//===- VectorOps.cpp - MLIR Super Vectorizer Operations -------------------===// // // Copyright 2019 The MLIR Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // ============================================================================= // // This file implements convenience types for working with super-vectorization // operations, in particular super-vector loads and stores. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/VectorOps/VectorOps.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/Builders.h" #include "mlir/IR/OpImplementation.h" #include "mlir/IR/TypeUtilities.h" #include "mlir/Support/LLVM.h" using namespace mlir; using namespace mlir::vector; //===----------------------------------------------------------------------===// // VectorOpsDialect //===----------------------------------------------------------------------===// mlir::vector::VectorOpsDialect::VectorOpsDialect(MLIRContext *context) : Dialect(getDialectNamespace(), context) { addOperations< #define GET_OP_LIST #include "mlir/Dialect/VectorOps/VectorOps.cpp.inc" >(); } //===----------------------------------------------------------------------===// // ContractionOp //===----------------------------------------------------------------------===// static ParseResult parseContractionOp(OpAsmParser &parser, OperationState &result) { OpAsmParser::OperandType lhsInfo; OpAsmParser::OperandType rhsInfo; OpAsmParser::OperandType accInfo; SmallVector masksInfo; SmallVector types; Type resultVectorType; auto loc = parser.getCurrentLocation(); if (parser.parseOperand(lhsInfo) || parser.parseComma() || parser.parseOperand(rhsInfo) || parser.parseComma() || parser.parseOperand(accInfo) || parser.parseTrailingOperandList(masksInfo) || parser.parseOptionalAttrDict(result.attributes) || parser.parseColonTypeList(types) || parser.parseKeywordType("into", resultVectorType) || parser.resolveOperand(lhsInfo, types[0], result.operands) || parser.resolveOperand(rhsInfo, types[1], result.operands) || parser.resolveOperand(accInfo, resultVectorType, result.operands) || parser.addTypeToList(resultVectorType, result.types)) return failure(); if (masksInfo.empty()) return success(); if (masksInfo.size() != 2) return parser.emitError(parser.getNameLoc(), "expected zero or exactly 2 vector mask operands"); auto indexType = parser.getBuilder().getIndexType(); auto lhsType = types[0].cast(); auto rhsType = types[1].cast(); SmallVector maskTypes; SmallVector lhsMaskElementTypes(lhsType.getRank(), indexType); maskTypes.push_back( TupleType::get(lhsMaskElementTypes, parser.getBuilder().getContext())); SmallVector rhsMaskElementTypes(rhsType.getRank(), indexType); maskTypes.push_back( TupleType::get(rhsMaskElementTypes, parser.getBuilder().getContext())); if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands)) return failure(); return success(); } static void print(OpAsmPrinter &p, ContractionOp op) { p << op.getOperationName() << " " << *op.lhs() << ", " << *op.rhs(); p << ", " << *op.acc(); if (llvm::size(op.masks()) == 2) { p << ", " << **op.masks().begin(); p << ", " << **(op.masks().begin() + 1); } p.printOptionalAttrDict(op.getAttrs()); p << " : " << op.lhs()->getType() << ", " << op.rhs()->getType() << " into " << op.getResultType(); } static bool verifyDimMap(VectorType lhsType, VectorType rhsType, const std::vector> &map) { for (auto &dimPair : map) { if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() || dimPair.second < 0 || dimPair.second >= rhsType.getRank() || lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second)) return false; } return true; } static bool verifyOutputShape( VectorType lhsType, VectorType rhsType, VectorType accType, VectorType resType, const std::vector> &contractingDimMap, const std::vector> &batchDimMap) { DenseSet lhsContractingDimSet; DenseSet rhsContractingDimSet; for (auto &dimPair : contractingDimMap) { lhsContractingDimSet.insert(dimPair.first); rhsContractingDimSet.insert(dimPair.second); } DenseSet rhsBatchDimSet; for (auto &dimPair : batchDimMap) rhsBatchDimSet.insert(dimPair.second); // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'. SmallVector expectedResultDims; for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) { if (lhsContractingDimSet.count(i) > 0) continue; expectedResultDims.push_back(lhsType.getDimSize(i)); } // Add free dimensions from 'rhsType' to 'expectedResultDims'. for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) { if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0) continue; expectedResultDims.push_back(rhsType.getDimSize(i)); } // Verify dimension from 'resType' against 'expectedResultDims'. if (resType.getShape().size() != expectedResultDims.size() || accType.getShape().size() != expectedResultDims.size()) return false; for (int64_t i = 0, e = resType.getRank(); i < e; ++i) { if (resType.getDimSize(i) != expectedResultDims[i] || accType.getDimSize(i) != expectedResultDims[i]) return false; } return true; } static LogicalResult verify(ContractionOp op) { auto lhsType = op.getLhsType(); auto rhsType = op.getRhsType(); auto accType = op.getAccType(); auto resType = op.getResultType(); auto contractingDimMap = op.getContractingDimMap(); auto batchDimMap = op.getBatchDimMap(); // Verify at least one contracting dimension pair was specified. if (contractingDimMap.empty()) return op.emitOpError("expected at least one contracting dimension pair"); // Verify contracting dimension map was properly constructed. if (!verifyDimMap(lhsType, rhsType, contractingDimMap)) return op.emitOpError("invalid contracting dimension map"); // Verify batch dimension map was properly constructed. if (!verifyDimMap(lhsType, rhsType, batchDimMap)) return op.emitOpError("invalid batch dimension map"); // Verify 'accType' and 'resType' shape. if (!verifyOutputShape(lhsType, rhsType, accType, resType, contractingDimMap, batchDimMap)) return op.emitOpError("invalid accumulator/result vector shape"); // Verify that either two vector masks are set or none are set. auto lhsMaskType = op.getLHSVectorMaskType(); auto rhsMaskType = op.getRHSVectorMaskType(); if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType)) return op.emitOpError("invalid number of vector masks specified"); if (lhsMaskType && rhsMaskType) { // Verify tuple element size is != rank. if (lhsMaskType.getTypes().size() != lhsType.getShape().size() || rhsMaskType.getTypes().size() != rhsType.getShape().size()) return op.emitOpError("invalid number of vector mask elements"); // Verify all tuple elements are index type. for (auto eltType : lhsMaskType.getTypes()) { if (!eltType.isa()) return op.emitOpError("vector mask element must have index type"); } } return success(); } static std::vector> getDimMap(Attribute attr) { std::vector> dimMap; auto dimPairs = attr.dyn_cast_or_null(); if (!dimPairs) return dimMap; for (auto dimPairAttr : dimPairs) { auto dimPair = dimPairAttr.cast(); assert(dimPair.size() == 2); auto lhsDim = dimPair.begin()->cast().getInt(); auto rhsDim = std::prev(dimPair.end())->cast().getInt(); dimMap.push_back({lhsDim, rhsDim}); } return dimMap; } std::vector> ContractionOp::getContractingDimMap() { return getDimMap(getAttr(getContractingDimMapAttrName())); } std::vector> ContractionOp::getBatchDimMap() { return getDimMap(getAttr(getBatchDimMapAttrName())); } //===----------------------------------------------------------------------===// // ExtractElementOp //===----------------------------------------------------------------------===// static Type inferExtractOpResultType(VectorType vectorType, ArrayAttr position) { if (static_cast(position.size()) == vectorType.getRank()) return vectorType.getElementType(); return VectorType::get(vectorType.getShape().drop_front(position.size()), vectorType.getElementType()); } void ExtractElementOp::build(Builder *builder, OperationState &result, Value *source, ArrayRef position) { result.addOperands(source); auto positionAttr = builder->getI32ArrayAttr(position); result.addTypes(inferExtractOpResultType(source->getType().cast(), positionAttr)); result.addAttribute(getPositionAttrName(), positionAttr); } static void print(OpAsmPrinter &p, ExtractElementOp op) { p << op.getOperationName() << " " << *op.vector() << op.position(); p.printOptionalAttrDict(op.getAttrs(), {"position"}); p << " : " << op.vector()->getType(); } static ParseResult parseExtractElementOp(OpAsmParser &parser, OperationState &result) { llvm::SMLoc attributeLoc, typeLoc; SmallVector