//===--- BinaryFunction.cpp - Interface for machine-level function --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // //===----------------------------------------------------------------------===// #include "BinaryBasicBlock.h" #include "BinaryFunction.h" #include "DataReader.h" #include "Passes/ReorderAlgorithm.h" #include "llvm/ADT/StringRef.h" #include "llvm/DebugInfo/DWARF/DWARFContext.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstPrinter.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCStreamer.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GraphWriter.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #undef DEBUG_TYPE #define DEBUG_TYPE "bolt" using namespace llvm; using namespace bolt; namespace opts { extern cl::OptionCategory BoltCategory; extern cl::OptionCategory BoltOptCategory; extern cl::OptionCategory BoltRelocCategory; extern bool shouldProcess(const BinaryFunction &); extern cl::opt PrintDynoStats; extern cl::opt Relocs; extern cl::opt UpdateDebugSections; extern cl::opt IndirectCallPromotion; extern cl::opt Verbosity; static cl::opt AggressiveSplitting("split-all-cold", cl::desc("outline as many cold basic blocks as possible"), cl::ZeroOrMore, cl::cat(BoltOptCategory)); static cl::opt AlignBlocks("align-blocks", cl::desc("try to align BBs inserting nops"), cl::ZeroOrMore, cl::cat(BoltOptCategory)); static cl::opt DotToolTipCode("dot-tooltip-code", cl::desc("add basic block instructions as tool tips on nodes"), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltCategory)); static cl::opt DynoStatsScale("dyno-stats-scale", cl::desc("scale to be applied while reporting dyno stats"), cl::Optional, cl::init(1), cl::Hidden, cl::cat(BoltCategory)); cl::opt JumpTables("jump-tables", cl::desc("jump tables support (default=basic)"), cl::init(JTS_BASIC), cl::values( clEnumValN(JTS_NONE, "none", "do not optimize functions with jump tables"), clEnumValN(JTS_BASIC, "basic", "optimize functions with jump tables"), clEnumValN(JTS_MOVE, "move", "move jump tables to a separate section"), clEnumValN(JTS_SPLIT, "split", "split jump tables section into hot and cold based on " "function execution frequency"), clEnumValN(JTS_AGGRESSIVE, "aggressive", "aggressively split jump tables section based on usage " "of the tables"), clEnumValEnd), cl::ZeroOrMore, cl::cat(BoltOptCategory)); static cl::opt PrintJumpTables("print-jump-tables", cl::desc("print jump tables"), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltCategory)); static cl::list PrintOnly("print-only", cl::CommaSeparated, cl::desc("list of functions to print"), cl::value_desc("func1,func2,func3,..."), cl::Hidden, cl::cat(BoltCategory)); static cl::opt SplitEH("split-eh", cl::desc("split C++ exception handling code (experimental)"), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltOptCategory)); bool shouldPrint(const BinaryFunction &Function) { if (PrintOnly.empty()) return true; for (auto &Name : opts::PrintOnly) { if (Function.hasName(Name)) { return true; } } return false; } } // namespace opts namespace llvm { namespace bolt { // Temporary constant. // // TODO: move to architecture-specific file together with the code that is // using it. constexpr unsigned NoRegister = 0; constexpr const char *DynoStats::Desc[]; constexpr unsigned BinaryFunction::MinAlign; namespace { /// Gets debug line information for the instruction located at the given /// address in the original binary. The SMLoc's pointer is used /// to point to this information, which is represented by a /// DebugLineTableRowRef. The returned pointer is null if no debug line /// information for this instruction was found. SMLoc findDebugLineInformationForInstructionAt( uint64_t Address, DWARFUnitLineTable &ULT) { // We use the pointer in SMLoc to store an instance of DebugLineTableRowRef, // which occupies 64 bits. Thus, we can only proceed if the struct fits into // the pointer itself. assert( sizeof(decltype(SMLoc().getPointer())) >= sizeof(DebugLineTableRowRef) && "Cannot fit instruction debug line information into SMLoc's pointer"); SMLoc NullResult = DebugLineTableRowRef::NULL_ROW.toSMLoc(); auto &LineTable = ULT.second; if (!LineTable) return NullResult; uint32_t RowIndex = LineTable->lookupAddress(Address); if (RowIndex == LineTable->UnknownRowIndex) return NullResult; assert(RowIndex < LineTable->Rows.size() && "Line Table lookup returned invalid index."); decltype(SMLoc().getPointer()) Ptr; DebugLineTableRowRef *InstructionLocation = reinterpret_cast(&Ptr); InstructionLocation->DwCompileUnitIndex = ULT.first->getOffset(); InstructionLocation->RowIndex = RowIndex + 1; return SMLoc::getFromPointer(Ptr); } } // namespace bool DynoStats::operator<(const DynoStats &Other) const { return std::lexicographical_compare( &Stats[FIRST_DYNO_STAT], &Stats[LAST_DYNO_STAT], &Other.Stats[FIRST_DYNO_STAT], &Other.Stats[LAST_DYNO_STAT] ); } bool DynoStats::operator==(const DynoStats &Other) const { return std::equal( &Stats[FIRST_DYNO_STAT], &Stats[LAST_DYNO_STAT], &Other.Stats[FIRST_DYNO_STAT] ); } bool DynoStats::lessThan(const DynoStats &Other, ArrayRef Keys) const { return std::lexicographical_compare( Keys.begin(), Keys.end(), Keys.begin(), Keys.end(), [this,&Other](const Category A, const Category) { return Stats[A] < Other.Stats[A]; } ); } uint64_t BinaryFunction::Count = 0; BinaryBasicBlock * BinaryFunction::getBasicBlockContainingOffset(uint64_t Offset) { if (Offset > Size) return nullptr; if (BasicBlockOffsets.empty()) return nullptr; /* * This is commented out because it makes BOLT too slow. * assert(std::is_sorted(BasicBlockOffsets.begin(), * BasicBlockOffsets.end(), * CompareBasicBlockOffsets()))); */ auto I = std::upper_bound(BasicBlockOffsets.begin(), BasicBlockOffsets.end(), BasicBlockOffset(Offset, nullptr), CompareBasicBlockOffsets()); assert(I != BasicBlockOffsets.begin() && "first basic block not at offset 0"); --I; auto *BB = I->second; return (Offset < BB->getOffset() + BB->getOriginalSize()) ? BB : nullptr; } void BinaryFunction::markUnreachable() { std::stack Stack; for (auto *BB : layout()) { BB->markValid(false); } // Add all entries and landing pads as roots. for (auto *BB : BasicBlocks) { if (BB->isEntryPoint() || BB->isLandingPad()) { Stack.push(BB); BB->markValid(true); } } // Determine reachable BBs from the entry point while (!Stack.empty()) { auto BB = Stack.top(); Stack.pop(); for (auto Succ : BB->successors()) { if (Succ->isValid()) continue; Succ->markValid(true); Stack.push(Succ); } } } // Any unnecessary fallthrough jumps revealed after calling eraseInvalidBBs // will be cleaned up by fixBranches(). std::pair BinaryFunction::eraseInvalidBBs() { BasicBlockOrderType NewLayout; unsigned Count = 0; uint64_t Bytes = 0; for (auto *BB : layout()) { assert((!BB->isEntryPoint() || BB->isValid()) && "all entry blocks must be valid"); if (BB->isValid()) { NewLayout.push_back(BB); } else { ++Count; Bytes += BC.computeCodeSize(BB->begin(), BB->end()); } } BasicBlocksLayout = std::move(NewLayout); BasicBlockListType NewBasicBlocks; for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { if ((*I)->isValid()) { NewBasicBlocks.push_back(*I); } else { DeletedBasicBlocks.push_back(*I); } } BasicBlocks = std::move(NewBasicBlocks); assert(BasicBlocks.size() == BasicBlocksLayout.size()); // Update CFG state if needed if (Count > 0) { updateBBIndices(0); recomputeLandingPads(0, BasicBlocks.size()); } return std::make_pair(Count, Bytes); } bool BinaryFunction::isForwardCall(const MCSymbol *CalleeSymbol) const { // This function should work properly before and after function reordering. // In order to accomplish this, we use the function index (if it is valid). // If the function indices are not valid, we fall back to the original // addresses. This should be ok because the functions without valid indices // should have been ordered with a stable sort. const auto *CalleeBF = BC.getFunctionForSymbol(CalleeSymbol); if (CalleeBF) { if (hasValidIndex() && CalleeBF->hasValidIndex()) { return getIndex() < CalleeBF->getIndex(); } else if (hasValidIndex() && !CalleeBF->hasValidIndex()) { return true; } else if (!hasValidIndex() && CalleeBF->hasValidIndex()) { return false; } else { return getAddress() < CalleeBF->getAddress(); } } else { // Absolute symbol. auto const CalleeSI = BC.GlobalSymbols.find(CalleeSymbol->getName()); assert(CalleeSI != BC.GlobalSymbols.end() && "unregistered symbol found"); return CalleeSI->second > getAddress(); } } void BinaryFunction::dump(bool PrintInstructions) const { print(dbgs(), "", PrintInstructions); } void BinaryFunction::print(raw_ostream &OS, std::string Annotation, bool PrintInstructions) const { // FIXME: remove after #15075512 is done. if (!opts::shouldProcess(*this) || !opts::shouldPrint(*this)) return; StringRef SectionName; Section.getName(SectionName); OS << "Binary Function \"" << *this << "\" " << Annotation << " {"; if (Names.size() > 1) { OS << "\n Other names : "; auto Sep = ""; for (unsigned i = 0; i < Names.size() - 1; ++i) { OS << Sep << Names[i]; Sep = "\n "; } } OS << "\n Number : " << FunctionNumber << "\n State : " << CurrentState << "\n Address : 0x" << Twine::utohexstr(Address) << "\n Size : 0x" << Twine::utohexstr(Size) << "\n MaxSize : 0x" << Twine::utohexstr(MaxSize) << "\n Offset : 0x" << Twine::utohexstr(FileOffset) << "\n Section : " << SectionName << "\n Orc Section : " << getCodeSectionName() << "\n LSDA : 0x" << Twine::utohexstr(getLSDAAddress()) << "\n IsSimple : " << IsSimple << "\n IsSplit : " << IsSplit << "\n BB Count : " << BasicBlocksLayout.size(); if (hasCFG()) { OS << "\n Hash : " << Twine::utohexstr(hash()); } if (FrameInstructions.size()) { OS << "\n CFI Instrs : " << FrameInstructions.size(); } if (BasicBlocksLayout.size()) { OS << "\n BB Layout : "; auto Sep = ""; for (auto BB : BasicBlocksLayout) { OS << Sep << BB->getName(); Sep = ", "; } } if (ImageAddress) OS << "\n Image : 0x" << Twine::utohexstr(ImageAddress); if (ExecutionCount != COUNT_NO_PROFILE) { OS << "\n Exec Count : " << ExecutionCount; OS << "\n Profile Acc : " << format("%.1f%%", ProfileMatchRatio * 100.0f); } if (opts::PrintDynoStats && !BasicBlocksLayout.empty()) { OS << '\n'; DynoStats dynoStats = getDynoStats(); OS << dynoStats; } OS << "\n}\n"; if (!PrintInstructions || !BC.InstPrinter) return; // Offset of the instruction in function. uint64_t Offset{0}; if (BasicBlocks.empty() && !Instructions.empty()) { // Print before CFG was built. for (const auto &II : Instructions) { Offset = II.first; // Print label if exists at this offset. auto LI = Labels.find(Offset); if (LI != Labels.end()) OS << LI->second->getName() << ":\n"; BC.printInstruction(OS, II.second, Offset, this); } } for (uint32_t I = 0, E = BasicBlocksLayout.size(); I != E; ++I) { auto BB = BasicBlocksLayout[I]; if (I != 0 && BB->isCold() != BasicBlocksLayout[I - 1]->isCold()) OS << "------- HOT-COLD SPLIT POINT -------\n\n"; OS << BB->getName() << " (" << BB->size() << " instructions, align : " << BB->getAlignment() << ")\n"; if (BB->isEntryPoint()) OS << " Entry Point\n"; if (BB->isLandingPad()) OS << " Landing Pad\n"; uint64_t BBExecCount = BB->getExecutionCount(); if (hasValidProfile()) { OS << " Exec Count : " << BBExecCount << "\n"; } if (BB->getCFIState() >= 0) { OS << " CFI State : " << BB->getCFIState() << '\n'; } if (!BB->pred_empty()) { OS << " Predecessors: "; auto Sep = ""; for (auto Pred : BB->predecessors()) { OS << Sep << Pred->getName(); Sep = ", "; } OS << '\n'; } if (!BB->throw_empty()) { OS << " Throwers: "; auto Sep = ""; for (auto Throw : BB->throwers()) { OS << Sep << Throw->getName(); Sep = ", "; } OS << '\n'; } Offset = RoundUpToAlignment(Offset, BB->getAlignment()); // Note: offsets are imprecise since this is happening prior to relaxation. Offset = BC.printInstructions(OS, BB->begin(), BB->end(), Offset, this); if (!BB->succ_empty()) { OS << " Successors: "; auto BI = BB->branch_info_begin(); auto Sep = ""; for (auto Succ : BB->successors()) { assert(BI != BB->branch_info_end() && "missing BranchInfo entry"); OS << Sep << Succ->getName(); if (ExecutionCount != COUNT_NO_PROFILE && BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { OS << " (mispreds: " << BI->MispredictedCount << ", count: " << BI->Count << ")"; } else if (ExecutionCount != COUNT_NO_PROFILE && BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) { OS << " (inferred count: " << BI->Count << ")"; } Sep = ", "; ++BI; } OS << '\n'; } if (!BB->lp_empty()) { OS << " Landing Pads: "; auto Sep = ""; for (auto LP : BB->landing_pads()) { OS << Sep << LP->getName(); if (ExecutionCount != COUNT_NO_PROFILE) { OS << " (count: " << LP->getExecutionCount() << ")"; } Sep = ", "; } OS << '\n'; } // In CFG_Finalized state we can miscalculate CFI state at exit. if (CurrentState == State::CFG) { const auto CFIStateAtExit = BB->getCFIStateAtExit(); if (CFIStateAtExit >= 0) OS << " CFI State: " << CFIStateAtExit << '\n'; } OS << '\n'; } // Dump new exception ranges for the function. if (!CallSites.empty()) { OS << "EH table:\n"; for (auto &CSI : CallSites) { OS << " [" << *CSI.Start << ", " << *CSI.End << ") landing pad : "; if (CSI.LP) OS << *CSI.LP; else OS << "0"; OS << ", action : " << CSI.Action << '\n'; } OS << '\n'; } // Print all jump tables. for (auto &JTI : JumpTables) { JTI.second.print(OS); } OS << "DWARF CFI Instructions:\n"; if (OffsetToCFI.size()) { // Pre-buildCFG information for (auto &Elmt : OffsetToCFI) { OS << format(" %08x:\t", Elmt.first); assert(Elmt.second < FrameInstructions.size() && "Incorrect CFI offset"); BinaryContext::printCFI(OS, FrameInstructions[Elmt.second]); OS << "\n"; } } else { // Post-buildCFG information for (uint32_t I = 0, E = FrameInstructions.size(); I != E; ++I) { const MCCFIInstruction &CFI = FrameInstructions[I]; OS << format(" %d:\t", I); BinaryContext::printCFI(OS, CFI); OS << "\n"; } } if (FrameInstructions.empty()) OS << " \n"; OS << "End of Function \"" << *this << "\"\n\n"; } BinaryFunction::IndirectBranchType BinaryFunction::analyzeIndirectBranch(MCInst &Instruction, unsigned Size, uint64_t Offset) { auto &MIA = BC.MIA; IndirectBranchType Type = IndirectBranchType::UNKNOWN; // An instruction referencing memory used by jump instruction (directly or // via register). This location could be an array of function pointers // in case of indirect tail call, or a jump table. MCInst *MemLocInstr = nullptr; // Address of the table referenced by MemLocInstr. Could be either an // array of function pointers, or a jump table. uint64_t ArrayStart = 0; auto analyzePICJumpTable = [&](InstrMapType::reverse_iterator II, InstrMapType::reverse_iterator IE, unsigned R1, unsigned R2) { // Analyze PIC-style jump table code template: // // lea PIC_JUMP_TABLE(%rip), {%r1|%r2} <- MemLocInstr // mov ({%r1|%r2}, %index, 4), {%r2|%r1} // add %r2, %r1 // jmp *%r1 // // (with any irrelevant instructions in-between) // // When we call this helper we've already determined %r1 and %r2, and // reverse instruction iterator \p II is pointing to the ADD instruction. // // PIC jump table looks like following: // // JT: ---------- // E1:| L1 - JT | // |----------| // E2:| L2 - JT | // |----------| // | | // ...... // En:| Ln - JT | // ---------- // // Where L1, L2, ..., Ln represent labels in the function. // // The actual relocations in the table will be of the form: // // Ln - JT // = (Ln - En) + (En - JT) // = R_X86_64_PC32(Ln) + En - JT // = R_X86_64_PC32(Ln + offsetof(En)) // DEBUG(dbgs() << "BOLT-DEBUG: checking for PIC jump table\n"); MCInst *MovInstr = nullptr; while (++II != IE) { auto &Instr = II->second; const auto &InstrDesc = BC.MII->get(Instr.getOpcode()); if (!InstrDesc.hasDefOfPhysReg(Instr, R1, *BC.MRI) && !InstrDesc.hasDefOfPhysReg(Instr, R2, *BC.MRI)) { // Ignore instructions that don't affect R1, R2 registers. continue; } else if (!MovInstr) { // Expect to see MOV instruction. if (!MIA->isMOVSX64rm32(Instr)) { DEBUG(dbgs() << "BOLT-DEBUG: MOV instruction expected.