" command, but it
does get us a lot clioser to being able to do such things without a high
risk of crashing or memory corruption.
llvm-svn: 151336
to the __PAGEZERO segment on darwin. The dynamic loader now correctly doesn't
slide __PAGEZERO and it also registers it as an invalid region of memory. This
allows us to not make any memory requests from the local or remote debug session
for any addresses in this region. Stepping performance can improve when uninitialized
local variables that point to locations in __PAGEZERO are attempted to be read
from memory as we won't even make the memory read or write request.
llvm-svn: 151128
objects for the backlink to the lldb_private::Process. The issues we were
running into before was someone was holding onto a shared pointer to a
lldb_private::Thread for too long, and the lldb_private::Process parent object
would get destroyed and the lldb_private::Thread had a "Process &m_process"
member which would just treat whatever memory that used to be a Process as a
valid Process. This was mostly happening for lldb_private::StackFrame objects
that had a member like "Thread &m_thread". So this completes the internal
strong/weak changes.
Documented the ExecutionContext and ExecutionContextRef classes so that our
LLDB developers can understand when and where to use ExecutionContext and
ExecutionContextRef objects.
llvm-svn: 151009
seems that sections in the memory module might be quite different from the
sections in the file module. Now we find all segments in the on disk file and
find that segment by name in the memory module and it is ok if any sections
from the file are missing in the memory image.
llvm-svn: 150443
Tracking modules down when you have a UUID and a path has been improved.
DynamicLoaderDarwinKernel no longer parses mach-o load commands and it
now uses the memory based modules now that we can load modules from memory.
Added a target setting named "target.exec-search-paths" which can be used
to supply a list of directories to use when trying to look for executables.
This allows one or more directories to be used when searching for modules
that may not exist in the SDK/PDK. The target automatically adds the directory
for the main executable to this list so this should help us in tracking down
shared libraries and other binaries.
llvm-svn: 150426
detection of kernels into the object file and
adding a new category for raw binary images.
Fixed all clients who previously searched for
sections manually, making them use the object
file's facilities instead.
llvm-svn: 150272
user space programs. The core file support is implemented by making a process
plug-in that will dress up the threads and stack frames by using the core file
memory.
Added many default implementations for the lldb_private::Process functions so
that plug-ins like the ProcessMachCore don't need to override many many
functions only to have to return an error.
Added new virtual functions to the ObjectFile class for extracting the frozen
thread states that might be stored in object files. The default implementations
return no thread information, but any platforms that support core files that
contain frozen thread states (like mach-o) can make a module using the core
file and then extract the information. The object files can enumerate the
threads and also provide the register state for each thread. Since each object
file knows how the thread registers are stored, they are responsible for
creating a suitable register context that can be used by the core file threads.
Changed the process CreateInstace callbacks to return a shared pointer and
to also take an "const FileSpec *core_file" parameter to allow for core file
support. This will also allow for lldb_private::Process subclasses to be made
that could load crash logs. This should be possible on darwin where the crash
logs contain all of the stack frames for all of the threads, yet the crash
logs only contain the registers for the crashed thrad. It should also allow
some variables to be viewed for the thread that crashed.
llvm-svn: 150154
Fixed "target modules list" (aliased to "image list") to output more information
by default. Modified the "target modules list" to have a few new options:
"--header" or "-h" => show the image header address
"--offset" or "-o" => show the image header address offset from the address in the file (the slide applied to the shared library)
Removed the "--symfile-basename" or "-S" option, and repurposed it to
"--symfile-unique" "-S" which will show the symbol file if it differs from
the executable file.
ObjectFile's can now be loaded from memory for cases where we don't have the
files cached locally in an SDK or net mounted root. ObjectFileMachO can now
read mach files from memory.
Moved the section data reading code into the ObjectFile so that the object
file can get the section data from Process memory if the file is only in
memory.
lldb_private::Module can now load its object file in a target with a rigid
slide (very common operation for most dynamic linkers) by using:
bool
Module::SetLoadAddress (Target &target, lldb::addr_t offset, bool &changed)
lldb::SBModule() now has a new constructor in the public interface:
SBModule::SBModule (lldb::SBProcess &process, lldb::addr_t header_addr);
This will find an appropriate ObjectFile plug-in to load an image from memory
where the object file header is at "header_addr".
llvm-svn: 149804
due to RTTI worries since llvm and clang don't use RTTI, but I was able to
switch back with no issues as far as I can tell. Once the RTTI issue wasn't
an issue, we were looking for a way to properly track weak pointers to objects
to solve some of the threading issues we have been running into which naturally
led us back to std::tr1::weak_ptr. We also wanted the ability to make a shared
pointer from just a pointer, which is also easily solved using the
std::tr1::enable_shared_from_this class.
The main reason for this move back is so we can start properly having weak
references to objects. Currently a lldb_private::Thread class has a refrence
to its parent lldb_private::Process. This doesn't work well when we now hand
out a SBThread object that contains a shared pointer to a lldb_private::Thread
as this SBThread can be held onto by external clients and if they end up
using one of these objects we can easily crash.