attrs; OpAsmParser::OperandType vector; Type type; Attribute attr; if (parser.parseOperand(vector) || parser.getCurrentLocation(&attributeLoc) || parser.parseAttribute(attr, "position", attrs) || parser.parseOptionalAttrDict(attrs) || parser.getCurrentLocation(&typeLoc) || parser.parseColonType(type)) return failure(); auto vectorType = type.dyn_cast(); if (!vectorType) return parser.emitError(typeLoc, "expected vector type"); auto positionAttr = attr.dyn_cast(); if (!positionAttr || static_cast(positionAttr.size()) > vectorType.getRank()) return parser.emitError( attributeLoc, "expected position attribute of rank smaller than vector rank"); Type resType = inferExtractOpResultType(vectorType, positionAttr); result.attributes = attrs; return failure(parser.resolveOperand(vector, type, result.operands) || parser.addTypeToList(resType, result.types)); } static LogicalResult verify(ExtractElementOp op) { auto positionAttr = op.position().getValue(); if (positionAttr.empty()) return op.emitOpError("expected non-empty position attribute"); if (positionAttr.size() > static_cast(op.getVectorType().getRank())) return op.emitOpError( "expected position attribute of rank smaller than vector rank"); for (auto en : llvm::enumerate(positionAttr)) { auto attr = en.value().dyn_cast(); if (!attr || attr.getInt() < 0 || attr.getInt() > op.getVectorType().getDimSize(en.index())) return op.emitOpError("expected position attribute #") << (en.index() + 1) << " to be a non-negative integer smaller than the corresponding " "vector dimension"; } return success(); } //===----------------------------------------------------------------------===// // InsertElementOp //===----------------------------------------------------------------------===// void InsertElementOp::build(Builder *builder, OperationState &result, Value *source, Value *dest, ArrayRef position) { result.addOperands({source, dest}); auto positionAttr = builder->getI32ArrayAttr(position); result.addTypes(dest->getType()); result.addAttribute(getPositionAttrName(), positionAttr); } static void print(OpAsmPrinter &p, InsertElementOp op) { p << op.getOperationName() << " " << *op.source() << ", " << *op.dest() << op.position(); p.printOptionalAttrDict(op.getAttrs(), {InsertElementOp::getPositionAttrName()}); p << " : " << op.getSourceType(); p << " into " << op.getDestVectorType(); } static ParseResult parseInsertElementOp(OpAsmParser &parser, OperationState &result) { SmallVector attrs; OpAsmParser::OperandType source, dest; Type sourceType; VectorType destType; Attribute attr; return failure(parser.parseOperand(source) || parser.parseComma() || parser.parseOperand(dest) || parser.parseAttribute(attr, InsertElementOp::getPositionAttrName(), result.attributes) || parser.parseOptionalAttrDict(attrs) || parser.parseColonType(sourceType) || parser.parseKeywordType("into", destType) || parser.resolveOperand(source, sourceType, result.operands) || parser.resolveOperand(dest, destType, result.operands) || parser.addTypeToList(destType, result.types)); } static LogicalResult verify(InsertElementOp op) { auto positionAttr = op.position().getValue(); if (positionAttr.empty()) return op.emitOpError("expected non-empty position attribute"); auto destVectorType = op.getDestVectorType(); if (positionAttr.size() > static_cast(destVectorType.getRank())) return op.emitOpError( "expected position attribute of rank smaller than dest vector rank"); auto srcVectorType = op.getSourceType().dyn_cast(); if (srcVectorType && (static_cast(srcVectorType.getRank()) + positionAttr.size() != static_cast(destVectorType.getRank()))) return op.emitOpError("expected position attribute rank + source rank to " "match dest vector rank"); else if (!srcVectorType && (positionAttr.size() != static_cast(destVectorType.getRank()))) return op.emitOpError( "expected position attribute rank to match the dest vector rank"); for (auto en : llvm::enumerate(positionAttr)) { auto attr = en.value().dyn_cast(); if (!attr || attr.getInt() < 0 || attr.getInt() > destVectorType.getDimSize(en.index())) return op.emitOpError("expected position attribute #") << (en.index() + 1) << " to be a non-negative integer smaller than the corresponding " "dest vector