//===- Parser.cpp - MLIR Parser Implementation ----------------------------===// // // Copyright 2019 The MLIR Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // ============================================================================= // // This file implements the parser for the MLIR textual form. // //===----------------------------------------------------------------------===// #include "mlir/Parser.h" #include "Lexer.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/IntegerSet.h" #include "mlir/IR/Location.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/Module.h" #include "mlir/IR/OpImplementation.h" #include "mlir/IR/StandardTypes.h" #include "mlir/Support/STLExtras.h" #include "mlir/Transforms/Utils.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/DenseMap.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/SMLoc.h" #include "llvm/Support/SourceMgr.h" #include using namespace mlir; using llvm::MemoryBuffer; using llvm::SMLoc; using llvm::SourceMgr; /// Simple enum to make code read better in cases that would otherwise return a /// bool value. Failure is "true" in a boolean context. enum ParseResult { ParseSuccess, ParseFailure }; namespace { class Parser; /// This class refers to all of the state maintained globally by the parser, /// such as the current lexer position etc. The Parser base class provides /// methods to access this. class ParserState { public: ParserState(const llvm::SourceMgr &sourceMgr, Module *module) : context(module->getContext()), module(module), lex(sourceMgr, context), curToken(lex.lexToken()) {} ~ParserState() { // Destroy the forward references upon error. for (auto forwardRef : functionForwardRefs) delete forwardRef.second; functionForwardRefs.clear(); } // A map from affine map identifier to AffineMap. llvm::StringMap affineMapDefinitions; // A map from integer set identifier to IntegerSet. llvm::StringMap integerSetDefinitions; // A map from type alias identifier to Type. llvm::StringMap typeAliasDefinitions; // This keeps track of all forward references to functions along with the // temporary function used to represent them. llvm::DenseMap functionForwardRefs; private: ParserState(const ParserState &) = delete; void operator=(const ParserState &) = delete; friend class Parser; // The context we're parsing into. MLIRContext *const context; // This is the module we are parsing into. Module *const module; // The lexer for the source file we're parsing. Lexer lex; // This is the next token that hasn't been consumed yet. Token curToken; }; } // end anonymous namespace namespace { /// This class implement support for parsing global entities like types and /// shared entities like SSA names. It is intended to be subclassed by /// specialized subparsers that include state, e.g. when a local symbol table. class Parser { public: Builder builder; Parser(ParserState &state) : builder(state.context), state(state) {} // Helper methods to get stuff from the parser-global state. ParserState &getState() const { return state; } MLIRContext *getContext() const { return state.context; } Module *getModule() { return state.module; } const llvm::SourceMgr &getSourceMgr() { return state.lex.getSourceMgr(); } /// Return the current token the parser is inspecting. const Token &getToken() const { return state.curToken; } StringRef getTokenSpelling() const { return state.curToken.getSpelling(); } /// Encode the specified source location information into an attribute for /// attachment to the IR. Location getEncodedSourceLocation(llvm::SMLoc loc) { return state.lex.getEncodedSourceLocation(loc); } /// Emit an error and return failure. ParseResult emitError(const Twine &message) { return emitError(state.curToken.getLoc(), message); } ParseResult emitError(SMLoc loc, const Twine &message); /// Advance the current lexer onto the next token. void consumeToken() { assert(state.curToken.isNot(Token::eof, Token::error) && "shouldn't advance past EOF or errors"); state.curToken = state.lex.lexToken(); } /// Advance the current lexer onto the next token, asserting what the expected /// current token is. This is preferred to the above method because it leads /// to more self-documenting code with better checking. void consumeToken(Token::Kind kind) { assert(state.curToken.is(kind) && "consumed an unexpected token"); consumeToken(); } /// If the current token has the specified kind, consume it and return true. /// If not, return false. bool consumeIf(Token::Kind kind) { if (state.curToken.isNot(kind)) return false; consumeToken(kind); return true; } /// Consume the specified token if present and return success. On failure, /// output a diagnostic and return failure. ParseResult parseToken(Token::Kind expectedToken, const Twine &message); /// Parse a comma-separated list of elements up until the specified end token. ParseResult parseCommaSeparatedListUntil(Token::Kind rightToken, const std::function &parseElement, bool allowEmptyList = true); /// Parse a comma separated list of elements that must have at least one entry /// in it. ParseResult parseCommaSeparatedList(const std::function &parseElement); // We have two forms of parsing methods - those that return a non-null // pointer on success, and those that return a ParseResult to indicate whether // they returned a failure. The second class fills in by-reference arguments // as the results of their action. // Type parsing. VectorType parseVectorType(); ParseResult parseXInDimensionList(); ParseResult parseDimensionListRanked(SmallVectorImpl &dimensions, bool allowDynamic); Type parseExtendedType(); Type parseTensorType(); Type parseMemRefType(); Type parseFunctionType(); Type parseNonFunctionType(); Type parseType(); ParseResult parseTypeListNoParens(SmallVectorImpl &elements); ParseResult parseTypeListParens(SmallVectorImpl &elements); ParseResult parseFunctionResultTypes(SmallVectorImpl &elements); // Attribute parsing. Function *resolveFunctionReference(StringRef nameStr, SMLoc nameLoc, FunctionType type); Attribute parseAttribute(Type type = {}); ParseResult parseAttributeDict(SmallVectorImpl &attributes); // Polyhedral structures. AffineMap parseAffineMapReference(); IntegerSet parseIntegerSetReference(); ParseResult parseAffineMapOrIntegerSetReference(AffineMap &map, IntegerSet &set); DenseElementsAttr parseDenseElementsAttr(VectorOrTensorType type); DenseElementsAttr parseDenseElementsAttrAsTensor(Type eltType); VectorOrTensorType parseVectorOrTensorType(); // Location Parsing. /// Trailing locations. /// /// trailing-location ::= location? /// template ParseResult parseOptionalTrailingLocation(Owner *owner) { // If there is a 'loc' we parse a trailing location. if (!getToken().is(Token::kw_loc)) return ParseSuccess; // Parse the location. llvm::Optional directLoc; if (parseLocation(&directLoc)) return ParseFailure; owner->setLoc(*directLoc); return ParseSuccess; } /// Parse an inline location. ParseResult parseLocation(llvm::Optional *loc); /// Parse a raw location instance. ParseResult parseLocationInstance(llvm::Optional *loc); private: // The Parser is subclassed and reinstantiated. Do not add additional // non-trivial state here, add it to the ParserState class. ParserState &state; }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Helper methods. //===----------------------------------------------------------------------===// ParseResult Parser::emitError(SMLoc loc, const Twine &message) { // If we hit a parse error in response to a lexer error, then the lexer // already reported the error. if (getToken().is(Token::error)) return ParseFailure; getContext()->emitError(getEncodedSourceLocation(loc), message); return ParseFailure; } /// Consume the specified token if present and return success. On failure, /// output a diagnostic and return failure. ParseResult Parser::parseToken(Token::Kind expectedToken, const Twine &message) { if (consumeIf(expectedToken)) return ParseSuccess; return emitError(message); } /// Parse a comma separated list of elements that must have at least one entry /// in it. ParseResult Parser::parseCommaSeparatedList( const std::function &parseElement) { // Non-empty case starts with an element. if (parseElement()) return ParseFailure; // Otherwise we have a list of comma separated elements. while (consumeIf(Token::comma)) { if (parseElement()) return ParseFailure; } return ParseSuccess; } /// Parse a comma-separated list of elements, terminated with an arbitrary /// token. This allows empty lists if allowEmptyList is true. /// /// abstract-list ::= rightToken // if allowEmptyList == true /// abstract-list ::= element (',' element)* rightToken /// ParseResult Parser::parseCommaSeparatedListUntil( Token::Kind rightToken, const std::function &parseElement, bool allowEmptyList) { // Handle the empty case. if (getToken().is(rightToken)) { if (!allowEmptyList) return emitError("expected list element"); consumeToken(rightToken); return ParseSuccess; } if (parseCommaSeparatedList(parseElement) || parseToken(rightToken, "expected ',' or '" + Token::getTokenSpelling(rightToken) + "'")) return ParseFailure; return ParseSuccess; } //===----------------------------------------------------------------------===// // Type Parsing //===----------------------------------------------------------------------===// /// Parse any type except the function type. /// /// non-function-type ::= integer-type /// | index-type /// | float-type /// | extended-type /// | vector-type /// | tensor-type /// | memref-type /// /// index-type ::= `index` /// float-type ::= `f16` | `bf16` | `f32` | `f64` /// Type Parser::parseNonFunctionType() { switch (getToken().getKind()) { default: return (emitError("expected non-function type"), nullptr); case Token::kw_memref: return parseMemRefType(); case Token::kw_tensor: return parseTensorType(); case Token::kw_vector: return parseVectorType(); // integer-type case Token::inttype: { auto width = getToken().getIntTypeBitwidth(); if (!width.hasValue()) return (emitError("invalid integer width"), nullptr); auto loc = getEncodedSourceLocation(getToken().getLoc()); consumeToken(Token::inttype); return IntegerType::getChecked(width.getValue(), builder.getContext(), loc); } // float-type case Token::kw_bf16: consumeToken(Token::kw_bf16); return builder.getBF16Type(); case Token::kw_f16: consumeToken(Token::kw_f16); return builder.getF16Type(); case Token::kw_f32: consumeToken(Token::kw_f32); return builder.getF32Type(); case Token::kw_f64: consumeToken(Token::kw_f64); return builder.getF64Type(); // index-type case Token::kw_index: consumeToken(Token::kw_index); return builder.getIndexType(); // extended type case Token::exclamation_identifier: return parseExtendedType(); } } /// Parse an arbitrary type. /// /// type ::= function-type /// | non-function-type /// Type Parser::parseType() { if (getToken().is(Token::l_paren)) return parseFunctionType(); return parseNonFunctionType(); } /// Parse a vector type. /// /// vector-type ::= `vector` `<` static-dimension-list primitive-type `>` /// static-dimension-list ::= (decimal-literal `x`)+ /// VectorType Parser::parseVectorType() { consumeToken(Token::kw_vector); if (parseToken(Token::less, "expected '<' in vector type")) return nullptr; SmallVector dimensions; if (parseDimensionListRanked(dimensions, /*allowDynamic=*/false)) return nullptr; if (dimensions.empty()) return (emitError("expected dimension size in vector type"), nullptr); // Parse the element type. auto typeLoc = getToken().getLoc(); auto elementType = parseType(); if (!elementType || parseToken(Token::greater, "expected '>' in vector type")) return nullptr; return VectorType::getChecked(dimensions, elementType, getEncodedSourceLocation(typeLoc)); } /// Parse an 'x' token in a dimension list, handling the case where the x is /// juxtaposed with an element type, as in "xf32", leaving the "f32" as the next /// token. ParseResult Parser::parseXInDimensionList() { if (getToken().isNot(Token::bare_identifier) || getTokenSpelling()[0] != 'x') return emitError("expected 'x' in dimension list"); // If we had a prefix of 'x', lex the next token immediately after the 'x'. if (getTokenSpelling().size() != 1) state.lex.resetPointer(getTokenSpelling().data() + 1); // Consume the 'x'. consumeToken(Token::bare_identifier); return ParseSuccess; } /// Parse a dimension list of a tensor or memref type. This populates the /// dimension list, using -1 for the `?` dimensions if `allowDynamic` is set and /// errors out on `?` otherwise. /// /// dimension-list-ranked ::= (dimension `x`)* /// dimension ::= `?` | decimal-literal /// /// When `allowDynamic` is not set, this can be also used to parse /// /// static-dimension-list ::= (decimal-literal `x`)* ParseResult Parser::parseDimensionListRanked(SmallVectorImpl &dimensions, bool allowDynamic = true) { while (getToken().isAny(Token::integer, Token::question)) { if (consumeIf(Token::question)) { if (!allowDynamic) return emitError("expected static shape"); dimensions.push_back(-1); } else { // Hexadecimal integer literals (starting with `0x`) are not allowed in // aggregate type declarations. Therefore, `0xf32` should be processed as // a sequence of separate elements `0`, `x`, `f32`. if (getTokenSpelling().size() > 1 && getTokenSpelling()[1] == 'x') { // We can get here only if the token is an integer literal. Hexadecimal // integer literals can only start with `0x` (`1x` wouldn't lex as a // literal, just `1` would, at which