\n"); break; } // Check if it's setting %r1 or %r2. In canonical form it sets %r2. // If it sets %r1 - rename the registers so we have to only check // a single form. auto MovDestReg = Instr.getOperand(0).getReg(); if (MovDestReg != R2) std::swap(R1, R2); if (MovDestReg != R2) { DEBUG(dbgs() << "BOLT-DEBUG: MOV instruction expected to set %r2\n"); break; } // Verify operands for MOV. unsigned BaseRegNum; int64_t ScaleValue; unsigned IndexRegNum; int64_t DispValue; unsigned SegRegNum; if (!MIA->evaluateX86MemoryOperand(Instr, &BaseRegNum, &ScaleValue, &IndexRegNum, &DispValue, &SegRegNum)) break; if (BaseRegNum != R1 || ScaleValue != 4 || IndexRegNum == bolt::NoRegister || DispValue != 0 || SegRegNum != bolt::NoRegister) break; MovInstr = &Instr; } else { assert(MovInstr && "MOV instruction expected to be set"); if (!InstrDesc.hasDefOfPhysReg(Instr, R1, *BC.MRI)) continue; if (!MIA->isLEA64r(Instr)) { DEBUG(dbgs() << "BOLT-DEBUG: LEA instruction expected\n"); break; } if (Instr.getOperand(0).getReg() != R1) { DEBUG(dbgs() << "BOLT-DEBUG: LEA instruction expected to set %r1\n"); break; } // Verify operands for LEA. unsigned BaseRegNum; int64_t ScaleValue; unsigned IndexRegNum; const MCExpr *DispExpr = nullptr; unsigned SegRegNum; if (!MIA->evaluateX86MemoryOperand(Instr, &BaseRegNum, &ScaleValue, &IndexRegNum, nullptr, &SegRegNum, &DispExpr)) break; if (BaseRegNum != BC.MRI->getProgramCounter() || IndexRegNum != bolt::NoRegister || SegRegNum != bolt::NoRegister || DispExpr == nullptr) break; MemLocInstr = &Instr; break; } } if (!MemLocInstr) return IndirectBranchType::UNKNOWN; DEBUG(dbgs() << "BOLT-DEBUG: checking potential PIC jump table\n"); return IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE; }; // Try to find a (base) memory location from where the address for // the indirect branch is loaded. For X86-64 the memory will be specified // in the following format: // // {%rip}/{%basereg} + Imm + IndexReg * Scale // // We are interested in the cases where Scale == sizeof(uintptr_t) and // the contents of the memory are presumably a function array. // // Normal jump table: // // jmp *(JUMP_TABLE, %index, Scale) // // or // // mov (JUMP_TABLE, %index, Scale), %r1 // ... // jmp %r1 // // We handle PIC-style jump tables separately. // if (Instruction.getNumOperands() == 1) { // If the indirect jump is on register - try to detect if the // register value is loaded from a memory location. assert(Instruction.getOperand(0).isReg() && "register operand expected"); const auto R1 = Instruction.getOperand(0).getReg(); // Check if one of the previous instructions defines the jump-on register. // We will check that this instruction belongs to the same basic block // in postProcessIndirectBranches(). for (auto PrevII = Instructions.rbegin(); PrevII != Instructions.rend(); ++PrevII) { auto &PrevInstr = PrevII->second; const auto &PrevInstrDesc = BC.MII->get(PrevInstr.getOpcode()); if (!PrevInstrDesc.hasDefOfPhysReg(PrevInstr, R1, *BC.MRI)) continue; if (MIA->isMoveMem2Reg(PrevInstr)) { MemLocInstr = &PrevInstr; break; } else if (MIA->isADD64rr(PrevInstr)) { auto R2 = PrevInstr.getOperand(2).getReg(); if (R1 == R2) return IndirectBranchType::UNKNOWN; Type = analyzePICJumpTable(PrevII, Instructions.rend(), R1, R2); break; } else { return IndirectBranchType::UNKNOWN; } } if (!MemLocInstr) { // No definition seen for the register in this function so far. Could be // an input parameter - which means it is an external code reference. // It also could be that the definition happens to be in the code that // we haven't processed yet. Since we have to be conservative, return // as UNKNOWN case. return IndirectBranchType::UNKNOWN; } } else { MemLocInstr = &Instruction; } const auto RIPRegister = BC.MRI->getProgramCounter(); auto PtrSize = BC.AsmInfo->getPointerSize(); // Analyze the memory location. unsigned BaseRegNum; int64_t ScaleValue; unsigned IndexRegNum; int64_t DispValue; unsigned SegRegNum; const MCExpr *DispExpr; if (!MIA->evaluateX86MemoryOperand(*MemLocInstr, &BaseRegNum, &ScaleValue, &IndexRegNum, &DispValue, &SegRegNum, &DispExpr)) return IndirectBranchType::UNKNOWN; // Do not set annotate with index reg if address was precomputed earlier // and reg may not be live at the jump site. if (MemLocInstr != &Instruction) IndexRegNum = 0; if ((BaseRegNum != bolt::NoRegister && BaseRegNum != RIPRegister) || SegRegNum != bolt::NoRegister) return IndirectBranchType::UNKNOWN; if (Type == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE && (ScaleValue != 1 || BaseRegNum != RIPRegister)) return IndirectBranchType::UNKNOWN; if (Type != IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE && ScaleValue != PtrSize) return IndirectBranchType::UNKNOWN; // RIP-relative addressing should be converted to symbol form by now // in processed instructions (but not in jump). if (DispExpr) { auto SI = BC.GlobalSymbols.find(DispExpr->getSymbol().getName()); assert(SI != BC.GlobalSymbols.end() && "global symbol needs a value"); ArrayStart = SI->second; } else { ArrayStart = static_cast(DispValue); if (BaseRegNum == RIPRegister) ArrayStart += getAddress() + Offset + Size; } DEBUG(dbgs() << "BOLT-DEBUG: addressed memory is 0x" << Twine::utohexstr(ArrayStart) << '\n'); // Check if there's already a jump table registered at this address. if (auto *JT = getJumpTableContainingAddress(ArrayStart)) { auto JTOffset = ArrayStart - JT->Address; if (Type == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE && JTOffset != 0) { // Adjust the size of this jump table and create a new one if necessary. // We cannot re-use the entries since the offsets are relative to the // table start. DEBUG(dbgs() << "BOLT-DEBUG: adjusting size of jump table at 0x" << Twine::utohexstr(JT->Address) << '\n'); JT->OffsetEntries.resize(JTOffset / JT->EntrySize); } else { // Re-use an existing jump table. Perhaps parts of it. if (Type != IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) { assert(JT->Type == JumpTable::JTT_NORMAL && "normal jump table expected"); Type = IndirectBranchType::POSSIBLE_JUMP_TABLE; } else { assert(JT->Type == JumpTable::JTT_PIC && "PIC jump table expected"); } // Get or create a new label for the table. auto LI = JT->Labels.find(JTOffset); if (LI == JT->Labels.end()) { auto *JTStartLabel = BC.getOrCreateGlobalSymbol(ArrayStart, "JUMP_TABLEat"); auto Result = JT->Labels.emplace(JTOffset, JTStartLabel); assert(Result.second && "error adding jump table label"); LI = Result.first; } BC.MIA->replaceMemOperandDisp(*MemLocInstr, LI->second, BC.Ctx.get()); BC.MIA->setJumpTable(BC.Ctx.get(), Instruction, ArrayStart, IndexRegNum); JTSites.emplace_back(Offset, ArrayStart); return Type; } } auto SectionOrError = BC.getSectionForAddress(ArrayStart); if (!SectionOrError) { // No section - possibly an absolute address. Since we don't allow // internal function addresses to escape the function scope - we // consider it a tail call. if (opts::Verbosity >= 1) { errs() << "BOLT-WARNING: no section for address 0x" << Twine::utohexstr(ArrayStart) << " referenced from function " << *this << '\n'; } return IndirectBranchType::POSSIBLE_TAIL_CALL; } auto &Section = *SectionOrError; if (Section.isVirtual()) { // The contents are filled at runtime. return IndirectBranchType::POSSIBLE_TAIL_CALL; } // Extract the value at the start of the array. StringRef SectionContents; Section.getContents(SectionContents); auto EntrySize = Type == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE ? 4 : PtrSize; DataExtractor DE(SectionContents, BC.AsmInfo->isLittleEndian(), EntrySize); auto ValueOffset = static_cast(ArrayStart - Section.getAddress()); uint64_t Value = 0; std::vector JTOffsetCandidates; while (ValueOffset <= Section.getSize() - EntrySize) { DEBUG(dbgs() << "BOLT-DEBUG: indirect jmp at 0x" << Twine::utohexstr(getAddress() + Offset) << " is referencing address 0x" << Twine::utohexstr(Section.getAddress() + ValueOffset)); // Extract the value and increment the offset. if (Type == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) { Value = ArrayStart + DE.getSigned(&ValueOffset, 4); } else { Value = DE.getAddress(&ValueOffset); } DEBUG(dbgs() << ", which contains value " << Twine::utohexstr(Value) << '\n'); if (containsAddress(Value) && Value != getAddress()) { // Is it possible to have a jump table with function start as an entry? JTOffsetCandidates.push_back(Value - getAddress()); if (Type == IndirectBranchType::UNKNOWN) Type = IndirectBranchType::POSSIBLE_JUMP_TABLE; continue; } // Potentially a switch table can contain __builtin_unreachable() entry // pointing just right after the function. In this case we have to check // another entry. Otherwise the entry is outside of this function scope // and it's not a switch table. if (Value == getAddress() + getSize()) { JTOffsetCandidates.push_back(Value - getAddress()); } else { break; } } if (Type == IndirectBranchType::POSSIBLE_JUMP_TABLE || Type == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) { assert(JTOffsetCandidates.size() > 2 && "expected more than 2 jump table entries"); auto *JTStartLabel = BC.getOrCreateGlobalSymbol(ArrayStart, "JUMP_TABLEat"); DEBUG(dbgs() << "BOLT-DEBUG: creating jump table " << JTStartLabel->getName() << " in function " << *this << " with " << JTOffsetCandidates.size() << " entries.\n"); auto JumpTableType = Type == IndirectBranchType::POSSIBLE_JUMP_TABLE ? JumpTable::JTT_NORMAL : JumpTable::JTT_PIC; JumpTables.emplace(ArrayStart, JumpTable{ArrayStart, EntrySize, JumpTableType, std::move(JTOffsetCandidates), {{0, JTStartLabel}}}); BC.MIA->replaceMemOperandDisp(*MemLocInstr, JTStartLabel, BC.Ctx.get()); BC.MIA->setJumpTable(BC.Ctx.get(), Instruction, ArrayStart, IndexRegNum); JTSites.emplace_back(Offset, ArrayStart); return Type; } BC.InterproceduralReferences.insert(Value); return IndirectBranchType::POSSIBLE_TAIL_CALL; } MCSymbol *BinaryFunction::getOrCreateLocalLabel(uint64_t Address, bool CreatePastEnd) { MCSymbol *Result; // Check if there's already a registered label. auto Offset = Address - getAddress(); if ((Offset == getSize()) && CreatePastEnd) return getFunctionEndLabel(); // Check if there's a global symbol registered at given address. // If so - reuse it since we want to keep the symbol value updated. if (Offset != 0) { if (auto *Symbol = BC.getGlobalSymbolAtAddress(Address)) { Labels[Offset] = Symbol; return Symbol; } } auto LI = Labels.find(Offset); if (LI == Labels.end()) { Result = BC.Ctx->createTempSymbol(); Labels[Offset] = Result; } else { Result = LI->second; } return Result; } void BinaryFunction::disassemble(ArrayRef FunctionData) { assert(FunctionData.size() == getSize() && "function size does not match raw data size"); auto &Ctx = BC.Ctx; auto &MIA = BC.MIA; auto BranchDataOrErr = BC.DR.getFuncBranchData(getNames()); DWARFUnitLineTable ULT = getDWARFUnitLineTable(); // Insert a label at the beginning of the function. This will be our first // basic block. Labels[0] = Ctx->createTempSymbol("BB0", false); addEntryPointAtOffset(0); auto handleRIPOperand = [&](MCInst &Instruction, uint64_t Address, uint64_t Size) { uint64_t TargetAddress{0}; MCSymbol *TargetSymbol{nullptr}; if (!MIA->evaluateMemOperandTarget(Instruction, TargetAddress, Address, Size)) { errs() << "BOLT-ERROR: rip-relative operand can't be evaluated:\n"; BC.InstPrinter->printInst(&Instruction, errs(), "", *BC.STI); errs() << '\n'; Instruction.dump_pretty(errs(), BC.InstPrinter.get()); errs() << '\n';; return false; } if (TargetAddress == 0) { if (opts::Verbosity >= 1) { outs() << "BOLT-INFO: rip-relative operand is zero in function " << *this << ".\n"; } } // Note that the address does not necessarily have to reside inside // a section, it could be an absolute address too. auto Section = BC.getSectionForAddress(TargetAddress); if (Section && Section->isText()) { if (containsAddress(TargetAddress)) { if (TargetAddress != getAddress()) { // The address could potentially escape. Mark it as another entry // point into the function. DEBUG(dbgs() << "BOLT-DEBUG: potentially escaped address 0x" << Twine::utohexstr(TargetAddress) << " in function " << *this << '\n'); TargetSymbol = getOrCreateLocalLabel(TargetAddress); addEntryPointAtOffset(TargetAddress - getAddress()); } } else { BC.InterproceduralReferences.insert(TargetAddress); } } if (!TargetSymbol) TargetSymbol = BC.getOrCreateGlobalSymbol(TargetAddress, "DATAat"); MIA->replaceMemOperandDisp( Instruction, MCOperand::createExpr(MCSymbolRefExpr::create( TargetSymbol, MCSymbolRefExpr::VK_None, *BC.Ctx))); return true; }; uint64_t Size = 0; // instruction size for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { MCInst Instruction; const uint64_t AbsoluteInstrAddr = getAddress() + Offset; if (!BC.DisAsm->getInstruction(Instruction, Size, FunctionData.slice(Offset), AbsoluteInstrAddr, nulls(), nulls())) { // Functions with "soft" boundaries, e.g. coming from assembly source, // can have 0-byte padding at the end. bool IsZeroPadding = true; for (auto I = Offset; I < getSize(); ++I) { if (FunctionData[I] != 0) { IsZeroPadding = false; break; } } if (!IsZeroPadding) { // Ignore this function. Skip to the next one in non-relocs mode. errs() << "BOLT-ERROR: unable to disassemble instruction at offset 0x" << Twine::utohexstr(Offset) << " (address 0x" << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this << '\n'; IsSimple = false; } break; } // Cannot process functions with AVX-512 instructions. if (MIA->hasEVEXEncoding(Instruction)) { if (opts::Verbosity >= 1) { errs() << "BOLT-WARNING: function " << *this << " uses instruction" " encoded with EVEX (AVX-512) at offset 0x" << Twine::utohexstr(Offset) << ". Disassembly could be wrong." " Skipping further processing.\n"; } IsSimple = false; break; } // Check if there's a relocation associated with this instruction. if (!Relocations.empty()) { auto RI = Relocations.lower_bound(Offset); if (RI != Relocations.end() && RI->first < Offset + Size) { const auto &Relocation = RI->second; DEBUG(dbgs() << "BOLT-DEBUG: replacing immediate with relocation" " against " << Relocation.Symbol->getName() << " in function " << *this << " for instruction at offset 0x" << Twine::utohexstr(Offset) << '\n'); int64_t Value; const auto Result = BC.MIA->replaceImmWithSymbol(Instruction, Relocation.Symbol, Relocation.Addend, BC.Ctx.get(), Value); (void)Result; assert(Result && "cannot replace immediate with relocation"); // Make sure we replaced the correct immediate (instruction // can have multiple immediate operands). assert(static_cast(Value) == Relocation.Value && "immediate value mismatch in function"); } } // Convert instruction to a shorter version that could be relaxed if needed. MIA->shortenInstruction(Instruction); if (MIA->isBranch(Instruction) || MIA->isCall(Instruction)) { uint64_t TargetAddress = 0; if (MIA->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, TargetAddress)) { // Check if the target is within the same function. Otherwise it's // a call, possibly a tail call. // // If the target *is* the function address it could be either a branch // or a recursive call. bool IsCall = MIA->isCall(Instruction); const bool IsCondBranch = MIA->isConditionalBranch(Instruction); MCSymbol *TargetSymbol{nullptr}; if (IsCall && containsAddress(TargetAddress)) { if (TargetAddress == getAddress()) { // Recursive call. TargetSymbol = getSymbol(); } else { // Possibly an old-style PIC code errs() << "BOLT-WARNING: internal call detected at 0x" << Twine::utohexstr(AbsoluteInstrAddr) << " in function " << *this << ". Skipping.