dimension"; } return success(); } //===----------------------------------------------------------------------===// // StridedSliceOp //===----------------------------------------------------------------------===// static Type inferExtractRangeOpResultType(VectorType vectorType, ArrayAttr offsets, ArrayAttr sizes, ArrayAttr strides) { assert(offsets.size() == sizes.size() && offsets.size() == strides.size()); SmallVector shape; shape.reserve(vectorType.getRank()); unsigned idx = 0; for (unsigned e = offsets.size(); idx < e; ++idx) shape.push_back(sizes.getValue()[idx].cast().getInt()); for (unsigned e = vectorType.getShape().size(); idx < e; ++idx) shape.push_back(vectorType.getShape()[idx]); return VectorType::get(shape, vectorType.getElementType()); } void StridedSliceOp::build(Builder *builder, OperationState &result, Value *source, ArrayRef offsets, ArrayRef sizes, ArrayRef strides) { result.addOperands(source); auto offsetsAttr = builder->getI64ArrayAttr(offsets); auto sizesAttr = builder->getI64ArrayAttr(sizes); auto stridesAttr = builder->getI64ArrayAttr(strides); result.addTypes( inferExtractRangeOpResultType(source->getType().cast(), offsetsAttr, sizesAttr, stridesAttr)); result.addAttribute(getOffsetsAttrName(), offsetsAttr); result.addAttribute(getSizesAttrName(), sizesAttr); result.addAttribute(getStridesAttrName(), stridesAttr); } static void print(OpAsmPrinter &p, StridedSliceOp op) { p << op.getOperationName() << " " << *op.vector(); p.printOptionalAttrDict(op.getAttrs()); p << " : " << op.vector()->getType() << " to " << op.getResult()->getType(); } static ParseResult parseStridedSliceOp(OpAsmParser &parser, OperationState &result) { llvm::SMLoc attributeLoc, typeLoc; OpAsmParser::OperandType vector; VectorType vectorType, resultVectorType; return failure(parser.parseOperand(vector) || parser.getCurrentLocation(&attributeLoc) || parser.parseOptionalAttrDict(result.attributes) || parser.getCurrentLocation(&typeLoc) || parser.parseColonType(vectorType) || parser.parseKeywordType("to", resultVectorType) || parser.resolveOperand(vector, vectorType, result.operands) || parser.addTypeToList(resultVectorType, result.types)); } // TODO(ntv) Should be moved to Tablegen Confined attributes. static bool isIntegerArrayAttrSmallerThanShape(StridedSliceOp op, ArrayAttr arrayAttr, ShapedType shape, StringRef attrName) { if (arrayAttr.size() > static_cast(shape.getRank())) { op.emitOpError("expected ") << attrName << " attribute of rank smaller than vector rank"; return false; } return true; } // Returns true if all integers in `arrayAttr` are in the half-open [min, max} // interval. If `halfOpen` is true then the admissible interval is [min, max). // Otherwise, the admissible interval is [min, max]. static bool isIntegerArrayAttrConfinedToRange(StridedSliceOp op, ArrayAttr arrayAttr, int64_t min, int64_t max, StringRef attrName, bool halfOpen = true) { for (auto attr : arrayAttr) { auto val = attr.cast().getInt(); auto upper = max; if (!halfOpen) upper += 1; if (val < min || val >= upper) { op.emitOpError("expected ") << attrName << " to be confined to [" << min << ", " << upper << ")"; return false; } } return true; } // Returns true if all integers in `arrayAttr` are in the half-open [min, max} // interval. If `halfOpen` is true then the admissible interval is [min, max). // Otherwise, the admissible interval is [min, max]. static bool isIntegerArrayAttrConfinedToShape(StridedSliceOp op, ArrayAttr arrayAttr, ShapedType shape, StringRef attrName, bool halfOpen = true, int64_t min = 0) { assert(arrayAttr.size() <= static_cast(shape.getRank())); for (auto it : llvm::zip(arrayAttr, shape.getShape())) { auto val = std::get<0>(it).cast().getInt(); auto max = std::get<1>(it); if (!halfOpen) max += 1; if (val < min || val >= max) { op.emitOpError("expected ") << attrName << " to be confined to [" << min << ", " << max << ")"; return false; } } return true; } // Returns true if all integers in `arrayAttr` are in the interval [min, max}. // interval. If `halfOpen` is true then the admissible interval is [min, max). // Otherwise, the admissible interval is [min, max]. static bool isSumOfIntegerArrayAttrConfinedToShape(StridedSliceOp