point we don't get into this // branch). assert(getTokenSpelling()[0] == '0' && "invalid integer literal"); dimensions.push_back(0); state.lex.resetPointer(getTokenSpelling().data() + 1); consumeToken(); } else { // Make sure this integer value is in bound and valid. auto dimension = getToken().getUnsignedIntegerValue(); if (!dimension.hasValue()) return emitError("invalid dimension"); dimensions.push_back((int64_t)dimension.getValue()); consumeToken(Token::integer); } } // Make sure we have an 'x' or something like 'xbf32'. if (parseXInDimensionList()) return ParseFailure; } return ParseSuccess; } /// Parse an extended type. /// /// extended-type ::= (dialect-type | type-alias) /// dialect-type ::= `!` dialect-namespace `<` '"' type-data '"' `>` /// type-alias ::= `!` alias-name /// Type Parser::parseExtendedType() { assert(getToken().is(Token::exclamation_identifier)); // Parse the dialect namespace. StringRef identifier = getTokenSpelling().drop_front(); consumeToken(Token::exclamation_identifier); // If there is not a '<' token, we are parsing a type alias. if (getToken().isNot(Token::less)) { // Check for an alias for this type. auto aliasIt = state.typeAliasDefinitions.find(identifier); if (aliasIt == state.typeAliasDefinitions.end()) return (emitError("undefined type alias id '" + identifier + "'"), nullptr); return aliasIt->second; } // Otherwise, we are parsing a dialect-specific type. // Consume the '<'. if (parseToken(Token::less, "expected '<' in dialect type")) return nullptr; // Parse the type specific data. if (getToken().isNot(Token::string)) return (emitError("expected string literal type data in dialect type"), nullptr); auto typeData = getToken().getStringValue(); auto loc = getEncodedSourceLocation(getToken().getLoc()); consumeToken(Token::string); Type result; // If we found a registered dialect, then ask it to parse the type. if (auto *dialect = state.context->getRegisteredDialect(identifier)) { result = dialect->parseType(typeData, loc, state.context); if (!result) return nullptr; } else { // Otherwise, form a new unknown type. result = UnknownType::getChecked(Identifier::get(identifier, state.context), typeData, state.context, loc); } // Consume the '>'. if (parseToken(Token::greater, "expected '>' in dialect type")) return nullptr; return result; } /// Parse a tensor type. /// /// tensor-type ::= `tensor` `<` dimension-list element-type `>` /// dimension-list ::= dimension-list-ranked | `*x` /// Type Parser::parseTensorType() { consumeToken(Token::kw_tensor); if (parseToken(Token::less, "expected '<' in tensor type")) return nullptr; bool isUnranked; SmallVector dimensions; if (consumeIf(Token::star)) { // This is an unranked tensor type. isUnranked = true; if (parseXInDimensionList()) return nullptr; } else { isUnranked = false; if (parseDimensionListRanked(dimensions)) return nullptr; } // Parse the element type. auto typeLocation = getEncodedSourceLocation(getToken().getLoc()); auto elementType = parseType(); if (!elementType || parseToken(Token::greater, "expected '>' in tensor type")) return nullptr; if (isUnranked) return UnrankedTensorType::getChecked(elementType, typeLocation); return RankedTensorType::getChecked(dimensions, elementType, typeLocation); } /// Parse a memref type. /// /// memref-type ::= `memref` `<` dimension-list-ranked element-type /// (`,` semi-affine-map-composition)? (`,` memory-space)? `>` /// /// semi-affine-map-composition ::= (semi-affine-map `,` )* semi-affine-map /// memory-space ::= integer-literal /* | TODO: address-space-id */ /// Type Parser::parseMemRefType() { consumeToken(Token::kw_memref); if (parseToken(Token::less, "expected '<' in memref type")) return nullptr; SmallVector dimensions; if (parseDimensionListRanked(dimensions)) return nullptr; // Parse the element type. auto typeLoc = getToken().getLoc(); auto elementType = parseType(); if (!elementType) return nullptr; // Parse semi-affine-map-composition. SmallVector affineMapComposition; unsigned memorySpace = 0; bool parsedMemorySpace = false; auto parseElt = [&]() -> ParseResult { if (getToken().is(Token::integer)) { // Parse memory space. if (parsedMemorySpace) return emitError("multiple memory spaces specified in memref type"); auto v = getToken().getUnsignedIntegerValue(); if (!v.hasValue()) return emitError("invalid memory space in memref type"); memorySpace = v.getValue(); consumeToken(Token::integer); parsedMemorySpace = true; } else { // Parse affine map. if (parsedMemorySpace) return emitError("affine map after memory space in memref type"); auto affineMap = parseAffineMapReference(); if (!affineMap) return ParseFailure; affineMapComposition.push_back(affineMap); } return ParseSuccess; }; // Parse a list of mappings and address space if present. if (consumeIf(Token::comma)) { // Parse comma separated list of affine maps, followed by memory space. if (parseCommaSeparatedListUntil(Token::greater, parseElt, /*allowEmptyList=*/false)) { return nullptr; } } else { if (parseToken(Token::greater, "expected ',' or '>' in memref type")) return nullptr; } return MemRefType::getChecked(dimensions, elementType, affineMapComposition, memorySpace, getEncodedSourceLocation(typeLoc)); } /// Parse a function type. /// /// function-type ::= type-list-parens `->` type-list /// Type Parser::parseFunctionType() { assert(getToken().is(Token::l_paren)); SmallVector arguments, results; if (parseTypeListParens(arguments) || parseToken(Token::arrow, "expected '->' in function type") || parseFunctionResultTypes(results)) return nullptr; return builder.getFunctionType(arguments, results); } /// Parse a list of types without an enclosing parenthesis. The list must have /// at least one member. /// /// type-list-no-parens ::= type (`,` type)* /// ParseResult Parser::parseTypeListNoParens(SmallVectorImpl &elements) { auto parseElt = [&]() -> ParseResult { auto elt = parseType(); elements.push_back(elt); return elt ? ParseSuccess : ParseFailure; }; return parseCommaSeparatedList(parseElt); } /// Parse a parenthesized list of types. /// /// type-list-parens ::= `(` `)` /// | `(` type-list-no-parens `)` /// ParseResult Parser::parseTypeListParens(SmallVectorImpl &elements) { if (parseToken(Token::l_paren, "expected '('")) return ParseFailure; // Handle empty lists. if (getToken().is(Token::r_paren)) return consumeToken(), ParseSuccess; if (parseTypeListNoParens(elements) || parseToken(Token::r_paren, "expected ')'")) return ParseFailure; return ParseSuccess; } /// Parse a function result type. /// /// function-result-type ::= type-list-parens /// | non-function-type /// ParseResult Parser::parseFunctionResultTypes(SmallVectorImpl &elements) { if (getToken().is(Token::l_paren)) return parseTypeListParens(elements); Type t = parseNonFunctionType(); if (!t) return ParseFailure; elements.push_back(t); return ParseSuccess; } //===----------------------------------------------------------------------===// // Attribute parsing. //===----------------------------------------------------------------------===// namespace { class TensorLiteralParser { public: TensorLiteralParser(Parser &p, Type eltTy) : p(p), eltTy(eltTy) {} ParseResult parse() { if (p.getToken().isNot(Token::l_square)) return p.emitError("expected '[' in tensor literal list"); return parseList(shape); } ArrayRef getValues() const { return storage; } ArrayRef getShape() const { return shape; } private: /// Parse either a single element or a list of elements. Return the dimensions /// of the parsed sub-tensor in dims. ParseResult parseElementOrList(llvm::SmallVectorImpl &dims); /// Parse a list of either lists or elements, returning the dimensions of the /// parsed sub-tensors in dims. For example: /// parseList([1, 2, 3]) -> Success, [3] /// parseList([[1, 2], [3, 4]]) -> Success, [2, 2] /// parseList([[1, 2], 3]) -> Failure /// parseList([[1, [2, 3]], [4, [5]]]) -> Failure ParseResult parseList(llvm::SmallVectorImpl &dims); Parser &p; Type eltTy; SmallVector shape; std::vector storage; }; } // namespace /// Parse either a single element or a list of elements. Return the dimensions /// of the parsed sub-tensor in dims. ParseResult TensorLiteralParser::parseElementOrList(llvm::SmallVectorImpl &dims) { switch (p.getToken().getKind()) { case Token::l_square: return parseList(dims); case Token::floatliteral: case Token::integer: case Token::minus: { auto result = p.parseAttribute(eltTy); if (!result) return ParseResult::ParseFailure; // check result matches the element type. switch (eltTy.getKind()) { case StandardTypes::BF16: case StandardTypes::F16: case StandardTypes::F32: case StandardTypes::F64: { // Bitcast the APFloat value to APInt and store the bit representation. auto fpAttrResult = result.dyn_cast(); if (!fpAttrResult) return p.emitError( "expected tensor literal element with floating point type"); auto apInt = fpAttrResult.getValue().bitcastToAPInt(); // FIXME: using 64 bits and double semantics for BF16 because APFloat does // not support BF16 directly. size_t bitWidth = eltTy.isBF16() ? 