\n"; IsSimple = false; } } if (!TargetSymbol) { // Create either local label or external symbol. if (containsAddress(TargetAddress)) { TargetSymbol = getOrCreateLocalLabel(TargetAddress); } else { if (TargetAddress == getAddress() + getSize() && TargetAddress < getAddress() + getMaxSize()) { // Result of __builtin_unreachable(). DEBUG(dbgs() << "BOLT-DEBUG: jump past end detected at 0x" << Twine::utohexstr(AbsoluteInstrAddr) << " in function " << *this << " : replacing with nop.\n"); BC.MIA->createNoop(Instruction); if (IsCondBranch) { // Register branch function profile validation. IgnoredBranches.emplace_back(Offset, Offset + Size); } goto add_instruction; } BC.InterproceduralReferences.insert(TargetAddress); if (opts::Verbosity >= 2 && !IsCall && Size == 2 && !opts::Relocs) { errs() << "BOLT-WARNING: relaxed tail call detected at 0x" << Twine::utohexstr(AbsoluteInstrAddr) << " in function " << *this << ". Code size will be increased.\n"; } assert(!MIA->isTailCall(Instruction) && "synthetic tail call instruction found"); // This is a call regardless of the opcode. // Assign proper opcode for tail calls, so that they could be // treated as calls. if (!IsCall) { if (!MIA->convertJmpToTailCall(Instruction) && opts::Verbosity >= 2) { assert(IsCondBranch && "unknown tail call instruction"); errs() << "BOLT-WARNING: conditional tail call detected in " << "function " << *this << " at 0x" << Twine::utohexstr(AbsoluteInstrAddr) << ".\n"; } // TODO: A better way to do this would be using annotations for // MCInst objects. TailCallOffsets.emplace(std::make_pair(Offset, TargetAddress)); IsCall = true; } TargetSymbol = BC.getOrCreateGlobalSymbol(TargetAddress, "FUNCat"); if (TargetAddress == 0) { // We actually see calls to address 0 in presence of weak symbols // originating from libraries. This code is never meant to be // executed. if (opts::Verbosity >= 2) { outs() << "BOLT-INFO: Function " << *this << " has a call to address zero.\n"; } } if (opts::Relocs) { // Check if we need to create relocation to move this function's // code without re-assembly. size_t RelSize = (Size < 5) ? 1 : 4; auto RelOffset = Offset + Size - RelSize; auto RI = MoveRelocations.find(RelOffset); if (RI == MoveRelocations.end()) { uint64_t RelType = (RelSize == 1) ? ELF::R_X86_64_PC8 : ELF::R_X86_64_PC32; DEBUG(dbgs() << "BOLT-DEBUG: creating relocation for static" << " function call to " << TargetSymbol->getName() << " at offset 0x" << Twine::utohexstr(RelOffset) << " with size " << RelSize << " for function " << *this << '\n'); addRelocation(getAddress() + RelOffset, TargetSymbol, RelType, -RelSize, 0); } auto OI = PCRelativeRelocationOffsets.find(RelOffset); if (OI != PCRelativeRelocationOffsets.end()) { PCRelativeRelocationOffsets.erase(OI); } } } } if (!IsCall) { // Add taken branch info. TakenBranches.emplace_back(Offset, TargetAddress - getAddress()); } if (IsCondBranch) { // Add fallthrough branch info. FTBranches.emplace_back(Offset, Offset + Size); } const bool isIndirect = ((IsCall || !IsCondBranch) && MIA->isIndirectBranch(Instruction)); Instruction.clear(); Instruction.addOperand( MCOperand::createExpr( MCSymbolRefExpr::create(TargetSymbol, MCSymbolRefExpr::VK_None, *Ctx))); if (BranchDataOrErr) { if (IsCall) { MIA->addAnnotation(Ctx.get(), Instruction, "EdgeCountData", Offset); } if (isIndirect) { MIA->addAnnotation(Ctx.get(), Instruction, "IndirectBranchData", Offset); } } } else { // Could not evaluate branch. Should be an indirect call or an // indirect branch. Bail out on the latter case. bool MaybeEdgeCountData = false; if (MIA->isIndirectBranch(Instruction)) { auto Result = analyzeIndirectBranch(Instruction, Size, Offset); switch (Result) { default: llvm_unreachable("unexpected result"); case IndirectBranchType::POSSIBLE_TAIL_CALL: { auto Result = MIA->convertJmpToTailCall(Instruction); (void)Result; assert(Result); if (BranchDataOrErr) { MIA->addAnnotation(Ctx.get(), Instruction, "IndirectBranchData", Offset); } } break; case IndirectBranchType::POSSIBLE_JUMP_TABLE: case IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE: if (opts::JumpTables == JTS_NONE) IsSimple = false; MaybeEdgeCountData = true; break; case IndirectBranchType::UNKNOWN: // Keep processing. We'll do more checks and fixes in // postProcessIndirectBranches(). MaybeEdgeCountData = true; if (BranchDataOrErr) { MIA->addAnnotation(Ctx.get(), Instruction, "MaybeIndirectBranchData", Offset); } break; }; } else if (MIA->isCall(Instruction)) { if (BranchDataOrErr) { MIA->addAnnotation(Ctx.get(), Instruction, "IndirectBranchData", Offset); } } if (BranchDataOrErr) { const char* AttrName = MaybeEdgeCountData ? "MaybeEdgeCountData" : "EdgeCountData"; MIA->addAnnotation(Ctx.get(), Instruction, AttrName, Offset); } // Indirect call. We only need to fix it if the operand is RIP-relative if (IsSimple && MIA->hasRIPOperand(Instruction)) { if (!handleRIPOperand(Instruction, AbsoluteInstrAddr, Size)) { errs() << "BOLT-ERROR: cannot handle RIP operand at 0x" << Twine::utohexstr(AbsoluteInstrAddr) << ". Skipping function " << *this << ".\n"; IsSimple = false; } } } } else { if (MIA->hasRIPOperand(Instruction)) { if (!handleRIPOperand(Instruction, AbsoluteInstrAddr, Size)) { errs() << "BOLT-ERROR: cannot handle RIP operand at 0x" << Twine::utohexstr(AbsoluteInstrAddr) << ". Skipping function " << *this << ".\n"; IsSimple = false; } } } add_instruction: if (ULT.first && ULT.second) { Instruction.setLoc( findDebugLineInformationForInstructionAt(AbsoluteInstrAddr, ULT)); } addInstruction(Offset, std::move(Instruction)); } postProcessJumpTables(); // Update state. updateState(State::Disassembled); } void BinaryFunction::postProcessJumpTables() { // Create labels for all entries. for (auto &JTI : JumpTables) { auto &JT = JTI.second; for (auto Offset : JT.OffsetEntries) { auto *Label = getOrCreateLocalLabel(getAddress() + Offset, /*CreatePastEnd*/ true); JT.Entries.push_back(Label); } } // Add TakenBranches from JumpTables. // // We want to do it after initial processing since we don't know jump tables' // boundaries until we process them all. for (auto &JTSite : JTSites) { const auto JTSiteOffset = JTSite.first; const auto JTAddress = JTSite.second; const auto *JT = getJumpTableContainingAddress(JTAddress); assert(JT && "cannot find jump table for address"); auto EntryOffset = JTAddress - JT->Address; while (EntryOffset < JT->getSize()) { auto TargetOffset = JT->OffsetEntries[EntryOffset / JT->EntrySize]; if (TargetOffset < getSize()) TakenBranches.emplace_back(JTSiteOffset, TargetOffset); // Take ownership of jump table relocations. if (opts::Relocs) BC.removeRelocationAt(JT->Address + EntryOffset); EntryOffset += JT->EntrySize; // A label at the next entry means the end of this jump table. if (JT->Labels.count(EntryOffset)) break; } } // Free memory used by jump table offsets. for (auto &JTI : JumpTables) { auto &JT = JTI.second; clearList(JT.OffsetEntries); } // Remove duplicates branches. We can get a bunch of them from jump tables. // Without doing jump table value profiling we don't have use for extra // (duplicate) branches. std::sort(TakenBranches.begin(), TakenBranches.end()); auto NewEnd = std::unique(TakenBranches.begin(), TakenBranches.end()); TakenBranches.erase(NewEnd, TakenBranches.end()); } bool BinaryFunction::postProcessIndirectBranches() { auto BranchDataOrErr = BC.DR.getFuncBranchData(getNames()); for (auto *BB : layout()) { for (auto &Instr : *BB) { if (!BC.MIA->isIndirectBranch(Instr)) continue; // If there's an indirect branch in a single-block function - // it must be a tail call. if (layout_size() == 1) { BC.MIA->convertJmpToTailCall(Instr); BC.MIA->renameAnnotation(Instr, "MaybeEdgeCountData", "EdgeCountData"); BC.MIA->renameAnnotation(Instr, "MaybeIndirectBranchData", "IndirectBranchData"); return true; } // Validate the tail call or jump table assumptions. if (BC.MIA->isTailCall(Instr) || BC.MIA->getJumpTable(Instr)) { if (BC.MIA->getMemoryOperandNo(Instr) != -1) { // We have validated memory contents addressed by the jump // instruction already. continue; } // This is jump on register. Just make sure the register is defined // in the containing basic block. Other assumptions were checked // earlier. assert(Instr.getOperand(0).isReg() && "register operand expected"); const auto R1 = Instr.getOperand(0).getReg(); auto PrevInstr = BB->rbegin(); while (PrevInstr != BB->rend()) { const auto &PrevInstrDesc = BC.MII->get(PrevInstr->getOpcode()); if (PrevInstrDesc.hasDefOfPhysReg(*PrevInstr, R1, *BC.MRI)) { break; } ++PrevInstr; } if (PrevInstr == BB->rend()) { if (opts::Verbosity >= 2) { outs() << "BOLT-INFO: rejected potential " << (BC.MIA->isTailCall(Instr) ? "indirect tail call" : "jump table") << " in function " << *this << " because the jump-on register was not defined in " << " basic block " << BB->getName() << ".\n"; DEBUG(dbgs() << BC.printInstructions(dbgs(), BB->begin(), BB->end(), BB->getOffset(), this, true)); } return false; } // In case of PIC jump table we need to do more checks. if (BC.MIA->isMoveMem2Reg(*PrevInstr)) continue; assert(BC.MIA->isADD64rr(*PrevInstr) && "add instruction expected"); auto R2 = PrevInstr->getOperand(2).getReg(); // Make sure both regs are set in the same basic block prior to ADD. bool IsR1Set = false; bool IsR2Set = false; while ((++PrevInstr != BB->rend()) && !(IsR1Set && IsR2Set)) { const auto &PrevInstrDesc = BC.MII->get(PrevInstr->getOpcode()); if (PrevInstrDesc.hasDefOfPhysReg(*PrevInstr, R1, *BC.MRI)) IsR1Set = true; else if (PrevInstrDesc.hasDefOfPhysReg(*PrevInstr, R2, *BC.MRI)) IsR2Set = true; } if (!IsR1Set || !IsR2Set) return false; continue; } // If this block contains an epilogue code and has an indirect branch, // then most likely it's a tail call. Otherwise, we cannot tell for sure // what it is and conservatively reject the function's CFG. bool IsEpilogue = false; for (const auto &Instr : *BB) { if (BC.MIA->isLeave(Instr) || BC.MIA->isPop(Instr)) { IsEpilogue = true; break; } } if (!IsEpilogue) { if (opts::Verbosity >= 2) { outs() << "BOLT-INFO: rejected potential indirect tail call in " << "function " << *this << " in basic block " << BB->getName() << ".\n"; DEBUG(BC.printInstructions(dbgs(), BB->begin(), BB->end(), BB->getOffset(), this, true)); } return false; } BC.MIA->convertJmpToTailCall(Instr); BC.MIA->renameAnnotation(Instr, "MaybeEdgeCountData", "EdgeCountData"); BC.MIA->renameAnnotation(Instr, "MaybeIndirectBranchData", "IndirectBranchData"); } } return true; } void BinaryFunction::clearLandingPads(const unsigned StartIndex, const unsigned NumBlocks) { // remove all landing pads/throws for the given collection of blocks for (auto I = StartIndex; I < StartIndex + NumBlocks; ++I) { BasicBlocks[I]->clearLandingPads(); } } void BinaryFunction::addLandingPads(const unsigned StartIndex, const unsigned NumBlocks) { for (auto *BB : BasicBlocks) { if (LandingPads.find(BB->getLabel()) != LandingPads.end()) { const MCSymbol *LP = BB->getLabel(); for (unsigned I : LPToBBIndex[LP]) { assert(I < BasicBlocks.size()); BinaryBasicBlock *ThrowBB = BasicBlocks[I]; const unsigned ThrowBBIndex = getIndex(ThrowBB); if (ThrowBBIndex >= StartIndex && ThrowBBIndex < StartIndex + NumBlocks) ThrowBB->addLandingPad(BB); } } } } void BinaryFunction::recomputeLandingPads(const unsigned StartIndex, const unsigned NumBlocks) { assert(LPToBBIndex.empty()); clearLandingPads(StartIndex, NumBlocks); for (auto I = StartIndex; I < StartIndex + NumBlocks; ++I) { auto *BB = BasicBlocks[I]; for (auto &Instr : BB->instructions()) { // Store info about associated landing pad. if (BC.MIA->isInvoke(Instr)) { const MCSymbol *LP; uint64_t Action; std::tie(LP, Action) = BC.MIA->getEHInfo(Instr); if (LP) { LPToBBIndex[LP].push_back(getIndex(BB)); } } } } addLandingPads(StartIndex, NumBlocks); clearList(LPToBBIndex); } bool BinaryFunction::buildCFG() { auto &MIA = BC.MIA; auto BranchDataOrErr = BC.DR.getFuncBranchData(getNames()); if (!BranchDataOrErr) { DEBUG(dbgs() << "no branch data found for \"" << *this << "\"\n"); } else { ExecutionCount = BranchDataOrErr->ExecutionCount; } if (!isSimple()) { assert(!opts::Relocs && "cannot process file with non-simple function in relocs mode"); return false; } if (!(CurrentState == State::Disassembled)) return false; assert(BasicBlocks.empty() && "basic block list should be empty"); assert((Labels.find(0) != Labels.end()) && "first instruction should always have a label"); // Create basic blocks in the original layout order: // // * Every instruction with associated label marks // the beginning of a basic block. // * Conditional instruction marks the end of a basic block, // except when the following instruction is an // unconditional branch, and the unconditional branch is not // a destination of another branch. In the latter case, the // basic block will consist of a single unconditional branch // (missed optimization opportunity?). // // Created basic blocks are sorted in layout order since they are // created in the same order as instructions, and instructions are // sorted by offsets. BinaryBasicBlock *InsertBB{nullptr}; BinaryBasicBlock *PrevBB{nullptr}; bool IsLastInstrNop{false}; bool IsPreviousInstrTailCall{false}; const MCInst *PrevInstr{nullptr}; auto addCFIPlaceholders = [this](uint64_t CFIOffset, BinaryBasicBlock *InsertBB) { for (auto FI = OffsetToCFI.lower_bound(CFIOffset), FE = OffsetToCFI.upper_bound(CFIOffset); FI != FE; ++FI) { addCFIPseudo(InsertBB, InsertBB->end(), FI->second); } }; for (auto I = Instructions.begin(), E = Instructions.end(); I != E; ++I) { const uint32_t Offset = I->first; const auto &Instr = I->second; auto LI = Labels.find(Offset); if (LI != Labels.end()) { // Always create new BB at branch destination. PrevBB = InsertBB; InsertBB = addBasicBlock(LI->first, LI->second, /* DeriveAlignment = */ IsLastInstrNop); if (hasEntryPointAtOffset(Offset)) InsertBB->setEntryPoint(); } // Ignore nops. We use nops to derive alignment of the next basic block. // It will not always work, as some blocks are naturally aligned, but // it's just part of heuristic for block alignment. if (MIA->isNoop(Instr)) { IsLastInstrNop = true; continue; } if (!InsertBB) { // It must be a fallthrough or unreachable code. Create a new block unless // we see an unconditional branch following a conditional one. assert(PrevBB && "no previous basic block for a fall through"); assert(PrevInstr && "no previous instruction for a fall through"); if (MIA->isUnconditionalBranch(Instr) && !MIA->isUnconditionalBranch(*PrevInstr) && !IsPreviousInstrTailCall) { // Temporarily restore inserter basic block. InsertBB = PrevBB; } else { InsertBB = addBasicBlock(Offset, BC.Ctx->createTempSymbol("FT", true), /* DeriveAlignment = */ IsLastInstrNop); } } if (Offset == 0) { // Add associated CFI pseudos in the first offset (0) addCFIPlaceholders(0, InsertBB); } IsLastInstrNop = false; uint32_t InsertIndex = InsertBB->addInstruction(Instr); PrevInstr = &Instr; // Record whether this basic block is terminated with a tail call. auto TCI = TailCallOffsets.find(Offset); if (TCI != TailCallOffsets.end()) { uint64_t TargetAddr = TCI->second; TailCallTerminatedBlocks.emplace( std::make_pair(InsertBB, TailCallInfo(Offset, InsertIndex, TargetAddr))); IsPreviousInstrTailCall = true; } else { IsPreviousInstrTailCall = false; } // Add associated CFI instrs. We always add the CFI instruction that is // located immediately after this instruction, since the next CFI // instruction reflects the change in state caused by this instruction. auto NextInstr = std::next(I); uint64_t CFIOffset; if (NextInstr != E) CFIOffset = NextInstr->first; else CFIOffset = getSize(); addCFIPlaceholders(CFIOffset, InsertBB); // Store info about associated landing pad. if (MIA->isInvoke(Instr)) { const MCSymbol *LP; uint64_t Action; std::tie(LP, Action) = MIA->getEHInfo(Instr); if (LP) { LPToBBIndex[LP].push_back(getIndex(InsertBB)); } } // How well do we detect tail calls here? if (MIA->isTerminator(Instr)) { PrevBB = InsertBB; InsertBB = nullptr; } } if (BasicBlocks.empty()) { setSimple(false); return false; } // Intermediate dump. DEBUG(print(dbgs(), "after creating basic blocks")); // TODO: handle properly calls to no-return functions, // e.g. exit(3), etc. Otherwise we'll see a false fall-through // blocks. // Make sure we can use profile data for this function. if (BranchDataOrErr) evaluateProfileData(BranchDataOrErr.get()); for (auto &Branch : TakenBranches) { DEBUG(dbgs() << "registering branch [0x" << Twine::utohexstr(Branch.first) << "] -> [0x" << Twine::utohexstr(Branch.second) << "]\n"); auto *FromBB = getBasicBlockContainingOffset(Branch.first); assert(FromBB && "cannot find BB containing FROM branch"); auto *ToBB = getBasicBlockAtOffset(Branch.second); assert(ToBB && "cannot find BB containing TO branch"); if (BranchDataOrErr.getError()) { FromBB->addSuccessor(ToBB); } else { const FuncBranchData &BranchData = BranchDataOrErr.get(); auto BranchInfoOrErr = BranchData.getBranch(Branch.first, Branch.second); if (BranchInfoOrErr.getError()) { FromBB->addSuccessor(ToBB); } else { const BranchInfo &BInfo = BranchInfoOrErr.get(); FromBB->addSuccessor(ToBB, BInfo.Branches, BInfo.Mispreds); // Populate profile counts for the jump table. auto *LastInstr = FromBB->getLastNonPseudoInstr(); if (!LastInstr) continue; auto JTAddress = BC.MIA->getJumpTable(*LastInstr); if (!JTAddress) continue; auto *JT = getJumpTableContainingAddress(JTAddress); if (!JT) continue; JT->Count += BInfo.Branches; if (opts::IndirectCallPromotion < ICP_JUMP_TABLES && opts::JumpTables < JTS_AGGRESSIVE) continue; if (JT->Counts.empty()) JT->Counts.resize(JT->Entries.size()); auto EI = JT->Entries.begin(); auto Delta = (JTAddress - JT->Address) / JT->EntrySize; EI += Delta; while (EI != JT->Entries.end()) { if (ToBB->getLabel() == *EI) { assert(Delta < JT->Counts.size()); JT->Counts[Delta].Mispreds += BInfo.Mispreds; JT->Counts[Delta].Count += BInfo.Branches; } ++Delta; ++EI; // A label marks the start of another jump table. if (JT->Labels.count(Delta * JT->EntrySize)) break; } } } } for (auto &Branch : FTBranches) { DEBUG(dbgs() << "registering fallthrough [0x" << Twine::utohexstr(Branch.first) << "] -> [0x" << Twine::utohexstr(Branch.second) << "]\n"); auto *FromBB = getBasicBlockContainingOffset(Branch.first); assert(FromBB && "cannot find BB containing FROM branch"); // Try to find the destination basic block. If the jump instruction was // followed by a no-op then the destination offset recorded in FTBranches // will point to that no-op but the destination basic block will start // after the no-op due to ignoring no-ops when creating basic blocks. // So we have to skip any no-ops when trying to find the destination // basic block. auto *ToBB = getBasicBlockAtOffset(Branch.second); if (ToBB == nullptr) { auto I = Instructions.find(Branch.second), E = Instructions.end(); while (ToBB == nullptr && I != E && MIA->isNoop(I->second)) { ++I; if (I == E) break; ToBB = getBasicBlockAtOffset(I->first); } if (ToBB == nullptr) { // We have a fall-through that does not point to another BB, ignore it // as it may happen in cases where we have a BB finished by two // branches. // This can also happen when we delete a branch past the end of a // function in case of a call to __builtin_unreachable(). continue; } } // Does not add a successor if we can't find profile data, leave it to the // inference pass to guess its frequency if (BranchDataOrErr) { const FuncBranchData &BranchData = BranchDataOrErr.get(); auto BranchInfoOrErr = BranchData.getBranch(Branch.first, Branch.second); if (BranchInfoOrErr) { const BranchInfo &BInfo = BranchInfoOrErr.get(); FromBB->addSuccessor(ToBB, BInfo.Branches, BInfo.Mispreds); } } } for (auto &I : TailCallTerminatedBlocks) { TailCallInfo &TCInfo = I.second; if (BranchDataOrErr) { const FuncBranchData &BranchData = BranchDataOrErr.get(); auto BranchInfoOrErr = BranchData.getDirectCallBranch(TCInfo.Offset); if (BranchInfoOrErr) { const BranchInfo &BInfo = BranchInfoOrErr.get(); TCInfo.Count = BInfo.Branches; TCInfo.Mispreds = BInfo.Mispreds; } } } // Add fall-through branches (except for non-taken conditional branches with // profile data, which were already accounted for in TakenBranches). PrevBB = nullptr; bool IsPrevFT = false; // Is previous block a fall-through. for (auto BB : BasicBlocks) { if (IsPrevFT) { PrevBB->addSuccessor(BB, BinaryBasicBlock::COUNT_NO_PROFILE, BinaryBasicBlock::COUNT_INFERRED); } if (BB->empty()) { IsPrevFT = true; PrevBB = BB; continue; } auto LastInstIter = --BB->end(); while (MIA->isCFI(*LastInstIter) && LastInstIter != BB->begin()) --LastInstIter; // Check if the last instruction is a conditional jump that serves as a tail // call. bool IsCondTailCall = MIA->isConditionalBranch(*LastInstIter) && TailCallTerminatedBlocks.count(BB); if (BB->succ_size() == 0) { if (IsCondTailCall) { // Conditional tail call without profile data for non-taken branch. IsPrevFT = true; } else { // Unless the last instruction is a terminator, control will fall // through to the next basic block. IsPrevFT = MIA->isTerminator(*LastInstIter) ? false : true; } } else if (BB->succ_size() == 1) { if (IsCondTailCall) { // Conditional tail call with data for non-taken branch. A fall-through // edge has already ben added in the CFG. IsPrevFT = false; } else { // Fall-through should be added if the last instruction is a conditional // jump, since there was no profile data for the non-taken branch. IsPrevFT = MIA->isConditionalBranch(*LastInstIter) ? true : false; } } else { // Ends with 2 branches, with an indirect jump or it is a conditional // branch whose frequency has been inferred from LBR. IsPrevFT = false; } PrevBB = BB; } if (!IsPrevFT) { // Possibly a call that does not return. DEBUG(dbgs() << "last block was marked as a fall-through\n"); } // Add associated landing pad blocks to each basic block. addLandingPads(0, BasicBlocks.size()); // Infer frequency for non-taken branches if (hasValidProfile()) inferFallThroughCounts(); else clearProfile(); // Assign CFI information to each BB entry. annotateCFIState(); // Convert conditional tail call branches to conditional branches that jump // to a tail call. removeConditionalTailCalls(); // Set the basic block layout to the original order. PrevBB = nullptr; for (auto BB : BasicBlocks) { BasicBlocksLayout.emplace_back(BB); if (PrevBB) PrevBB->setEndOffset(BB->getOffset()); PrevBB = BB; } PrevBB->setEndOffset(getSize()); // Make any necessary adjustments for indirect branches. if (!postProcessIndirectBranches()) { if (opts::Verbosity) { errs() << "BOLT-WARNING: failed to post-process indirect branches for " << *this << '\n'; } // In relocation mode we want to keep processing the function but avoid // optimizing it. setSimple(false); } // Eliminate inconsistencies between branch instructions and CFG. postProcessBranches(); // Clean-up memory taken by instructions and labels. // // NB: don't clear Labels list as we may need them if we mark the function // as non-simple later in the process of discovering extra entry points. clearList(Instructions); clearList(TailCallOffsets); clearList(TailCallTerminatedBlocks); clearList(OffsetToCFI); clearList(TakenBranches); clearList(FTBranches); clearList(IgnoredBranches); clearList(LPToBBIndex); clearList(EntryOffsets); // Update the state. CurrentState = State::CFG; // Annotate invoke instructions with GNU_args_size data. propagateGnuArgsSizeInfo(); assert(validateCFG() && "Invalid CFG detected after disassembly"); return true; } void BinaryFunction::addEntryPoint(uint64_t Address) { assert(containsAddress(Address) && "address does not belong to the function"); auto Offset = Address - getAddress(); DEBUG(dbgs() << "BOLT-INFO: adding external entry point to function " << *this << " at offset 0x" << Twine::utohexstr(Address - getAddress()) << '\n'); auto *EntrySymbol = BC.getGlobalSymbolAtAddress(Address); // If we haven't disassembled the function yet we can add a new entry point // even if it doesn't have an associated entry in the symbol table. if (CurrentState == State::Empty) { if (!EntrySymbol) { DEBUG(dbgs() << "creating local label\n"); EntrySymbol = getOrCreateLocalLabel(Address); } else { DEBUG(dbgs() << "using global symbol " << EntrySymbol->getName() << '\n'); } addEntryPointAtOffset(Address - getAddress()); Labels.emplace(Offset, EntrySymbol); return; } assert(EntrySymbol && "expected symbol at address"); if (isSimple()) { // Find basic block corresponding to the address and substitute label. auto *BB = getBasicBlockAtOffset(Offset); if (!BB) { // TODO #14762450: split basic block and process function. if (opts::Verbosity || opts::Relocs) { errs() << "BOLT-WARNING: no basic block at offset 0x" << Twine::utohexstr(Offset) << " in function " << *this << ". Marking non-simple.\n"; } setSimple(false); } else { BB->setLabel(EntrySymbol); BB->setEntryPoint(true); } } // Fix/append labels list. auto LI = Labels.find(Offset); if (LI != Labels.end()) { LI->second = EntrySymbol; } else { Labels.emplace(Offset, EntrySymbol); } } void BinaryFunction::evaluateProfileData(const FuncBranchData &BranchData) { BranchListType ProfileBranches(BranchData.Data.size()); std::transform(BranchData.Data.begin(), BranchData.Data.end(), ProfileBranches.begin(), [](const BranchInfo &BI) { return std::make_pair(BI.From.Offset, BI.To.Name == BI.From.Name ? BI.To.Offset : -1U); }); BranchListType LocalProfileBranches; std::copy_if(ProfileBranches.begin(), ProfileBranches.end(), std::back_inserter(LocalProfileBranches), [](const std::pair &Branch) { return Branch.second != -1U; }); // Until we define a minimal profile, we consider no branch data to be a valid // profile. It could happen to a function without branches. if (LocalProfileBranches.empty()) { ProfileMatchRatio = 1.0f; return; } std::sort(LocalProfileBranches.begin(), LocalProfileBranches.end()); BranchListType FunctionBranches = TakenBranches; FunctionBranches.insert(FunctionBranches.end(), FTBranches.begin(), FTBranches.end()); FunctionBranches.insert(FunctionBranches.end(), IgnoredBranches.begin(), IgnoredBranches.end()); std::sort(FunctionBranches.begin(), FunctionBranches.end()); BranchListType DiffBranches; // Branches in profile without a match. std::set_difference(LocalProfileBranches.begin(), LocalProfileBranches.end(), FunctionBranches.begin(), FunctionBranches.end(), std::back_inserter(DiffBranches)); // Branches without a match in CFG. BranchListType OrphanBranches; // Eliminate recursive calls and returns from recursive calls from the list // of branches that have no match. They are not considered local branches. auto isRecursiveBranch = [&](std::pair &Branch) { auto SrcInstrI = Instructions.find(Branch.first); if (SrcInstrI == Instructions.end()) return false; // Check if it is a recursive call. if (BC.MIA->isCall(SrcInstrI->second) && Branch.second == 0) return true; auto DstInstrI = Instructions.find(Branch.second); if (DstInstrI == Instructions.end()) return false; // Check if it is a return from a recursive call. bool IsSrcReturn = BC.MIA->isReturn(SrcInstrI->second); // "rep ret" is considered to be 2 different instructions. if (!IsSrcReturn && BC.MIA->isPrefix(SrcInstrI->second)) { auto SrcInstrSuccessorI = SrcInstrI; ++SrcInstrSuccessorI; assert(SrcInstrSuccessorI != Instructions.end() && "unexpected prefix instruction at the end of function"); IsSrcReturn = BC.MIA->isReturn(SrcInstrSuccessorI->second); } if (IsSrcReturn && Branch.second != 0) { // Make sure the destination follows the call instruction. auto DstInstrPredecessorI = DstInstrI; --DstInstrPredecessorI; assert(DstInstrPredecessorI != Instructions.end() && "invalid iterator"); if (BC.MIA->isCall(DstInstrPredecessorI->second)) return true; } return false; }; std::remove_copy_if(DiffBranches.begin(), DiffBranches.end(), std::back_inserter(OrphanBranches), isRecursiveBranch); ProfileMatchRatio = (float) (LocalProfileBranches.size() - OrphanBranches.size()) / (float) LocalProfileBranches.size(); if (opts::Verbosity >= 1 && !OrphanBranches.empty()) { errs() << "BOLT-WARNING: profile branches match only " << format("%.1f%%", ProfileMatchRatio * 100.0f) << " (" << (LocalProfileBranches.size() - OrphanBranches.size()) << '/' << LocalProfileBranches.size() << ") for function " << *this << '\n'; DEBUG( for (auto &OBranch : OrphanBranches) errs() << "\t0x" << Twine::utohexstr(OBranch.first) << " -> 0x" << Twine::utohexstr(OBranch.second) << " (0x" << Twine::utohexstr(OBranch.first + getAddress()) << " -> 0x" << Twine::utohexstr(OBranch.second + getAddress()) << ")\n"; ); } } void BinaryFunction::clearProfile() { // Keep function execution profile the same. Only clear basic block and edge // counts. for (auto *BB : BasicBlocks) { BB->ExecutionCount = 0; for (auto &BI : BB->branch_info()) { BI.Count = 0; BI.MispredictedCount = 0; } } } void BinaryFunction::inferFallThroughCounts() { assert(!BasicBlocks.empty() && "basic block list should not be empty"); auto BranchDataOrErr = BC.DR.getFuncBranchData(getNames()); // Compute preliminary execution time for each basic block for (auto CurBB : BasicBlocks) { CurBB->ExecutionCount = 0; } BasicBlocks.front()->setExecutionCount(ExecutionCount); for (auto CurBB : BasicBlocks) { auto SuccCount = CurBB->branch_info_begin(); for (auto Succ : CurBB->successors()) { // Do not update execution count of the entry block (when we have tail // calls). We already accounted for those when computing the func count. if (Succ == BasicBlocks.front()) { ++SuccCount; continue; } if (SuccCount->Count != BinaryBasicBlock::COUNT_NO_PROFILE) Succ->setExecutionCount(Succ->getExecutionCount() + SuccCount->Count); ++SuccCount; } } // Update execution counts of landing pad blocks. if (!BranchDataOrErr.getError()) { const FuncBranchData &BranchData = BranchDataOrErr.get(); for (const auto &I : BranchData.EntryData) { BinaryBasicBlock *BB = getBasicBlockAtOffset(I.To.Offset); if (BB && LandingPads.find(BB->getLabel()) != LandingPads.end()) { BB->setExecutionCount(BB->getExecutionCount() + I.Branches); } } } // Work on a basic block at a time, propagating frequency information // forwards. // It is important to walk in the layout order. for (auto CurBB : BasicBlocks) { uint64_t BBExecCount = CurBB->getExecutionCount(); // Propagate this information to successors, filling in fall-through edges // with frequency information if (CurBB->succ_size() == 0) continue; // Calculate frequency of outgoing branches from this node according to // LBR data. uint64_t ReportedBranches = 0; for (const auto &SuccCount : CurBB->branch_info()) { if (SuccCount.Count != BinaryBasicBlock::COUNT_NO_PROFILE) ReportedBranches += SuccCount.Count; } // Calculate frequency of outgoing tail calls from this node according to // LBR data. uint64_t ReportedTailCalls = 0; auto TCI = TailCallTerminatedBlocks.find(CurBB); if (TCI != TailCallTerminatedBlocks.end()) { ReportedTailCalls = TCI->second.Count; } // Calculate frequency of throws from this node according to LBR data // for branching into associated landing pads. Since it is possible // for a landing pad to be associated with more than one basic blocks, // we may overestimate the frequency of throws for such blocks. uint64_t ReportedThrows = 0; for (BinaryBasicBlock *LP: CurBB->landing_pads()) { ReportedThrows += LP->getExecutionCount(); } uint64_t TotalReportedJumps = ReportedBranches + ReportedTailCalls + ReportedThrows; // Infer the frequency of the fall-through edge, representing not taking the // branch. uint64_t Inferred = 0; if (BBExecCount > TotalReportedJumps) Inferred = BBExecCount - TotalReportedJumps; DEBUG({ if (opts::Verbosity >= 1 && BBExecCount < TotalReportedJumps) errs() << "BOLT-WARNING: Fall-through inference is slightly inconsistent. " "exec frequency is less than the outgoing edges frequency (" << BBExecCount << " < " << ReportedBranches << ") for BB at offset 0x" << Twine::utohexstr(getAddress() + CurBB->getOffset()) << '\n'; }); if (CurBB->succ_size() <= 2) { // If there is an FT it will be the last successor. auto &SuccCount = *CurBB->branch_info_rbegin(); auto &Succ = *CurBB->succ_rbegin(); if (SuccCount.Count == BinaryBasicBlock::COUNT_NO_PROFILE) { SuccCount.Count = Inferred; Succ->ExecutionCount += Inferred; } } } // end for (CurBB : BasicBlocks) return; } void BinaryFunction::removeConditionalTailCalls() { for (auto &I : TailCallTerminatedBlocks) { BinaryBasicBlock *BB = I.first; TailCallInfo &TCInfo = I.second; // Get the conditional tail call instruction. MCInst &CondTailCallInst = BB->getInstructionAtIndex(TCInfo.Index); if (!BC.MIA->isConditionalBranch(CondTailCallInst)) { // The block is not terminated with a conditional tail call. continue; } // Assert that the tail call does not throw. const MCSymbol *LP; uint64_t Action; std::tie(LP, Action) = BC.MIA->getEHInfo(CondTailCallInst); assert(!LP && "found tail call with associated landing pad"); // Create the unconditional tail call instruction. const auto *TailCallTargetLabel = BC.MIA->getTargetSymbol(CondTailCallInst); assert(TailCallTargetLabel && "symbol expected for direct tail call"); MCInst TailCallInst; BC.MIA->createTailCall(TailCallInst, TailCallTargetLabel, BC.Ctx.get()); // The way we will remove this conditional tail call depends on the // direction of the jump when it is taken. We want to preserve this // direction. BinaryBasicBlock *TailCallBB = nullptr; MCSymbol *TCLabel = BC.Ctx->createTempSymbol("TC", true); if (getAddress() >= TCInfo.TargetAddress) { // Backward jump: We will reverse the condition of the tail call, change // its target to the following (currently fall-through) block, and insert // a new block between them that will contain the unconditional tail call. // Reverse the condition of the tail call and update its target. unsigned InsertIdx = getIndex(BB) + 1; assert(InsertIdx < size() && "no fall-through for conditional tail call"); BinaryBasicBlock *NextBB = BasicBlocks[InsertIdx]; BC.MIA->reverseBranchCondition( CondTailCallInst, NextBB->getLabel(), BC.Ctx.get()); // Create a basic block containing the unconditional tail call instruction // and place it between BB and NextBB. std::vector> TailCallBBs; TailCallBBs.emplace_back(createBasicBlock(NextBB->getOffset(), TCLabel)); TailCallBBs[0]->addInstruction(TailCallInst); insertBasicBlocks(BB, std::move(TailCallBBs), /* UpdateLayout */ false, /* UpdateCFIState */ false); TailCallBB = BasicBlocks[InsertIdx]; // Add the correct CFI state for the new block. TailCallBB->setCFIState(TCInfo.CFIStateBefore); } else { // Forward jump: we will create a new basic block at the end of the // function containing the unconditional tail call and change the target // of the conditional tail call to this basic block. // Create a basic block containing the unconditional tail call // instruction and place it at the end of the function. // We have to add 1 byte as there's potentially an existing branch past // the end of the code as a result of __builtin_unreachable(). const BinaryBasicBlock *LastBB = BasicBlocks.back(); uint64_t NewBlockOffset = LastBB->getOffset() + BC.computeCodeSize(LastBB->begin(), LastBB->end()) + 1; TailCallBB = addBasicBlock(NewBlockOffset, TCLabel); TailCallBB->addInstruction(TailCallInst); // Add the correct CFI state for the new block. It has to be inserted in // the one before last position (the last position holds the CFI state // after the last block). TailCallBB->setCFIState(TCInfo.CFIStateBefore); // Replace the target of the conditional tail call with the label of the // new basic block. BC.MIA->replaceBranchTarget(CondTailCallInst, TCLabel, BC.Ctx.get()); } // Add CFG edge with profile info from BB to TailCallBB info and swap // edges if the TailCallBB corresponds to the taken branch. BB->addSuccessor(TailCallBB, TCInfo.Count, TCInfo.Mispreds); if (getAddress() < TCInfo.TargetAddress) BB->swapConditionalSuccessors(); // Add execution count for the block. if (hasValidProfile()) TailCallBB->setExecutionCount(TCInfo.Count); } } uint64_t BinaryFunction::getFunctionScore() { if (FunctionScore != -1) return FunctionScore; uint64_t TotalScore = 0ULL; for (auto BB : layout()) { uint64_t BBExecCount = BB->getExecutionCount(); if (BBExecCount == BinaryBasicBlock::COUNT_NO_PROFILE) continue; BBExecCount *= BB->getNumNonPseudos(); TotalScore += BBExecCount; } FunctionScore = TotalScore; return FunctionScore; } void BinaryFunction::annotateCFIState() { assert(CurrentState == State::Disassembled && "unexpected function state"); assert(!BasicBlocks.empty() && "basic block list should not be empty"); // This is an index of the last processed CFI in FDE CFI program. int32_t State = 0; // This is an index of RememberState CFI reflecting effective state right // after execution of RestoreState CFI. // // It differs from State iff the CFI at (State-1) // was RestoreState (modulo GNU_args_size CFIs, which are ignored). // // This allows us to generate shorter replay sequences when producing new // CFI programs. int32_t EffectiveState = 0; // For tracking RememberState/RestoreState sequences. std::stack StateStack; for (auto *BB : BasicBlocks) { BB->setCFIState(EffectiveState); // While building the CFG, we want to save the CFI state before a tail call // instruction, so that we can correctly remove conditional tail calls. auto TCI = TailCallTerminatedBlocks.find(BB); bool SaveState = TCI != TailCallTerminatedBlocks.end(); uint32_t Idx = 0; // instruction index in a current basic block for (const auto &Instr : *BB) { ++Idx; if (SaveState && Idx == TCI->second.Index) { TCI->second.CFIStateBefore = EffectiveState; SaveState = false; } const auto *CFI = getCFIFor(Instr); if (!CFI) continue; ++State; if (CFI->getOperation() == MCCFIInstruction::OpRememberState) { StateStack.push(EffectiveState); } else if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) { assert(!StateStack.empty() && "corrupt CFI stack"); EffectiveState = StateStack.top(); StateStack.pop(); } else if (CFI->getOperation() != MCCFIInstruction::OpGnuArgsSize) { // OpGnuArgsSize CFIs do not affect the CFI state. EffectiveState = State; } } } assert(StateStack.empty() && "corrupt CFI stack"); } bool BinaryFunction::fixCFIState() { DEBUG(dbgs() << "Trying to fix CFI states for each BB after reordering.\n"); DEBUG(dbgs() << "This is the list of CFI states for each BB of " << *this << ": "); auto replayCFIInstrs = [this](int32_t FromState, int32_t ToState, BinaryBasicBlock *InBB, BinaryBasicBlock::iterator InsertIt) -> bool { if (FromState == ToState) return true; assert(FromState < ToState && "can only replay CFIs forward"); std::vector NewCFIs; uint32_t NestedLevel = 0; for (auto CurState = FromState; CurState < ToState; ++CurState) { MCCFIInstruction *Instr = &FrameInstructions[CurState]; if (Instr->getOperation() == MCCFIInstruction::OpRememberState) ++NestedLevel; if (!NestedLevel) NewCFIs.push_back(CurState); if (Instr->getOperation() == MCCFIInstruction::OpRestoreState) --NestedLevel; } // TODO: If in replaying the CFI instructions to reach this state we // have state stack instructions, we could still work out the logic // to extract only the necessary instructions to reach this state // without using the state stack. Not sure if it is worth the effort // because this happens rarely. if (NestedLevel != 0) { errs() << "BOLT-WARNING: CFI rewriter detected nested CFI state" << " while replaying CFI instructions for BB " << InBB->getName() << " in function " << *this << '\n'; return false; } for (auto CFI : NewCFIs) { // Ignore GNU_args_size instructions. if (FrameInstructions[CFI].getOperation() != MCCFIInstruction::OpGnuArgsSize) { InsertIt = addCFIPseudo(InBB, InsertIt, CFI); ++InsertIt; } } return true; }; int32_t State = 0; auto *FDEStartBB = BasicBlocksLayout[0]; bool SeenCold = false; auto Sep = ""; (void)Sep; for (auto *BB : BasicBlocksLayout) { const auto CFIStateAtExit = BB->getCFIStateAtExit(); // Hot-cold border: check if this is the first BB to be allocated in a cold // region (with a different FDE). If yes, we need to reset the CFI state and // the FDEStartBB that is used to insert remember_state CFIs. if (!SeenCold && BB->isCold()) { State = 0; FDEStartBB = BB; SeenCold = true; } // We need to recover the correct state if it doesn't match expected // state at BB entry point. if (BB->getCFIState() < State) { // In this case, State is currently higher than what this BB expect it // to be. To solve this, we need to insert a CFI instruction to remember // the old state at function entry, then another CFI instruction to // restore it at the entry of this BB and replay CFI instructions to // reach the desired state. int32_t OldState = BB->getCFIState(); // Remember state at function entry point (our reference state). auto InsertIt = FDEStartBB->begin(); while (InsertIt != FDEStartBB->end() && BC.MIA->isCFI(*InsertIt)) ++InsertIt; addCFIPseudo(FDEStartBB, InsertIt, FrameInstructions.size()); FrameInstructions.emplace_back( MCCFIInstruction::createRememberState(nullptr)); // Restore state InsertIt = addCFIPseudo(BB, BB->begin(), FrameInstructions.size()); ++InsertIt; FrameInstructions.emplace_back( MCCFIInstruction::createRestoreState(nullptr)); if (!replayCFIInstrs(0, OldState, BB, InsertIt)) return false; // Check if we messed up the stack in this process int StackOffset = 0; for (BinaryBasicBlock *CurBB : BasicBlocksLayout) { if (CurBB == BB) break; for (auto &Instr : *CurBB) { if (auto *CFI = getCFIFor(Instr)) { if (CFI->getOperation() == MCCFIInstruction::OpRememberState) ++StackOffset; if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) --StackOffset; } } } auto Pos = BB->begin(); while (Pos != BB->end() && BC.MIA->isCFI(*Pos)) { auto CFI = getCFIFor(*Pos); if (CFI->getOperation() == MCCFIInstruction::OpRememberState) ++StackOffset; if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) --StackOffset; ++Pos; } if (StackOffset != 0) { errs() << "BOLT-WARNING: not possible to remember/recover state" << " without corrupting CFI state stack in function " << *this << " @ " << BB->getName() << "\n"; return false; } } else if (BB->getCFIState() > State) { // If BB's CFI state is greater than State, it means we are behind in the // state. Just emit all instructions to reach this state at the // beginning of this BB. If this sequence of instructions involve // remember state or restore state, bail out. if (!replayCFIInstrs(State, BB->getCFIState(), BB, BB->begin())) return false; } State = CFIStateAtExit; DEBUG(dbgs() << Sep << State; Sep = ", "); } DEBUG(dbgs() << "\n"); return true; } void BinaryFunction::modifyLayout(LayoutType Type, bool MinBranchClusters, bool Split) { if (BasicBlocksLayout.empty() || Type == LT_NONE) return; BasicBlockOrderType NewLayout; std::unique_ptr Algo; // Cannot do optimal layout without profile. if (Type != LT_REVERSE && !hasValidProfile()) return; if (Type == LT_REVERSE) { Algo.reset(new ReverseReorderAlgorithm()); } else if (BasicBlocksLayout.size() <= FUNC_SIZE_THRESHOLD && Type != LT_OPTIMIZE_SHUFFLE) { // Work on optimal solution if problem is small enough DEBUG(dbgs() << "finding optimal block layout for " << *this << "\n"); Algo.reset(new OptimalReorderAlgorithm()); } else { DEBUG(dbgs() << "running block layout heuristics on " << *this << "\n"); std::unique_ptr CAlgo; if (MinBranchClusters) CAlgo.reset(new MinBranchGreedyClusterAlgorithm()); else CAlgo.reset(new PHGreedyClusterAlgorithm()); switch(Type) { case LT_OPTIMIZE: Algo.reset(new OptimizeReorderAlgorithm(std::move(CAlgo))); break; case LT_OPTIMIZE_BRANCH: Algo.reset(new OptimizeBranchReorderAlgorithm(std::move(CAlgo))); break; case LT_OPTIMIZE_CACHE: Algo.reset(new OptimizeCacheReorderAlgorithm(std::move(CAlgo))); break; case LT_OPTIMIZE_SHUFFLE: Algo.reset(new RandomClusterReorderAlgorithm(std::move(CAlgo))); break; default: llvm_unreachable("unexpected layout type"); } } Algo->reorderBasicBlocks(*this, NewLayout); BasicBlocksLayout.clear(); BasicBlocksLayout.swap(NewLayout); if (Split) splitFunction(); } void BinaryFunction::emitBody(MCStreamer &Streamer, bool EmitColdPart) { int64_t CurrentGnuArgsSize = 0; for (auto BB : layout()) { if (EmitColdPart != BB->isCold()) continue; if (opts::AlignBlocks && BB->getAlignment() > 1) Streamer.EmitCodeAlignment(BB->getAlignment()); Streamer.EmitLabel(BB->getLabel()); // Remember if last instruction emitted was a prefix bool LastIsPrefix = false; SMLoc LastLocSeen; for (auto I = BB->begin(), E = BB->end(); I != E; ++I) { auto &Instr = *I; // Handle pseudo instructions. if (BC.MIA->isEHLabel(Instr)) { const auto *Label = BC.MIA->getTargetSymbol(Instr); assert(Instr.getNumOperands() == 1 && Label && "bad EH_LABEL instruction"); Streamer.EmitLabel(const_cast(Label)); continue; } if (BC.MIA->isCFI(Instr)) { Streamer.EmitCFIInstruction(*getCFIFor(Instr)); continue; } if (opts::UpdateDebugSections && UnitLineTable.first) { LastLocSeen = emitLineInfo(Instr.getLoc(), LastLocSeen); } // Emit GNU_args_size CFIs as necessary. if (usesGnuArgsSize() && BC.MIA->isInvoke(Instr)) { auto NewGnuArgsSize = BC.MIA->getGnuArgsSize(Instr); assert(NewGnuArgsSize >= 0 && "expected non-negative GNU_args_size"); if (NewGnuArgsSize != CurrentGnuArgsSize) { CurrentGnuArgsSize = NewGnuArgsSize; Streamer.EmitCFIGnuArgsSize(CurrentGnuArgsSize); } } Streamer.EmitInstruction(Instr, *BC.STI); LastIsPrefix = BC.MIA->isPrefix(Instr); } } } void BinaryFunction::emitBodyRaw(MCStreamer *Streamer) { // #14998851: Fix gold linker's '--emit-relocs'. assert(false && "cannot emit raw body unless relocation accuracy is guaranteed"); // Raw contents of the function. StringRef SectionContents; Section.getContents(SectionContents); // Raw contents of the function. StringRef FunctionContents = SectionContents.substr(getAddress() - Section.getAddress(), getSize()); if (opts::Verbosity) outs() << "BOLT-INFO: emitting function " << *this << " in raw (" << getSize() << " bytes).