op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2, ShapedType shape, StringRef attrName1, StringRef attrName2, bool halfOpen = true, int64_t min = 1) { assert(arrayAttr1.size() <= static_cast(shape.getRank())); assert(arrayAttr2.size() <= static_cast(shape.getRank())); for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape.getShape())) { auto val1 = std::get<0>(it).cast().getInt(); auto val2 = std::get<1>(it).cast().getInt(); auto max = std::get<2>(it); if (!halfOpen) max += 1; if (val1 + val2 < 0 || val1 + val2 >= max) { op.emitOpError("expected sum(") << attrName1 << ", " << attrName2 << ") to be confined to [" << min << ", " << max << ")"; return false; } } return true; } static LogicalResult verify(StridedSliceOp op) { auto type = op.getVectorType(); auto offsets = op.offsets(); auto sizes = op.sizes(); auto strides = op.strides(); if (offsets.size() != sizes.size() || offsets.size() != strides.size()) { op.emitOpError( "expected offsets, sizes and strides attributes of same size"); return failure(); } auto offName = StridedSliceOp::getOffsetsAttrName(); auto sizesName = StridedSliceOp::getSizesAttrName(); auto stridesName = StridedSliceOp::getStridesAttrName(); if (!isIntegerArrayAttrSmallerThanShape(op, offsets, type, offName) || !isIntegerArrayAttrSmallerThanShape(op, sizes, type, sizesName) || !isIntegerArrayAttrSmallerThanShape(op, strides, type, stridesName) || !isIntegerArrayAttrConfinedToShape(op, offsets, type, offName) || !isIntegerArrayAttrConfinedToShape(op, sizes, type, sizesName, /*halfOpen=*/false, /*min=*/1) || !isIntegerArrayAttrConfinedToRange(op, strides, 1, 1, stridesName, /*halfOpen=*/false) || !isSumOfIntegerArrayAttrConfinedToShape(op, offsets, sizes, type, offName, sizesName, /*halfOpen=*/false)) return failure(); auto resultType = inferExtractRangeOpResultType( op.getVectorType(), op.offsets(), op.sizes(), op.strides()); if (op.getResult()->getType() != resultType) { op.emitOpError("expected result type to be ") << resultType; return failure(); } return success(); } //===----------------------------------------------------------------------===// // OuterProductOp //===----------------------------------------------------------------------===// static void print(OpAsmPrinter &p, OuterProductOp op) { p << op.getOperationName() << " " << *op.lhs() << ", " << *op.rhs(); if (llvm::size(op.acc()) > 0) p << ", " << **op.acc().begin(); p << " : " << op.lhs()->getType() << ", " << op.rhs()->getType(); } static ParseResult parseOuterProductOp(OpAsmParser &parser, OperationState &result) { SmallVector operandsInfo; Type tLHS, tRHS; if (parser.parseOperandList(operandsInfo) || parser.parseColonType(tLHS) || parser.parseComma() || parser.parseType(tRHS)) return failure(); if (operandsInfo.size() < 2) return parser.emitError(parser.getNameLoc(), "expected at least 2 operands"); VectorType vLHS = tLHS.dyn_cast(); VectorType vRHS = tRHS.dyn_cast(); if (!vLHS || !vRHS) return parser.emitError(parser.getNameLoc(), "expected 2 vector types"); VectorType resType = VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)}, vLHS.getElementType()); return failure( parser.resolveOperand(operandsInfo[0], tLHS, result.operands) || parser.resolveOperand(operandsInfo[1], tRHS, result.operands) || (operandsInfo.size() > 2 && parser.resolveOperand(operandsInfo[2], resType, result.operands)) || parser.addTypeToList(resType, result.types)); } static LogicalResult verify(OuterProductOp op) { VectorType vLHS = op.getOperandVectorTypeLHS(), vRHS = op.getOperandVectorTypeRHS(), vACC = op.getOperandVectorTypeACC(), vRES = op.getVectorType(); if (vLHS.getRank() != 1) return op.emitOpError("expected 1-d vector for operand #1"); if (vRHS.getRank() != 1) return op.emitOpError("expected 1-d vector for operand #2"); if (vRES.getRank() != 2) return op.emitOpError("expected 2-d vector result"); if (vLHS.getDimSize(0) != vRES.getDimSize(0)) return op.emitOpError("expected #1 operand dim to match result dim #1"); if (vRHS.getDimSize(0) != vRES.getDimSize(1)) return op.emitOpError("expected #2 operand dim to match result dim #2"); if (vACC && vACC != vRES) return op.emitOpError("expected operand #3 of same type as result type"); return