64 : eltTy.getIntOrFloatBitWidth(); assert(apInt.getBitWidth() == bitWidth); (void)bitWidth; (void)apInt; break; } case StandardTypes::Integer: { if (!result.isa()) return p.emitError("expected tensor literal element has integer type"); auto value = result.cast().getValue(); if (value.getMinSignedBits() > eltTy.getIntOrFloatBitWidth()) return p.emitError("tensor literal element has more bits than that " "specified in the type"); break; } default: return p.emitError("expected integer or float tensor element"); } storage.push_back(result); break; } default: return p.emitError("expected '[' or scalar constant inside tensor literal"); } return ParseSuccess; } /// Parse a list of either lists or elements, returning the dimensions of the /// parsed sub-tensors in dims. For example: /// parseList([1, 2, 3]) -> Success, [3] /// parseList([[1, 2], [3, 4]]) -> Success, [2, 2] /// parseList([[1, 2], 3]) -> Failure /// parseList([[1, [2, 3]], [4, [5]]]) -> Failure ParseResult TensorLiteralParser::parseList(llvm::SmallVectorImpl &dims) { p.consumeToken(Token::l_square); auto checkDims = [&](const llvm::SmallVectorImpl &prevDims, const llvm::SmallVectorImpl &newDims) { if (prevDims == newDims) return ParseSuccess; return p.emitError("tensor literal is invalid; ranks are not consistent " "between elements"); }; bool first = true; llvm::SmallVector newDims; unsigned size = 0; auto parseCommaSeparatedList = [&]() { llvm::SmallVector thisDims; if (parseElementOrList(thisDims)) return ParseFailure; ++size; if (!first) return checkDims(newDims, thisDims); newDims = thisDims; first = false; return ParseSuccess; }; if (p.parseCommaSeparatedListUntil(Token::r_square, parseCommaSeparatedList)) return ParseFailure; // Return the sublists' dimensions with 'size' prepended. dims.clear(); dims.push_back(size); dims.append(newDims.begin(), newDims.end()); return ParseSuccess; } /// Given a parsed reference to a function name like @foo and a type that it /// corresponds to, resolve it to a concrete function object (possibly /// synthesizing a forward reference) or emit an error and return null on /// failure. Function *Parser::resolveFunctionReference(StringRef nameStr, SMLoc nameLoc, FunctionType type) { Identifier name = builder.getIdentifier(nameStr.drop_front()); // See if the function has already been defined in the module. Function *function = getModule()->getNamedFunction(name); // If not, get or create a forward reference to one. if (!function) { auto &entry = state.functionForwardRefs[name]; if (!entry) entry = new Function(getEncodedSourceLocation(nameLoc), name, type, /*attrs=*/{}); function = entry; } if (function->getType() != type) return (emitError(nameLoc, "reference to function with mismatched type"), nullptr); return function; } /// Attribute parsing. /// /// attribute-value ::= bool-literal /// | integer-literal (`:` (index-type | integer-type))? /// | float-literal (`:` float-type)? /// | string-literal /// | type /// | `[` (attribute-value (`,` attribute-value)*)? `]` /// | function-id `:` function-type /// | (`splat` | `dense`) `<` (tensor-type | vector-type) `,` /// attribute-value `>` /// | `sparse` `<` (tensor-type | vector-type)`,` /// attribute-value `,` attribute-value `>` /// | `opaque` `<` dialect-namespace `,` /// (tensor-type | vector-type) `,` hex-string-literal `>` /// Attribute Parser::parseAttribute(Type type) { switch (getToken().getKind()) { case Token::kw_true: consumeToken(Token::kw_true); return builder.getBoolAttr(true); case Token::kw_false: consumeToken(Token::kw_false); return builder.getBoolAttr(false); case Token::floatliteral: { auto val = getToken().getFloatingPointValue(); if (!val.hasValue()) return (emitError("floating point value too large for attribute"), nullptr); auto valTok = getToken().getLoc(); consumeToken(Token::floatliteral); if (!type) { if (consumeIf(Token::colon)) { if (!(type = parseType())) return nullptr; } else { // Default to F64 when no type is specified. type = builder.getF64Type(); } } if (!type.isa()) return (emitError("floating point value not valid for specified type"), nullptr); return FloatAttr::getChecked(type, val.getValue(), getEncodedSourceLocation(valTok)); } case Token::integer: { auto val = getToken().getUInt64IntegerValue(); if (!val.hasValue() || (int64_t)val.getValue() < 0) return (emitError("integer constant out of range for attribute"), nullptr); consumeToken(Token::integer); if (!type) { if (consumeIf(Token::colon)) { if (!