\n"; // We split the function blob into smaller blocks and output relocations // and/or labels between them. uint64_t FunctionOffset = 0; auto LI = Labels.begin(); auto RI = MoveRelocations.begin(); while (LI != Labels.end() || RI != MoveRelocations.end()) { uint64_t NextLabelOffset = (LI == Labels.end() ? getSize() : LI->first); uint64_t NextRelocationOffset = (RI == MoveRelocations.end() ? getSize() : RI->first); auto NextStop = std::min(NextLabelOffset, NextRelocationOffset); assert(NextStop <= getSize() && "internal overflow error"); if (FunctionOffset < NextStop) { Streamer->EmitBytes( FunctionContents.slice(FunctionOffset, NextStop)); FunctionOffset = NextStop; } if (LI != Labels.end() && FunctionOffset == LI->first) { Streamer->EmitLabel(LI->second); DEBUG(dbgs() << "BOLT-DEBUG: emitted label " << LI->second->getName() << " at offset 0x" << Twine::utohexstr(LI->first) << '\n'); ++LI; } if (RI != MoveRelocations.end() && FunctionOffset == RI->first) { auto RelocationSize = RI->second.emit(Streamer); DEBUG(dbgs() << "BOLT-DEBUG: emitted relocation for symbol " << RI->second.Symbol->getName() << " at offset 0x" << Twine::utohexstr(RI->first) << " with size " << RelocationSize << '\n'); FunctionOffset += RelocationSize; ++RI; } } assert(FunctionOffset <= getSize() && "overflow error"); if (FunctionOffset < getSize()) { Streamer->EmitBytes(FunctionContents.substr(FunctionOffset)); } } namespace { #ifndef MAX_PATH #define MAX_PATH 255 #endif std::string constructFilename(std::string Filename, std::string Annotation, std::string Suffix) { std::replace(Filename.begin(), Filename.end(), '/', '-'); if (!Annotation.empty()) { Annotation.insert(0, "-"); } if (Filename.size() + Annotation.size() + Suffix.size() > MAX_PATH) { assert(Suffix.size() + Annotation.size() <= MAX_PATH); if (opts::Verbosity >= 1) { errs() << "BOLT-WARNING: Filename \"" << Filename << Annotation << Suffix << "\" exceeds the " << MAX_PATH << " size limit, truncating.\n"; } Filename.resize(MAX_PATH - (Suffix.size() + Annotation.size())); } Filename += Annotation; Filename += Suffix; return Filename; } std::string formatEscapes(const std::string& Str) { std::string Result; for (unsigned I = 0; I < Str.size(); ++I) { auto C = Str[I]; switch (C) { case '\n': Result += " "; break; case '"': break; default: Result += C; break; } } return Result; } } void BinaryFunction::dumpGraph(raw_ostream& OS) const { OS << "strict digraph \"" << getPrintName() << "\" {\n"; uint64_t Offset = Address; for (auto *BB : BasicBlocks) { auto LayoutPos = std::find(BasicBlocksLayout.begin(), BasicBlocksLayout.end(), BB); unsigned Layout = LayoutPos - BasicBlocksLayout.begin(); const char* ColdStr = BB->isCold() ? " (cold)" : ""; OS << format("\"%s\" [label=\"%s%s\\n(C:%lu,O:%lu,I:%u,L:%u:CFI:%u)\"]\n", BB->getName().data(), BB->getName().data(), ColdStr, (BB->ExecutionCount != BinaryBasicBlock::COUNT_NO_PROFILE ? BB->ExecutionCount : 0), BB->getOffset(), getIndex(BB), Layout, BB->getCFIState()); OS << format("\"%s\" [shape=box]\n", BB->getName().data()); if (opts::DotToolTipCode) { std::string Str; raw_string_ostream CS(Str); Offset = BC.printInstructions(CS, BB->begin(), BB->end(), Offset, this); const auto Code = formatEscapes(CS.str()); OS << format("\"%s\" [tooltip=\"%s\"]\n", BB->getName().data(), Code.c_str()); } // analyzeBranch is just used to get the names of the branch // opcodes. const MCSymbol *TBB = nullptr; const MCSymbol *FBB = nullptr; MCInst *CondBranch = nullptr; MCInst *UncondBranch = nullptr; const bool Success = BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch); const auto *LastInstr = BB->getLastNonPseudoInstr(); const bool IsJumpTable = LastInstr && BC.MIA->getJumpTable(*LastInstr); auto BI = BB->branch_info_begin(); for (auto *Succ : BB->successors()) { std::string Branch; if (Success) { if (Succ == BB->getConditionalSuccessor(true)) { Branch = CondBranch ? BC.InstPrinter->getOpcodeName(CondBranch->getOpcode()) : "TB"; } else if (Succ == BB->getConditionalSuccessor(false)) { Branch = UncondBranch ? BC.InstPrinter->getOpcodeName(UncondBranch->getOpcode()) : "FB"; } else { Branch = "FT"; } } if (IsJumpTable) { Branch = "JT"; } OS << format("\"%s\" -> \"%s\" [label=\"%s", BB->getName().data(), Succ->getName().data(), Branch.c_str()); if (BB->getExecutionCount() != COUNT_NO_PROFILE && BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { OS << "\\n(C:" << BI->Count << ",M:" << BI->MispredictedCount << ")"; } else if (ExecutionCount != COUNT_NO_PROFILE && BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) { OS << "\\n(IC:" << BI->Count << ")"; } OS << "\"]\n"; ++BI; } for (auto *LP : BB->landing_pads()) { OS << format("\"%s\" -> \"%s\" [constraint=false style=dashed]\n", BB->getName().data(), LP->getName().data()); } } OS << "}\n"; } void BinaryFunction::viewGraph() const { SmallString Filename; if (auto EC = sys::fs::createTemporaryFile("bolt-cfg", "dot", Filename)) { errs() << "BOLT-ERROR: " << EC.message() << ", unable to create " << " bolt-cfg-XXXXX.dot temporary file.\n"; return; } dumpGraphToFile(Filename.str()); if (DisplayGraph(Filename)) { errs() << "BOLT-ERROR: Can't display " << Filename << " with graphviz.\n"; } if (auto EC = sys::fs::remove(Filename)) { errs() << "BOLT-WARNING: " << EC.message() << ", failed to remove " << Filename << "\n"; } } void BinaryFunction::dumpGraphForPass(std::string Annotation) const { auto Filename = constructFilename(getPrintName(), Annotation, ".dot"); outs() << "BOLT-DEBUG: Dumping CFG to " << Filename << "\n"; dumpGraphToFile(Filename); } void BinaryFunction::dumpGraphToFile(std::string Filename) const { std::error_code EC; raw_fd_ostream of(Filename, EC, sys::fs::F_None); if (EC) { if (opts::Verbosity >= 1) { errs() << "BOLT-WARNING: " << EC.message() << ", unable to open " << Filename << " for output.\n"; } return; } dumpGraph(of); } bool BinaryFunction::validateCFG() const { bool Valid = true; for (auto *BB : BasicBlocks) { Valid &= BB->validateSuccessorInvariants(); } if (!Valid) return Valid; for (auto *BB : BasicBlocks) { std::set Seen; for (auto *LPBlock : BB->LandingPads) { Valid &= Seen.count(LPBlock) == 0; if (!Valid) { errs() << "BOLT-WARNING: Duplicate LP seen " << LPBlock->getName() << "in " << *this << "\n"; break; } Seen.insert(LPBlock); auto count = LPBlock->Throwers.count(BB); Valid &= (count == 1); if (!Valid) { errs() << "BOLT-WARNING: Inconsistent landing pad detected in " << *this << ": " << LPBlock->getName() << " is in LandingPads but not in " << BB->getName() << "->Throwers\n"; break; } } } return Valid; } void BinaryFunction::fixBranches() { auto &MIA = BC.MIA; auto *Ctx = BC.Ctx.get(); for (unsigned I = 0, E = BasicBlocksLayout.size(); I != E; ++I) { BinaryBasicBlock *BB = BasicBlocksLayout[I]; const MCSymbol *TBB = nullptr; const MCSymbol *FBB = nullptr; MCInst *CondBranch = nullptr; MCInst *UncondBranch = nullptr; if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) continue; // We will create unconditional branch with correct destination if needed. if (UncondBranch) BB->eraseInstruction(UncondBranch); // Basic block that follows the current one in the final layout. const BinaryBasicBlock *NextBB = nullptr; if (I + 1 != E && BB->isCold() == BasicBlocksLayout[I + 1]->isCold()) NextBB = BasicBlocksLayout[I + 1]; if (BB->succ_size() == 1) { // __builtin_unreachable() could create a conditional branch that // falls-through into the next function - hence the block will have only // one valid successor. Since behaviour is undefined - we replace // the conditional branch with an unconditional if required. if (CondBranch) BB->eraseInstruction(CondBranch); if (BB->getSuccessor() == NextBB) continue; BB->addBranchInstruction(BB->getSuccessor()); } else if (BB->succ_size() == 2) { assert(CondBranch && "conditional branch expected"); const auto *TSuccessor = BB->getConditionalSuccessor(true); const auto *FSuccessor = BB->getConditionalSuccessor(false); if (NextBB && NextBB == TSuccessor) { std::swap(TSuccessor, FSuccessor); MIA->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), Ctx); BB->swapConditionalSuccessors(); } else { MIA->replaceBranchTarget(*CondBranch, TSuccessor->getLabel(), Ctx); } if (TSuccessor == FSuccessor) { BB->removeDuplicateConditionalSuccessor(CondBranch); } if (!NextBB || (NextBB != TSuccessor && NextBB != FSuccessor)) { BB->addBranchInstruction(FSuccessor); } } // Cases where the number of successors is 0 (block ends with a // terminator) or more than 2 (switch table) don't require branch // instruction adjustments. } assert(validateCFG() && "Invalid CFG detected after fixing branches"); } void BinaryFunction::splitFunction() { bool AllCold = true; for (BinaryBasicBlock *BB : BasicBlocksLayout) { auto ExecCount = BB->getExecutionCount(); if (ExecCount == BinaryBasicBlock::COUNT_NO_PROFILE) return; if (ExecCount != 0) AllCold = false; } if (AllCold) return; assert(BasicBlocksLayout.size() > 0); // Never outline the first basic block. BasicBlocks.front()->setCanOutline(false); for (auto BB : BasicBlocks) { if (!BB->canOutline()) continue; if (BB->getExecutionCount() != 0) { BB->setCanOutline(false); continue; } if (hasEHRanges() && !opts::SplitEH) { // We cannot move landing pads (or rather entry points for landing // pads). if (BB->isLandingPad()) { BB->setCanOutline(false); continue; } // We cannot move a block that can throw since exception-handling // runtime cannot deal with split functions. However, if we can guarantee // that the block never throws, it is safe to move the block to // decrease the size of the function. for (auto &Instr : *BB) { if (BC.MIA->isInvoke(Instr)) { BB->setCanOutline(false); break; } } } } if (opts::AggressiveSplitting) { // All blocks with 0 count that we can move go to the end of the function. // Even if they were natural to cluster formation and were seen in-between // hot basic blocks. std::stable_sort(BasicBlocksLayout.begin(), BasicBlocksLayout.end(), [&] (BinaryBasicBlock *A, BinaryBasicBlock *B) { return A->canOutline() < B->canOutline(); }); } else if (hasEHRanges() && !opts::SplitEH) { // Typically functions with exception handling have landing pads at the end. // We cannot move beginning of landing pads, but we can move 0-count blocks // comprising landing pads to the end and thus facilitate splitting. auto FirstLP = BasicBlocksLayout.begin(); while ((*FirstLP)->isLandingPad()) ++FirstLP; std::stable_sort(FirstLP, BasicBlocksLayout.end(), [&] (BinaryBasicBlock *A, BinaryBasicBlock *B) { return A->canOutline() < B->canOutline(); }); } // Separate hot from cold starting from the bottom. for (auto I = BasicBlocksLayout.rbegin(), E = BasicBlocksLayout.rend(); I != E; ++I) { BinaryBasicBlock *BB = *I; if (!BB->canOutline()) break; BB->setIsCold(true); IsSplit = true; } } void BinaryFunction::propagateGnuArgsSizeInfo() { assert(CurrentState == State::CFG && "unexpected function state"); if (!hasEHRanges() || !usesGnuArgsSize()) return; // The current value of DW_CFA_GNU_args_size affects all following // invoke instructions until the next CFI overrides it. // It is important to iterate basic blocks in the original order when // assigning the value. uint64_t CurrentGnuArgsSize = 0; for (auto BB : BasicBlocks) { for (auto II = BB->begin(); II != BB->end(); ) { auto &Instr = *II; if (BC.MIA->isCFI(Instr)) { auto CFI = getCFIFor(Instr); if (CFI->getOperation() == MCCFIInstruction::OpGnuArgsSize) { CurrentGnuArgsSize = CFI->getOffset(); // Delete DW_CFA_GNU_args_size instructions and only regenerate // during the final code emission. The information is embedded // inside call instructions. II = BB->erasePseudoInstruction(II); continue; } } else if (BC.MIA->isInvoke(Instr)) { // Add the value of GNU_args_size as an extra operand to invokes. BC.MIA->addGnuArgsSize(Instr, CurrentGnuArgsSize); } ++II; } } } void BinaryFunction::postProcessBranches() { if (!isSimple()) return; for (auto *BB : BasicBlocksLayout) { auto LastInstrRI = BB->getLastNonPseudo(); if (BB->succ_size() == 1) { if (LastInstrRI != BB->rend() && BC.MIA->isConditionalBranch(*LastInstrRI)) { // __builtin_unreachable() could create a conditional branch that // falls-through into the next function - hence the block will have only // one valid successor. Such behaviour is undefined and thus we remove // the conditional branch while leaving a valid successor. assert(BB == BasicBlocksLayout.back() && "last basic block expected"); BB->eraseInstruction(std::next(LastInstrRI.base())); DEBUG(dbgs() << "BOLT-DEBUG: erasing conditional branch in " << BB->getName() << " in function " << *this << '\n'); } } else if (BB->succ_size() == 0) { // Ignore unreachable basic blocks. if (BB->pred_size() == 0 || BB->isLandingPad()) continue; // If it's the basic block that does not end up with a terminator - we // insert a return instruction unless it's a call instruction. if (LastInstrRI == BB->rend()) { DEBUG(dbgs() << "BOLT-DEBUG: at least one instruction expected in BB " << BB->getName() << " in function " << *this << '\n'); continue; } if (!BC.MIA->isTerminator(*LastInstrRI) && !BC.MIA->isCall(*LastInstrRI)) { DEBUG(dbgs() << "BOLT-DEBUG: adding return to basic block " << BB->getName() << " in function " << *this << '\n'); MCInst ReturnInstr; BC.MIA->createReturn(ReturnInstr); BB->addInstruction(ReturnInstr); } } } assert(validateCFG() && "invalid CFG"); } void BinaryFunction::mergeProfileDataInto(BinaryFunction &BF) const { // No reason to merge invalid or empty profiles into BF. if (!hasValidProfile()) return; // Update function execution count. if (getExecutionCount() != BinaryFunction::COUNT_NO_PROFILE) { BF.setExecutionCount(BF.getKnownExecutionCount() + getExecutionCount()); } // Since we are merging a valid profile, the new profile should be valid too. // It has either already been valid, or it has been cleaned up. BF.ProfileMatchRatio = 1.0f; // Update basic block and edge counts. auto BBMergeI = BF.begin(); for (BinaryBasicBlock *BB : BasicBlocks) { BinaryBasicBlock *BBMerge = &*BBMergeI; assert(getIndex(BB) == BF.getIndex(BBMerge)); // Update basic block count. if (BB->getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE) { BBMerge->setExecutionCount( BBMerge->getKnownExecutionCount() + BB->getExecutionCount()); } // Update edge count for successors of this basic block. auto BBMergeSI = BBMerge->succ_begin(); auto BIMergeI = BBMerge->branch_info_begin(); auto BII = BB->branch_info_begin(); for (const auto *BBSucc : BB->successors()) { (void)BBSucc; assert(getIndex(BBSucc) == BF.getIndex(*BBMergeSI)); // At this point no branch count should be set to COUNT_NO_PROFILE. assert(BII->Count != BinaryBasicBlock::COUNT_NO_PROFILE && "unexpected unknown branch profile"); assert(BIMergeI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && "unexpected unknown branch profile"); BIMergeI->Count += BII->Count; // When we merge inferred and real fall-through branch data, the merged // data is considered inferred. if (BII->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED && BIMergeI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { BIMergeI->MispredictedCount += BII->MispredictedCount; } else { BIMergeI->MispredictedCount = BinaryBasicBlock::COUNT_INFERRED; } ++BBMergeSI; ++BII; ++BIMergeI; } assert(BBMergeSI == BBMerge->succ_end()); ++BBMergeI; } assert(BBMergeI == BF.end()); } BinaryFunction::BasicBlockOrderType BinaryFunction::dfs() const { BasicBlockOrderType DFS; unsigned Index = 0; std::stack Stack; // Push entry points to the stack in reverse order. // // NB: we rely on the original order of entries to match. for (auto BBI = layout_rbegin(); BBI != layout_rend(); ++BBI) { auto *BB = *BBI; if (BB->isEntryPoint()) Stack.push(BB); BB->setLayoutIndex(BinaryBasicBlock::InvalidIndex); } while (!Stack.empty()) { auto *BB = Stack.top(); Stack.pop(); if (BB->getLayoutIndex() != BinaryBasicBlock::InvalidIndex) continue; BB->setLayoutIndex(Index++); DFS.push_back(BB); for (auto *SuccBB : BB->landing_pads()) { Stack.push(SuccBB); } for (auto *SuccBB : BB->successors()) { Stack.push(SuccBB); } } return DFS; } bool BinaryFunction::isIdenticalWith(const BinaryFunction &OtherBF, bool IgnoreSymbols, bool UseDFS) const { assert(hasCFG() && OtherBF.hasCFG() && "both functions should have CFG"); // Compare the two functions, one basic block at a time. // Currently we require two identical basic blocks to have identical // instruction sequences and the same index in their corresponding // functions. The latter is important for CFG equality. if (layout_size() != OtherBF.layout_size()) return false; // Comparing multi-entry functions could be non-trivial. if (isMultiEntry() || OtherBF.isMultiEntry()) return false; // Process both functions in either DFS or existing order. const auto &Order = UseDFS ? dfs() : BasicBlocksLayout; const auto &OtherOrder = UseDFS ? OtherBF.dfs() : OtherBF.BasicBlocksLayout; auto BBI = OtherOrder.begin(); for (const auto *BB : Order) { const auto *OtherBB = *BBI; if (BB->getLayoutIndex() != OtherBB->getLayoutIndex()) return false; // Compare successor basic blocks. // NOTE: the comparison for jump tables is only partially verified here. if (BB->succ_size() != OtherBB->succ_size()) return false; auto SuccBBI = OtherBB->succ_begin(); for (const auto *SuccBB : BB->successors()) { const auto *SuccOtherBB = *SuccBBI; if (SuccBB->getLayoutIndex() != SuccOtherBB->getLayoutIndex()) return false; ++SuccBBI; } // Compare all instructions including pseudos. auto I = BB->begin(), E = BB->end(); auto OtherI = OtherBB->begin(), OtherE = OtherBB->end(); while (I != E && OtherI != OtherE) { bool Identical; if (IgnoreSymbols) { Identical = isInstrEquivalentWith(*I, *BB, *OtherI, *OtherBB, OtherBF, [](const MCSymbol *A, const MCSymbol *B) { return true; }); } else { // Compare symbols. auto AreSymbolsIdentical = [&] (const MCSymbol *A, const MCSymbol *B) { if (A == B) return true; // All local symbols are considered identical since they affect a // control flow and we check the control flow separately. // If a local symbol is escaped, then the function (potentially) has // multiple entry points and we exclude such functions from // comparison. if (A->isTemporary() && B->isTemporary()) return true; // Compare symbols as functions. const auto *FunctionA = BC.getFunctionForSymbol(A); const auto *FunctionB = BC.getFunctionForSymbol(B); if (FunctionA && FunctionB) { // Self-referencing functions and recursive calls. if (FunctionA == this && FunctionB == &OtherBF) return true; return FunctionA == FunctionB; } // Check if symbols are jump tables. auto SIA = BC.GlobalSymbols.find(A->getName()); if (SIA == BC.GlobalSymbols.end()) return false; auto SIB = BC.GlobalSymbols.find(B->getName()); if (SIB == BC.GlobalSymbols.end()) return false; assert((SIA->second != SIB->second) && "different symbols should not have the same value"); const auto *JumpTableA = getJumpTableContainingAddress(SIA->second); if (!JumpTableA) return false; const auto *JumpTableB = OtherBF.getJumpTableContainingAddress(SIB->second); if (!JumpTableB) return false; if ((SIA->second - JumpTableA->Address) != (SIB->second - JumpTableB->Address)) return false; return equalJumpTables(JumpTableA, JumpTableB, OtherBF); }; Identical = isInstrEquivalentWith(*I, *BB, *OtherI, *OtherBB, OtherBF, AreSymbolsIdentical); } if (!Identical) return false; ++I; ++OtherI; } // One of the identical blocks may have a trailing unconditional jump that // is ignored for CFG purposes. auto *TrailingInstr = (I != E ? &(*I) : (OtherI != OtherE ? &(*OtherI) : 0)); if (TrailingInstr && !BC.MIA->isUnconditionalBranch(*TrailingInstr)) { return false; } ++BBI; } return true; } bool BinaryFunction::equalJumpTables(const JumpTable *JumpTableA, const JumpTable *JumpTableB, const BinaryFunction &BFB) const { if (JumpTableA->EntrySize != JumpTableB->EntrySize) return false; if (JumpTableA->Type != JumpTableB->Type) return false; if (JumpTableA->getSize() != JumpTableB->getSize()) return false; for (uint64_t Index = 0; Index < JumpTableA->Entries.size(); ++Index) { const auto *LabelA = JumpTableA->Entries[Index]; const auto *LabelB = JumpTableB->Entries[Index]; const auto *TargetA = getBasicBlockForLabel(LabelA); const auto *TargetB = BFB.getBasicBlockForLabel(LabelB); if (!TargetA || !TargetB) { assert((TargetA || LabelA == getFunctionEndLabel()) && "no target basic block found"); assert((TargetB || LabelB == BFB.getFunctionEndLabel()) && "no target basic block found"); if (TargetA != TargetB) return false; continue; } assert(TargetA && TargetB && "cannot locate target block(s)"); if (TargetA->getLayoutIndex() != TargetB->getLayoutIndex()) return false; } return true; } std::size_t BinaryFunction::hash(bool Recompute, bool UseDFS) const { assert(hasCFG() && "function is expected to have CFG"); if (!Recompute) return Hash; const auto &Order = UseDFS ? dfs() : BasicBlocksLayout; // The hash is computed by creating a string of all the opcodes // in the function and hashing that string with std::hash. std::string Opcodes; for (const auto *BB : Order) { for (const auto &Inst : *BB) { unsigned Opcode = Inst.getOpcode(); if (BC.MII->get(Opcode).isPseudo()) continue; // Ignore unconditional jumps since we check CFG consistency by processing // basic blocks in order and do not rely on branches to be in-sync with // CFG. Note that we still use condition code of conditional jumps. if (BC.MIA->isUnconditionalBranch(Inst)) continue; if (Opcode == 0) { Opcodes.push_back(0); continue; } while (Opcode) { uint8_t LSB = Opcode & 0xff; Opcodes.push_back(LSB); Opcode = Opcode >> 8; } } } return Hash = std::hash{}(Opcodes); } void BinaryFunction::insertBasicBlocks( BinaryBasicBlock *Start, std::vector> &&NewBBs, const bool UpdateLayout, const bool UpdateCFIState) { const auto StartIndex = getIndex(Start); const auto NumNewBlocks = NewBBs.size(); BasicBlocks.insert(BasicBlocks.begin() + StartIndex + 1, NumNewBlocks, nullptr); auto I = StartIndex + 1; for (auto &BB : NewBBs) { assert(!BasicBlocks[I]); BasicBlocks[I++] = BB.release(); } updateBBIndices(StartIndex); recomputeLandingPads(StartIndex, NumNewBlocks + 1); // Make sure the basic blocks are sorted properly. assert(std::is_sorted(begin(), end())); if (UpdateLayout) { updateLayout(Start, NumNewBlocks); } if (UpdateCFIState) { updateCFIState(Start, NumNewBlocks); } } void BinaryFunction::updateBBIndices(const unsigned StartIndex) { for (auto I = StartIndex; I < BasicBlocks.size(); ++I) { BasicBlocks[I]->Index = I; } } void BinaryFunction::updateCFIState(BinaryBasicBlock *Start, const unsigned NumNewBlocks) { assert(TailCallTerminatedBlocks.empty()); const auto CFIState = Start->getCFIStateAtExit(); const auto StartIndex = getIndex(Start) + 1; for (unsigned I = 0; I < NumNewBlocks; ++I) { BasicBlocks[StartIndex + I]->setCFIState(CFIState); } } void BinaryFunction::updateLayout(BinaryBasicBlock* Start, const unsigned NumNewBlocks) { // Insert new blocks in the layout immediately after Start. auto Pos = std::find(layout_begin(), layout_end(), Start); assert(Pos != layout_end()); auto Begin = &BasicBlocks[getIndex(Start) + 1]; auto End = &BasicBlocks[getIndex(Start) + NumNewBlocks + 1]; BasicBlocksLayout.insert(Pos + 1, Begin, End); updateLayoutIndices(); } void BinaryFunction::updateLayout(LayoutType Type, bool MinBranchClusters, bool Split) { // Recompute layout with original parameters. BasicBlocksLayout = BasicBlocks; modifyLayout(Type, MinBranchClusters, Split); updateLayoutIndices(); } bool BinaryFunction::replaceJumpTableEntryIn(BinaryBasicBlock *BB, BinaryBasicBlock *OldDest, BinaryBasicBlock *NewDest) { auto *Instr = BB->getLastNonPseudoInstr(); if (!Instr || !BC.MIA->isIndirectBranch(*Instr)) return false; auto JTAddress = BC.MIA->getJumpTable(*Instr); assert(JTAddress && "Invalid jump table address"); auto *JT = getJumpTableContainingAddress(JTAddress); assert(JT && "No jump table structure for this indirect branch"); bool Patched = JT->replaceDestination(JTAddress, OldDest->getLabel(), NewDest->getLabel()); assert(Patched && "Invalid entry to be replaced in jump table"); return true; } BinaryBasicBlock *BinaryFunction::splitEdge(BinaryBasicBlock *From, BinaryBasicBlock *To) { // Create intermediate BB MCSymbol *Tmp = BC.Ctx->createTempSymbol("SplitEdge", true); auto NewBB = createBasicBlock(0, Tmp); auto NewBBPtr = NewBB.get(); // Update "From" BB auto I = From->succ_begin(); auto BI = From->branch_info_begin(); for (; I != From->succ_end(); ++I) { if (*I == To) break; ++BI; } assert(I != From->succ_end() && "Invalid CFG edge in splitEdge!"); uint64_t OrigCount{BI->Count}; uint64_t OrigMispreds{BI->MispredictedCount}; replaceJumpTableEntryIn(From, To, NewBBPtr); From->replaceSuccessor(To, NewBBPtr, OrigCount, OrigMispreds); NewBB->addSuccessor(To, OrigCount, OrigMispreds); NewBB->setExecutionCount(OrigCount); NewBB->setIsCold(From->isCold()); // Update CFI and BB layout with new intermediate BB std::vector> NewBBs; NewBBs.emplace_back(std::move(NewBB)); insertBasicBlocks(From, std::move(NewBBs), true, true); return NewBBPtr; } bool BinaryFunction::isSymbolValidInScope(const SymbolRef &Symbol, uint64_t SymbolSize) const { // Some symbols are tolerated inside function bodies, others are not. // The real function boundaries may not be known at this point. // It's okay to have a zero-sized symbol in the middle of non-zero-sized // function. if (SymbolSize == 0 && containsAddress(*Symbol.getAddress())) return true; if (Symbol.getType() != SymbolRef::ST_Unknown) return false; if (Symbol.getFlags() & SymbolRef::SF_Global) return false; return true; } SMLoc BinaryFunction::emitLineInfo(SMLoc NewLoc, SMLoc PrevLoc) const { auto *FunctionCU = UnitLineTable.first; const auto *FunctionLineTable = UnitLineTable.second; assert(FunctionCU && "cannot emit line info for function without CU"); auto RowReference = DebugLineTableRowRef::fromSMLoc(NewLoc); // Check if no new line info needs to be emitted. if (RowReference == DebugLineTableRowRef::NULL_ROW || NewLoc.getPointer() == PrevLoc.getPointer()) return PrevLoc; unsigned CurrentFilenum = 0; const auto *CurrentLineTable = FunctionLineTable; // If the CU id from the current instruction location does not // match the CU id from the current function, it means that we // have come across some inlined code. We must look up the CU // for the instruction's original function and get the line table // from that. const auto FunctionUnitIndex = FunctionCU->getOffset(); const auto CurrentUnitIndex = RowReference.DwCompileUnitIndex; if (CurrentUnitIndex != FunctionUnitIndex) { CurrentLineTable = BC.DwCtx->getLineTableForUnit( BC.DwCtx->getCompileUnitForOffset(CurrentUnitIndex)); // Add filename from the inlined function to the current CU. CurrentFilenum = BC.addDebugFilenameToUnit(FunctionUnitIndex, CurrentUnitIndex, CurrentLineTable->Rows[RowReference.RowIndex - 1].File); } const auto &CurrentRow = CurrentLineTable->Rows[RowReference.RowIndex - 1]; if (!CurrentFilenum) CurrentFilenum = CurrentRow.File; BC.Ctx->setCurrentDwarfLoc( CurrentFilenum, CurrentRow.Line, CurrentRow.Column, (DWARF2_FLAG_IS_STMT * CurrentRow.IsStmt) | (DWARF2_FLAG_BASIC_BLOCK * CurrentRow.BasicBlock) | (DWARF2_FLAG_PROLOGUE_END * CurrentRow.PrologueEnd) | (DWARF2_FLAG_EPILOGUE_BEGIN * CurrentRow.EpilogueBegin), CurrentRow.Isa, CurrentRow.Discriminator); BC.Ctx->setDwarfCompileUnitID(FunctionUnitIndex); return NewLoc; } BinaryFunction::~BinaryFunction() { for (auto BB : BasicBlocks) { delete BB; } for (auto BB : DeletedBasicBlocks) { delete BB; } } void BinaryFunction::emitJumpTables(MCStreamer *Streamer) { if (JumpTables.empty()) return; if (opts::PrintJumpTables) { outs() << "BOLT-INFO: jump tables for function " << *this << ":\n"; } for (auto &JTI : JumpTables) { auto &JT = JTI.second; if (opts::PrintJumpTables) JT.print(outs()); if (opts::JumpTables == JTS_BASIC && opts::Relocs) { JT.updateOriginal(BC); } else { MCSection *HotSection, *ColdSection; if (opts::JumpTables == JTS_BASIC) { JT.SectionName = ".local.JUMP_TABLEat0x" + Twine::utohexstr(JT.Address).str(); HotSection = BC.Ctx->getELFSection(JT.SectionName, ELF::SHT_PROGBITS, ELF::SHF_ALLOC); ColdSection = HotSection; } else { HotSection = BC.MOFI->getReadOnlySection(); ColdSection = BC.MOFI->getReadOnlyColdSection(); } JT.emit(Streamer, HotSection, ColdSection); } } } std::pair BinaryFunction::JumpTable::getEntriesForAddress(const uint64_t Addr) const { const uint64_t InstOffset = Addr - Address; size_t StartIndex = 0, EndIndex = 0; uint64_t Offset = 0; for (size_t I = 0; I < Entries.size(); ++I) { auto LI = Labels.find(Offset); if (LI != Labels.end()) { const auto NextLI = std::next(LI); const auto NextOffset = NextLI == Labels.end() ? getSize() : NextLI->first; if (InstOffset >= LI->first && InstOffset < NextOffset) { StartIndex = I; EndIndex = I; while (Offset < NextOffset) { ++EndIndex; Offset += EntrySize; } break; } } Offset += EntrySize; } return std::make_pair(StartIndex, EndIndex); } bool BinaryFunction::JumpTable::replaceDestination(uint64_t JTAddress, const MCSymbol *OldDest, MCSymbol *NewDest) { bool Patched{false}; const auto Range = getEntriesForAddress(JTAddress); for (auto I = &Entries[Range.first], E = &Entries[Range.second]; I != E; ++I) { auto &Entry = *I; if (Entry == OldDest) { Patched = true; Entry = NewDest; } } return Patched; } void BinaryFunction::JumpTable::updateOriginal(BinaryContext &BC) { // In non-relocation mode we have to emit jump tables in local sections. // This way we only overwrite them when a corresponding function is // overwritten. assert(opts::Relocs && "relocation mode expected"); auto SectionOrError = BC.getSectionForAddress(Address); assert(SectionOrError && "section not found for jump table"); auto Section = SectionOrError.get(); uint64_t Offset = Address - Section.getAddress(); StringRef SectionName; Section.getName(SectionName); for (auto *Entry : Entries) { const auto RelType = (Type == JTT_NORMAL) ? ELF::R_X86_64_64 : ELF::R_X86_64_PC32; const uint64_t RelAddend = (Type == JTT_NORMAL) ? 