success(); } //===----------------------------------------------------------------------===// // TransferReadOp //===----------------------------------------------------------------------===// template static LogicalResult verifyPermutationMap(AffineMap permutationMap, EmitFun emitOpError) { SmallVector seen(permutationMap.getNumInputs(), false); for (auto expr : permutationMap.getResults()) { auto dim = expr.dyn_cast(); auto zero = expr.dyn_cast(); if (zero) { if (zero.getValue() != 0) { return emitOpError( "requires a projected permutation_map (at most one dim or the zero " "constant can appear in each result)"); } continue; } if (!dim) { return emitOpError("requires a projected permutation_map (at most one " "dim or the zero constant can appear in each result)"); } if (seen[dim.getPosition()]) { return emitOpError( "requires a permutation_map that is a permutation (found one dim " "used more than once)"); } seen[dim.getPosition()] = true; } return success(); } static void print(OpAsmPrinter &p, TransferReadOp op) { p << op.getOperationName() << " "; p.printOperand(op.memref()); p << "["; p.printOperands(op.indices()); p << "], "; p.printOperand(op.padding()); p << " "; p.printOptionalAttrDict(op.getAttrs()); p << " : " << op.getMemRefType(); p << ", " << op.getVectorType(); } ParseResult parseTransferReadOp(OpAsmParser &parser, OperationState &result) { llvm::SMLoc typesLoc; OpAsmParser::OperandType memrefInfo; SmallVector indexInfo; OpAsmParser::OperandType paddingInfo; SmallVector types; // Parsing with support for optional paddingValue. if (parser.parseOperand(memrefInfo) || parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || parser.parseComma() || parser.parseOperand(paddingInfo) || parser.parseOptionalAttrDict(result.attributes) || parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) return failure(); if (types.size() != 2) return parser.emitError(typesLoc, "two types required"); auto indexType = parser.getBuilder().getIndexType(); MemRefType memRefType = types[0].dyn_cast(); if (!memRefType) return parser.emitError(typesLoc, "memref type required"), failure(); Type vectorType = types[1]; return failure( parser.resolveOperand(memrefInfo, memRefType, result.operands) || parser.resolveOperands(indexInfo, indexType, result.operands) || parser.resolveOperand(paddingInfo, memRefType.getElementType(), result.operands) || parser.addTypeToList(vectorType, result.types)); } static LogicalResult verify(TransferReadOp op) { // Consistency of elemental types in memref and vector. MemRefType memrefType = op.getMemRefType(); VectorType vectorType = op.getVectorType(); if (memrefType.getElementType() != vectorType.getElementType()) return op.emitOpError( "requires memref and vector types of the same elemental type"); auto elementalType = op.padding()->getType(); if (!VectorType::isValidElementType(elementalType)) return op.emitOpError("requires valid padding vector elemental type"); if (elementalType != vectorType.getElementType()) return op.emitOpError( "requires formal padding and vector of the same elemental type"); if (llvm::size(op.indices()) != memrefType.getRank()) return op.emitOpError("requires ") << memrefType.getRank() << " indices"; auto permutationMap = op.permutation_map(); if (permutationMap.getNumSymbols() != 0) return op.emitOpError("requires permutation_map without symbols"); if (permutationMap.getNumInputs() != memrefType.getRank()) return op.emitOpError("requires a permutation_map with input dims of the " "same rank as the memref type"); if (permutationMap.getNumResults() != vectorType.getRank()) return op.emitOpError("requires a permutation_map with result dims of the " "same rank as the vector type"); return verifyPermutationMap(permutationMap, [&op](Twine t) { return op.emitOpError(t); }); } //===----------------------------------------------------------------------===// // TransferWriteOp //===----------------------------------------------------------------------===// static void print(OpAsmPrinter &p, TransferWriteOp op) { p << op.getOperationName() << " " << *op.vector() << ", " << *op.memref(); p << "["; p.printOperands(op.indices()); p << "]"; p.printOptionalAttrDict(op.getAttrs()); p << " : "; p.printType(op.getVectorType()); p << ", "; p.printType(op.getMemRefType()); } ParseResult