So the next task is to start adopting std::tr1::weak_ptr where ever it makes
sense which we can do with lldb_private::Debugger, lldb_private::Target,
lldb_private::Process, lldb_private::Thread, lldb_private::StackFrame, and
many more objects now that they are no longer using intrusive ref counted
pointer objects (you can't do std::tr1::weak_ptr functionality with intrusive
pointers).
llvm-svn: 149207
This patch combines common code from Linux and FreeBSD into
a new POSIX platform. It also contains fixes for 64bit FreeBSD.
The patch is based on changes by Mark Peek <mp@FreeBSD.org> and
"K. Macy" <kmacy@freebsd.org> in their github repo located at
https://github.com/fbsd/lldb.
llvm-svn: 147613
a new POSIX platform. It also contains fixes for 64bit FreeBSD.
The patch is based on changes by Mark Peek <mp@FreeBSD.org> and
"K. Macy" <kmacy@freebsd.org> in their github repo located at
https://github.com/fbsd/lldb.
llvm-svn: 147609
so that we don't have "fprintf (stderr, ...)" calls sprinkled everywhere.
Changed all needed locations over to using this.
For non-darwin, we log to stderr only. On darwin, we log to stderr _and_
to ASL (Apple System Log facility). This will allow GUI apps to have a place
for these error and warning messages to go, and also allows the command line
apps to log directly to the terminal.
llvm-svn: 147596
size_t
SBProcess::ReadCStringFromMemory (addr_t addr, void *buf, size_t size, lldb::SBError &error);
uint64_t
SBProcess::ReadUnsignedFromMemory (addr_t addr, uint32_t byte_size, lldb::SBError &error);
lldb::addr_t
SBProcess::ReadPointerFromMemory (addr_t addr, lldb::SBError &error);
These ReadCStringFromMemory() has some SWIG type magic that makes it return the
python string directly and the "buf" is not needed:
error = SBError()
max_cstr_len = 256
cstr = lldb.process.ReadCStringFromMemory (0x1000, max_cstr_len, error)
if error.Success():
....
The other two functions behave as expteced. This will make it easier to get integer values
from the inferior process that are correctly byte swapped. Also for pointers, the correct
pointer byte size will be used.
Also cleaned up a few printf style warnings for the 32 bit lldb build on darwin.
llvm-svn: 146636
dispatch functions that are implemented in hand-written assembly.
There is also hand-written eh_frame instructions for unwinding
from these functions.
Normally we don't use eh_frame instructions for the currently
executing function, prefering the assembly instruction profiling
method. But in these hand-written dispatch functions, the
profiling is doomed and we should use the eh_frame instructions.
Unfortunately there's no easy way to flag/extend the eh_frame/debug_frame
sections to annotate if the unwind instructions are accurate at
all addresses ("asynchronous") or if they are only accurate at locations
that can throw an exception ("synchronous" and the normal case for
gcc/clang generated eh_frame/debug_frame CFI).
<rdar://problem/10508134>
llvm-svn: 146551
the name of the PLT entry. This solution assumes a naming convention agreed upon by us and the system folks,
and isn't general. The general solution requires actually finding & calling the resolver function if it
hasn't been called yet. That's more tricky.
llvm-svn: 144981
- If you download and build the sources in the Xcode project, x86_64 builds
by default using the "llvm.zip" checkpointed LLVM.
- If you delete the "lldb/llvm.zip" and the "lldb/llvm" folder, and build the
Xcode project will download the right LLVM sources and build them from
scratch
- If you have a "lldb/llvm" folder already that contains a "lldb/llvm/lib"
directory, we will use the sources you have placed in the LLDB directory.
Python can now be disabled for platforms that don't support it.
Changed the way the libllvmclang.a files get used. They now all get built into
arch specific directories and never get merged into universal binaries as this
was causing issues where you would have to go and delete the file if you wanted
to build an extra architecture slice.
llvm-svn: 143678
etc to specific source files.
Added SB API's to specify these source files & also more than one module.
Added an "exact" option to CompileUnit's FindLineEntry API.
llvm-svn: 140362
shared pointers.
Changed the ExecutionContext over to use shared pointers for
the target, process, thread and frame since these objects can
easily go away at any time and any object that was holding onto
an ExecutionContext was running the risk of using a bad object.
Now that the shared pointers for target, process, thread and
frame are just a single pointer (they all use the instrusive
shared pointers) the execution context is much safer and still
the same size.
Made the shared pointers in the the ExecutionContext class protected
and made accessors for all of the various ways to get at the pointers,
references, and shared pointers.
llvm-svn: 140298
Fix the RegularExpression class so it has a real copy constructor.
Fix the breakpoint setting with multiple shared libraries so it makes
one breakpoint not one per shared library.
Add SBFileSpecList, to be used to expose the above to the SB interface (not done yet.)
llvm-svn: 140225
allocate memory in a process that did not support
expression execution. Also improved detection of
whether or not a process can execute expressions.
llvm-svn: 140202
stdarg formats to use __attribute__ format so the compiler can flag
incorrect uses. Fix all incorrect uses. Most of these are innocuous,
a few were resulting in crashes.
llvm-svn: 140185