0 : Offset - (Address - Section.getAddress()); DEBUG(dbgs() << "adding relocation to section " << SectionName << " at offset " << Twine::utohexstr(Offset) << " for symbol " << Entry->getName() << " with addend " << Twine::utohexstr(RelAddend) << '\n'); BC.addSectionRelocation(Section, Offset, Entry, RelType, RelAddend); Offset += EntrySize; } } uint64_t BinaryFunction::JumpTable::emit(MCStreamer *Streamer, MCSection *HotSection, MCSection *ColdSection) { // Pre-process entries for aggressive splitting. // Each label represents a separate switch table and gets its own count // determining its destination. std::map LabelCounts; if (opts::JumpTables > JTS_SPLIT && !Counts.empty()) { MCSymbol *CurrentLabel = Labels[0]; uint64_t CurrentLabelCount = 0; for (unsigned Index = 0; Index < Entries.size(); ++Index) { auto LI = Labels.find(Index * EntrySize); if (LI != Labels.end()) { LabelCounts[CurrentLabel] = CurrentLabelCount; CurrentLabel = LI->second; CurrentLabelCount = 0; } CurrentLabelCount += Counts[Index].Count; } LabelCounts[CurrentLabel] = CurrentLabelCount; } else { Streamer->SwitchSection(Count > 0 ? HotSection : ColdSection); Streamer->EmitValueToAlignment(EntrySize); } MCSymbol *LastLabel = nullptr; uint64_t Offset = 0; for (auto *Entry : Entries) { auto LI = Labels.find(Offset); if (LI != Labels.end()) { DEBUG(dbgs() << "BOLT-DEBUG: emitting jump table " << LI->second->getName() << " (originally was at address 0x" << Twine::utohexstr(Address + Offset) << (Offset ? "as part of larger jump table\n" : "\n")); if (!LabelCounts.empty()) { DEBUG(dbgs() << "BOLT-DEBUG: jump table count: " << LabelCounts[LI->second] << '\n'); if (LabelCounts[LI->second] > 0) { Streamer->SwitchSection(HotSection); } else { Streamer->SwitchSection(ColdSection); } Streamer->EmitValueToAlignment(EntrySize); } Streamer->EmitLabel(LI->second); LastLabel = LI->second; } if (Type == JTT_NORMAL) { Streamer->EmitSymbolValue(Entry, EntrySize); } else { // JTT_PIC auto JT = MCSymbolRefExpr::create(LastLabel, Streamer->getContext()); auto E = MCSymbolRefExpr::create(Entry, Streamer->getContext()); auto Value = MCBinaryExpr::createSub(E, JT, Streamer->getContext()); Streamer->EmitValue(Value, EntrySize); } Offset += EntrySize; } return Offset; } void BinaryFunction::JumpTable::print(raw_ostream &OS) const { uint64_t Offset = 0; for (const auto *Entry : Entries) { auto LI = Labels.find(Offset); if (LI != Labels.end()) { OS << "Jump Table " << LI->second->getName() << " at @0x" << Twine::utohexstr(Address+Offset); if (Offset) { OS << " (possibly part of larger jump table):\n"; } else { OS << " with total count of " << Count << ":\n"; } } OS << format(" 0x%04" PRIx64 " : ", Offset) << Entry->getName(); if (!Counts.empty()) { OS << " : " << Counts[Offset / EntrySize].Mispreds << "/" << Counts[Offset / EntrySize].Count; } OS << '\n'; Offset += EntrySize; } OS << "\n\n"; } void BinaryFunction::calculateLoopInfo() { // Discover loops. BinaryDominatorTree DomTree(false); DomTree.recalculate(*this); BLI.reset(new BinaryLoopInfo()); BLI->analyze(DomTree); // Traverse discovered loops and add depth and profile information. std::stack St; for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) { St.push(*I); ++BLI->OuterLoops; } while (!St.empty()) { BinaryLoop *L = St.top(); St.pop(); ++BLI->TotalLoops; BLI->MaximumDepth = std::max(L->getLoopDepth(), BLI->MaximumDepth); // Add nested loops in the stack. for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) { St.push(*I); } // Skip if no valid profile is found. if (!hasValidProfile()) { L->EntryCount = COUNT_NO_PROFILE; L->ExitCount = COUNT_NO_PROFILE; L->TotalBackEdgeCount = COUNT_NO_PROFILE; continue; } // Compute back edge count. SmallVector Latches; L->getLoopLatches(Latches); for (BinaryBasicBlock *Latch : Latches) { auto BI = Latch->branch_info_begin(); for (BinaryBasicBlock *Succ : Latch->successors()) { if (Succ == L->getHeader()) { assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && "profile data not found"); L->TotalBackEdgeCount += BI->Count; } ++BI; } } // Compute entry count. L->EntryCount = L->getHeader()->getExecutionCount() - L->TotalBackEdgeCount; // Compute exit count. SmallVector ExitEdges; L->getExitEdges(ExitEdges); for (BinaryLoop::Edge &Exit : ExitEdges) { const BinaryBasicBlock *Exiting = Exit.first; const BinaryBasicBlock *ExitTarget = Exit.second; auto BI = Exiting->branch_info_begin(); for (BinaryBasicBlock *Succ : Exiting->successors()) { if (Succ == ExitTarget) { assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && "profile data not found"); L->ExitCount += BI->Count; } ++BI; } } } } DWARFAddressRangesVector BinaryFunction::getOutputAddressRanges() const { DWARFAddressRangesVector OutputRanges; OutputRanges.emplace_back(getOutputAddress(), getOutputAddress() + getOutputSize()); if (isSplit()) { assert(isEmitted() && "split function should be emitted"); OutputRanges.emplace_back(cold().getAddress(), cold().getAddress() + cold().getImageSize()); } return OutputRanges; } uint64_t BinaryFunction::translateInputToOutputAddress(uint64_t Address) const { // If the function hasn't changed return the same address. if (!isEmitted() && !opts::Relocs) return Address; if (Address < getAddress()) return 0; // FIXME: #18950828 - we rely on relative offsets inside basic blocks to stay // intact. Instead we can use pseudo instructions and/or annotations. const auto Offset = Address - getAddress(); const auto *BB = getBasicBlockContainingOffset(Offset); if (!BB) { // Special case for address immediately past the end of the function. if (Offset == getSize()) return getOutputAddress() + getOutputSize(); return 0; } return std::min(BB->getOutputAddressRange().first + Offset - BB->getOffset(), BB->getOutputAddressRange().second); } DWARFAddressRangesVector BinaryFunction::translateInputToOutputRanges( const DWARFAddressRangesVector &InputRanges) const { // If the function hasn't changed return the same ranges. if (!isEmitted() && !opts::Relocs) return InputRanges; // Even though we will merge ranges in a post-processing pass, we attempt to // merge them in a main processing loop as it improves the processing time. uint64_t PrevEndAddress = 0; DWARFAddressRangesVector OutputRanges; for (const auto &Range : InputRanges) { if (!containsAddress(Range.first)) { DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected for " << *this << " : [0x" << Twine::utohexstr(Range.first) << ", 0x" << Twine::utohexstr(Range.second) << "]\n"); PrevEndAddress = 0; continue; } auto InputOffset = Range.first - getAddress(); const auto InputEndOffset = std::min(Range.second - getAddress(), getSize()); auto BBI = std::upper_bound(BasicBlockOffsets.begin(), BasicBlockOffsets.end(), BasicBlockOffset(InputOffset, nullptr), CompareBasicBlockOffsets()); --BBI; do { const auto *BB = BBI->second; if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected for " << *this << " : [0x" << Twine::utohexstr(Range.first) << ", 0x" << Twine::utohexstr(Range.second) << "]\n"); PrevEndAddress = 0; break; } // Skip the range if the block was deleted. if (const auto OutputStart = BB->getOutputAddressRange().first) { const auto StartAddress = OutputStart + InputOffset - BB->getOffset(); auto EndAddress = BB->getOutputAddressRange().second; if (InputEndOffset < BB->getEndOffset()) EndAddress = StartAddress + InputEndOffset - InputOffset; if (StartAddress == PrevEndAddress) { OutputRanges.back().second = std::max(OutputRanges.back().second, EndAddress); } else { OutputRanges.emplace_back(StartAddress, std::max(StartAddress, EndAddress)); } PrevEndAddress = OutputRanges.back().second; } InputOffset = BB->getEndOffset(); ++BBI; } while (InputOffset < InputEndOffset); } // Post-processing pass to sort and merge ranges. std::sort(OutputRanges.begin(), OutputRanges.end()); DWARFAddressRangesVector MergedRanges; PrevEndAddress = 0; for(const auto &Range : OutputRanges) { if (Range.first <= PrevEndAddress) { MergedRanges.back().second = std::max(MergedRanges.back().second, Range.second); } else { MergedRanges.emplace_back(Range.first, Range.second); } PrevEndAddress = MergedRanges.back().second; } return MergedRanges; } DWARFDebugLoc::LocationList BinaryFunction::translateInputToOutputLocationList( const DWARFDebugLoc::LocationList &InputLL, uint64_t BaseAddress) const { // If the function wasn't changed - there's nothing to update. if (!isEmitted() && !opts::Relocs) { if (!BaseAddress) { return InputLL; } else { auto OutputLL = std::move(InputLL); for (auto &Entry : OutputLL.Entries) { Entry.Begin += BaseAddress; Entry.End += BaseAddress; } return OutputLL; } } uint64_t PrevEndAddress = 0; SmallVectorImpl *PrevLoc = nullptr; DWARFDebugLoc::LocationList OutputLL; for (auto &Entry : InputLL.Entries) { const auto Start = Entry.Begin + BaseAddress; const auto End = Entry.End + BaseAddress; if (!containsAddress(Start)) { DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected for " << *this << " : [0x" << Twine::utohexstr(Start) << ", 0x" << Twine::utohexstr(End) << "]\n"); continue; } auto InputOffset = Start - getAddress(); const auto InputEndOffset = std::min(End - getAddress(), getSize()); auto BBI = std::upper_bound(BasicBlockOffsets.begin(), BasicBlockOffsets.end(), BasicBlockOffset(InputOffset, nullptr), CompareBasicBlockOffsets()); --BBI; do { const auto *BB = BBI->second; if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected for " << *this << " : [0x" << Twine::utohexstr(Start) << ", 0x" << Twine::utohexstr(End) << "]\n"); PrevEndAddress = 0; break; } // Skip the range if the block was deleted. if (const auto OutputStart = BB->getOutputAddressRange().first) { const auto StartAddress = OutputStart + InputOffset - BB->getOffset(); auto EndAddress = BB->getOutputAddressRange().second; if (InputEndOffset < BB->getEndOffset()) EndAddress = StartAddress + InputEndOffset - InputOffset; if (StartAddress == PrevEndAddress && Entry.Loc == *PrevLoc) { OutputLL.Entries.back().End = std::max(OutputLL.Entries.back().End, EndAddress); } else { OutputLL.Entries.emplace_back( DWARFDebugLoc::Entry{StartAddress, std::max(StartAddress, EndAddress), Entry.Loc}); } PrevEndAddress = OutputLL.Entries.back().End; PrevLoc = &OutputLL.Entries.back().Loc; } ++BBI; InputOffset = BB->getEndOffset(); } while (InputOffset < InputEndOffset); } // Sort and merge adjacent entries with identical location. std::stable_sort(OutputLL.Entries.begin(), OutputLL.Entries.end(), [] (const DWARFDebugLoc::Entry &A, const DWARFDebugLoc::Entry &B) { return A.Begin < B.Begin; }); DWARFDebugLoc::LocationList MergedLL; PrevEndAddress = 0; PrevLoc = nullptr; for(const auto &Entry : OutputLL.Entries) { if (Entry.Begin <= PrevEndAddress && *PrevLoc == Entry.Loc) { MergedLL.Entries.back().End = std::max(Entry.End, MergedLL.Entries.back().End);; } else { const auto Begin = std::max(Entry.Begin, PrevEndAddress); const auto End = std::max(Begin, Entry.End); MergedLL.Entries.emplace_back(DWARFDebugLoc::Entry{Begin, End, Entry.Loc}); } PrevEndAddress = MergedLL.Entries.back().End; PrevLoc = &MergedLL.Entries.back().Loc; } return MergedLL; } void BinaryFunction::printLoopInfo(raw_ostream &OS) const { OS << "Loop Info for Function \"" << *this << "\""; if (hasValidProfile()) { OS << " (count: " << getExecutionCount() << ")"; } OS << "\n"; std::stack St; for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) { St.push(*I); } while (!St.empty()) { BinaryLoop *L = St.top(); St.pop(); for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) { St.push(*I); } if (!hasValidProfile()) continue; OS << (L->getLoopDepth() > 1 ? "Nested" : "Outer") << " loop header: " << L->getHeader()->getName(); OS << "\n"; OS << "Loop basic blocks: "; auto Sep = ""; for (auto BI = L->block_begin(), BE = L->block_end(); BI != BE; ++BI) { OS << Sep << (*BI)->getName(); Sep = ", "; } OS << "\n"; if (hasValidProfile()) { OS << "Total back edge count: " << L->TotalBackEdgeCount << "\n"; OS << "Loop entry count: " << L->EntryCount << "\n"; OS << "Loop exit count: " << L->ExitCount << "\n"; if (L->EntryCount > 0) { OS << "Average iters per entry: " << format("%.4lf", (double)L->TotalBackEdgeCount / L->EntryCount) << "\n"; } } OS << "----\n"; } OS << "Total number of loops: "<< BLI->TotalLoops << "\n"; OS << "Number of outer loops: " << BLI->OuterLoops << "\n"; OS << "Maximum nested loop depth: " << BLI->MaximumDepth << "\n\n"; } DynoStats BinaryFunction::getDynoStats() const { DynoStats Stats; // Return empty-stats about the function we don't completely understand. if (!isSimple() || !hasValidProfile()) return Stats; // If the function was folded in non-relocation mode we keep its profile // for optimization. However, it should be excluded from the dyno stats. if (isFolded()) return Stats; // Update enumeration of basic blocks for correct detection of branch' // direction. updateLayoutIndices(); for (const auto &BB : layout()) { // The basic block execution count equals to the sum of incoming branch // frequencies. This may deviate from the sum of outgoing branches of the // basic block especially since the block may contain a function that // does not return or a function that throws an exception. const uint64_t BBExecutionCount = BB->getKnownExecutionCount(); // Ignore empty blocks and blocks that were not executed. if (BB->getNumNonPseudos() == 0 || BBExecutionCount == 0) continue; // Count the number of calls by iterating through all instructions. for (const auto &Instr : *BB) { if (BC.MIA->isStore(Instr)) { Stats[DynoStats::STORES] += BBExecutionCount; } if (BC.MIA->isLoad(Instr)) { Stats[DynoStats::LOADS] += BBExecutionCount; } if (!BC.MIA->isCall(Instr)) continue; Stats[DynoStats::FUNCTION_CALLS] += BBExecutionCount; if (BC.MIA->getMemoryOperandNo(Instr) != -1) { Stats[DynoStats::INDIRECT_CALLS] += BBExecutionCount; } else if (const auto *CallSymbol = BC.MIA->getTargetSymbol(Instr)) { if (BC.getFunctionForSymbol(CallSymbol)) continue; auto GSI = BC.GlobalSymbols.find(CallSymbol->getName()); if (GSI == BC.GlobalSymbols.end()) continue; auto Section = BC.getSectionForAddress(GSI->second); if (!Section) continue; StringRef SectionName; Section->getName(SectionName); if (SectionName == ".plt") { Stats[DynoStats::PLT_CALLS] += BBExecutionCount; } } } Stats[DynoStats::INSTRUCTIONS] += BB->getNumNonPseudos() * BBExecutionCount; // Jump tables. const auto *LastInstr = BB->getLastNonPseudoInstr(); if (BC.MIA->getJumpTable(*LastInstr)) { Stats[DynoStats::JUMP_TABLE_BRANCHES] += BBExecutionCount; DEBUG( static uint64_t MostFrequentJT; if (BBExecutionCount > MostFrequentJT) { MostFrequentJT = BBExecutionCount; dbgs() << "BOLT-INFO: most frequently executed jump table is in " << "function " << *this << " in basic block " << BB->getName() << " executed totally " << BBExecutionCount << " times.\n"; } ); continue; } // Update stats for branches. const MCSymbol *TBB = nullptr; const MCSymbol *FBB = nullptr; MCInst *CondBranch = nullptr; MCInst *UncondBranch = nullptr; if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) { continue; } if (!CondBranch && !UncondBranch) { continue; } // Simple unconditional branch. if (!CondBranch) { Stats[DynoStats::UNCOND_BRANCHES] += BBExecutionCount; continue; } // Conditional branch that could be followed by an unconditional branch. uint64_t TakenCount; uint64_t NonTakenCount; bool IsForwardBranch; if (BB->succ_size() == 2) { TakenCount = BB->getBranchInfo(true).Count; NonTakenCount = BB->getBranchInfo(false).Count; IsForwardBranch = isForwardBranch(BB, BB->getConditionalSuccessor(true)); } else { // SCTC breaks the CFG invariant so we have to make some affordances // here if we want dyno stats after running it. TakenCount = BB->branch_info_begin()->Count; if (TakenCount != COUNT_NO_PROFILE) NonTakenCount = BBExecutionCount - TakenCount; else NonTakenCount = 0; // If succ_size == 0 then we are branching to a function // rather than a BB label. IsForwardBranch = BB->succ_size() == 0 ? isForwardCall(BC.MIA->getTargetSymbol(*CondBranch)) : isForwardBranch(BB, BB->getFallthrough()); } if (TakenCount == COUNT_NO_PROFILE) TakenCount = 0; if (NonTakenCount == COUNT_NO_PROFILE) NonTakenCount = 0; if (IsForwardBranch) { Stats[DynoStats::FORWARD_COND_BRANCHES] += BBExecutionCount; Stats[DynoStats::FORWARD_COND_BRANCHES_TAKEN] += TakenCount; } else { Stats[DynoStats::BACKWARD_COND_BRANCHES] += BBExecutionCount; Stats[DynoStats::BACKWARD_COND_BRANCHES_TAKEN] += TakenCount; } if (UncondBranch) { Stats[DynoStats::UNCOND_BRANCHES] += NonTakenCount; } } return Stats; } void DynoStats::print(raw_ostream &OS, const DynoStats *Other) const { auto printStatWithDelta = [&](const std::string &Name, uint64_t Stat, uint64_t OtherStat) { OS << format("%'20lld : ", Stat * opts::DynoStatsScale) << Name; if (Other) { if (Stat != OtherStat) { OS << format(" (%+.1f%%)", ( (float) Stat - (float) OtherStat ) * 100.0 / (float) (OtherStat + 1) ); } else { OS << " (=)"; } } OS << '\n'; }; for (auto Stat = DynoStats::FIRST_DYNO_STAT + 1; Stat < DynoStats::LAST_DYNO_STAT; ++Stat) { printStatWithDelta(Desc[Stat], Stats[Stat], Other ? (*Other)[Stat] : 0); } } void DynoStats::operator+=(const DynoStats &Other) { for (auto Stat = DynoStats::FIRST_DYNO_STAT + 1; Stat < DynoStats::LAST_DYNO_STAT; ++Stat) { Stats[Stat] += Other[Stat]; } } } // namespace bolt } // namespace llvm