parseTransferWriteOp(OpAsmParser &parser, OperationState &result) { llvm::SMLoc typesLoc; OpAsmParser::OperandType storeValueInfo; OpAsmParser::OperandType memRefInfo; SmallVector indexInfo; SmallVector types; if (parser.parseOperand(storeValueInfo) || parser.parseComma() || parser.parseOperand(memRefInfo) || parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || parser.parseOptionalAttrDict(result.attributes) || parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) return failure(); if (types.size() != 2) return parser.emitError(typesLoc, "two types required"); auto indexType = parser.getBuilder().getIndexType(); Type vectorType = types[0], memRefType = types[1]; return failure( parser.resolveOperand(storeValueInfo, vectorType, result.operands) || parser.resolveOperand(memRefInfo, memRefType, result.operands) || parser.resolveOperands(indexInfo, indexType, result.operands)); } static LogicalResult verify(TransferWriteOp op) { // Consistency of elemental types in memref and vector. MemRefType memrefType = op.getMemRefType(); VectorType vectorType = op.getVectorType(); if (memrefType.getElementType() != vectorType.getElementType()) return op.emitOpError( "requires memref and vector types of the same elemental type"); if (llvm::size(op.indices()) != memrefType.getRank()) return op.emitOpError("requires ") << memrefType.getRank() << " indices"; // Consistency of AffineMap attribute. auto permutationMap = op.permutation_map(); if (permutationMap.getNumSymbols() != 0) return op.emitOpError("requires a symbol-less permutation_map"); if (permutationMap.getNumInputs() != memrefType.getRank()) return op.emitOpError("requires a permutation_map with input dims of the " "same rank as the memref type: ") << permutationMap.getNumInputs() << " vs " << memrefType; if (permutationMap.getNumResults() != vectorType.getRank()) return op.emitOpError("requires a permutation_map with result dims of the " "same rank as the vector type.") << permutationMap.getNumResults() << " vs " << vectorType; return verifyPermutationMap(permutationMap, [&op](Twine t) { return op.emitOpError(t); }); } //===----------------------------------------------------------------------===// // TypeCastOp //===----------------------------------------------------------------------===// static MemRefType inferVectorTypeCastResultType(MemRefType t) { return MemRefType::get({}, VectorType::get(t.getShape(), t.getElementType())); } void TypeCastOp::build(Builder *builder, OperationState &result, Value *source) { result.addOperands(source); result.addTypes( inferVectorTypeCastResultType(source->getType().cast())); } static void print(OpAsmPrinter &p, TypeCastOp &op) { auto type = op.getOperand()->getType().cast(); p << op.getOperationName() << ' ' << *op.memref() << " : " << type << " to " << inferVectorTypeCastResultType(type); } static LogicalResult verify(TypeCastOp &op) { auto resultType = inferVectorTypeCastResultType(op.getMemRefType()); if (op.getResultMemRefType() != resultType) return op.emitOpError("expects result type to be: ") << resultType; return success(); } //===----------------------------------------------------------------------===// // IndexTupleOp //===----------------------------------------------------------------------===// ParseResult parseIndexTupleOp(OpAsmParser &parser, OperationState &result) { auto indexType = parser.getBuilder().getIndexType(); Type resultType; SmallVector operandInfo; return failure( parser.parseOperandList(operandInfo) || parser.parseOptionalAttrDict(result.attributes) || parser.parseColonType(resultType) || parser.resolveOperands(operandInfo, indexType, result.operands) || parser.addTypeToList(resultType, result.types)); } static void print(OpAsmPrinter &p, IndexTupleOp &op) { p << op.getOperationName() << ' '; p.printOperands(op.operands()); p << " : " << op.getResult()->getType(); } static LogicalResult verify(IndexTupleOp &op) { for (auto operand : op.getOperands()) if (!operand->getType().isa()) return op.emitOpError("all operands must be of index type"); return success(); } namespace mlir { namespace vector { #define GET_OP_CLASSES #include "mlir/Dialect/VectorOps/VectorOps.cpp.inc" } // namespace vector } // namespace mlir