(type = parseType())) return nullptr; } else { // Default to i64 if not type is specified. type = builder.getIntegerType(64); } } if (!type.isIntOrIndex()) return (emitError("integer value not valid for specified type"), nullptr); int width = type.isIndex() ? 64 : type.getIntOrFloatBitWidth(); APInt apInt(width, val.getValue()); if (apInt != *val) return emitError("integer constant out of range for attribute"), nullptr; return builder.getIntegerAttr(type, apInt); } case Token::minus: { consumeToken(Token::minus); if (getToken().is(Token::integer)) { auto val = getToken().getUInt64IntegerValue(); if (!val.hasValue() || (int64_t)-val.getValue() >= 0) return (emitError("integer constant out of range for attribute"), nullptr); consumeToken(Token::integer); if (!type) { if (consumeIf(Token::colon)) { if (!(type = parseType())) return nullptr; } else { // Default to i64 if not type is specified. type = builder.getIntegerType(64); } } if (!type.isIntOrIndex()) return (emitError("integer value not valid for type"), nullptr); int width = type.isIndex() ? 64 : type.getIntOrFloatBitWidth(); APInt apInt(width, *val, /*isSigned=*/true); if (apInt != *val) return (emitError("integer constant out of range for attribute"), nullptr); return builder.getIntegerAttr(type, -apInt); } if (getToken().is(Token::floatliteral)) { auto val = getToken().getFloatingPointValue(); if (!val.hasValue()) return (emitError("floating point value too large for attribute"), nullptr); auto valTok = getToken().getLoc(); consumeToken(Token::floatliteral); if (!type) { if (consumeIf(Token::colon)) { if (!(type = parseType())) return nullptr; } else { // Default to F64 when no type is specified. type = builder.getF64Type(); } } if (!type.isa()) return (emitError("floating point value not valid for type"), nullptr); return FloatAttr::getChecked(type, -val.getValue(), getEncodedSourceLocation(valTok)); } return (emitError("expected constant integer or floating point value"), nullptr); } case Token::string: { auto val = getToken().getStringValue(); consumeToken(Token::string); return builder.getStringAttr(val); } case Token::l_square: { consumeToken(Token::l_square); SmallVector elements; auto parseElt = [&]() -> ParseResult { elements.push_back(parseAttribute()); return elements.back() ? ParseSuccess : ParseFailure; }; if (parseCommaSeparatedListUntil(Token::r_square, parseElt)) return nullptr; return builder.getArrayAttr(elements); } case Token::hash_identifier: case Token::l_paren: { // Try to parse an affine map or an integer set reference. AffineMap map; IntegerSet set; if (parseAffineMapOrIntegerSetReference(map, set)) return nullptr; if (map) return builder.getAffineMapAttr(map); assert(set); return builder.getIntegerSetAttr(set); } case Token::at_identifier: { auto nameLoc = getToken().getLoc(); auto nameStr = getTokenSpelling(); consumeToken(Token::at_identifier); if (parseToken(Token::colon, "expected ':' and function type")) return nullptr; auto typeLoc = getToken().getLoc(); Type type = parseType(); if (!type) return nullptr; auto fnType = type.dyn_cast(); if (!fnType) return (emitError(typeLoc, "expected function type"), nullptr); auto *function = resolveFunctionReference(nameStr, nameLoc, fnType); return function ? builder.getFunctionAttr(function) : nullptr; } case Token::kw_opaque: { consumeToken(Token::kw_opaque); if (parseToken(Token::less, "expected '<' after 'opaque'")) return nullptr; if (getToken().getKind() != Token::string) return (emitError("expected dialect namespace"), nullptr); auto name = getToken().getStringValue(); auto *dialect = builder.getContext()->getRegisteredDialect(name); // TODO(shpeisman): Allow for having an unknown dialect on an opaque // attribute. Otherwise, it can't be roundtripped without having the dialect // registered. if (!dialect) return (emitError("no registered dialect with namespace '" + name + "'"), nullptr); consumeToken(Token::string); if (parseToken(Token::comma, "expected ','")) return nullptr; auto type = parseVectorOrTensorType(); if (!type) return nullptr; if (getToken().getKind() != Token::string) return (emitError("opaque string should start with '0x'"), nullptr); auto val = getToken().getStringValue(); if (val.size() < 2 || val[0] != '0' || val[1] != 'x') return (emitError("opaque string should start with '0x'"), nullptr); val = val.substr(2); if (!std::all_of(val.begin(), val.end(), [](char c) { return llvm::isHexDigit(c); })) { return (emitError("opaque string only contains hex digits"), nullptr); } consumeToken(Token::string); if (parseToken(Token::greater, "expected '>'")) return nullptr; return builder.getOpaqueElementsAttr(dialect, type, llvm::fromHex(val)); } case Token::kw_splat: { consumeToken(Token::kw_splat); if (parseToken(Token::less, "expected '<' after 'splat'")) return nullptr; auto type = parseVectorOrTensorType(); if (!type) return nullptr; switch (getToken().getKind()) { case Token::floatliteral: case Token::integer: case Token::minus: { auto scalar = parseAttribute(type.getElementType()); if (!scalar) return nullptr; if (parseToken(Token::greater, "expected '>'")) return nullptr; return builder.getSplatElementsAttr(type, scalar); } default: return (emitError("expected scalar constant inside tensor literal"), nullptr); } } case Token::kw_dense: { consumeToken(Token::kw_dense); if (parseToken(Token::less, "expected '<' after 'dense'")) return nullptr; auto type = parseVectorOrTensorType(); if (!type) return nullptr; switch (getToken().getKind()) { case Token::l_square: { auto attr = parseDenseElementsAttr(type); if (!attr) return nullptr; if (parseToken(Token::greater, "expected '>'")) return nullptr; return attr; } default: return (emitError("expected '[' to start dense tensor literal"), nullptr); } } case Token::kw_sparse: { consumeToken(Token::kw_sparse); if (parseToken(Token::less, "Expected '<' after 'sparse'")) return nullptr; auto type = parseVectorOrTensorType(); if (!type) return nullptr; switch (getToken().getKind()) { case Token::l_square: { /// Parse indices auto indicesEltType = builder.getIntegerType(64); auto indices = parseDenseElementsAttrAsTensor(indicesEltType); if (!indices) return nullptr; if (parseToken(Token::comma, "expected ','")) return nullptr; /// Parse values. auto valuesEltType = type.getElementType(); auto values = parseDenseElementsAttrAsTensor(valuesEltType); if (!values) return nullptr; /// Sanity check. auto indicesType = indices.getType(); auto valuesType = values.getType(); auto sameShape = (indicesType.getRank() == 1) || (type.getRank() == indicesType.getDimSize(1)); auto sameElementNum = indicesType.getDimSize(0) == valuesType.getDimSize(0); if (!sameShape || !sameElementNum) { std::string str; llvm::raw_string_ostream s(str); s << "expected shape (["; interleaveComma(type.getShape(), s); s << "]); inferred shape of indices literal (["; interleaveComma(indicesType.getShape(), s); s << "]); inferred shape of values literal (["; interleaveComma(valuesType.getShape(), s); s << "])"; return (emitError(s.str()), nullptr); } if (parseToken(Token::greater, "expected '>'")) return nullptr; // Build the sparse elements attribute by the indices and values. return builder.getSparseElementsAttr( type, indices.cast(), values); } default: return (emitError("expected '[' to start sparse tensor literal"), nullptr); } return (emitError("expected elements literal has a tensor or vector type"), nullptr); } default: { if (Type type = parseType()) return builder.getTypeAttr(type); return nullptr; } } } /// Dense elements attribute. /// /// dense-attr-list ::= `[` attribute-value `]` /// attribute-value ::= integer-literal /// | float-literal /// | `[` (attribute-value (`,` attribute-value)*)? `]` /// /// This method returns a constructed dense elements attribute of tensor type /// with the shape from the parsing result. DenseElementsAttr Parser::parseDenseElementsAttrAsTensor(Type eltType) { TensorLiteralParser literalParser(*this, eltType); if (literalParser.parse()) return nullptr; auto type = builder.getTensorType(literalParser.getShape(), eltType); return builder.getDenseElementsAttr(type, literalParser.getValues()) .cast(); } /// Dense elements attribute. /// /// dense-attr-list ::= `[` attribute-value `]` /// attribute-value ::= integer-literal /// | float-literal /// | `[` (attribute-value (`,` attribute-value)*)? `]` /// /// This method compares the shapes from the parsing result and that from the /// input argument. It returns a constructed dense elements attribute if both /// match. DenseElementsAttr Parser::parseDenseElementsAttr(VectorOrTensorType type) { auto eltTy = type.getElementType(); TensorLiteralParser literalParser(*this, eltTy); if (literalParser.parse()) return nullptr; if (literalParser.getShape() != type.getShape()) { std::string str; llvm::raw_string_ostream s(str); s << "inferred shape of elements literal (["; interleaveComma(literalParser.getShape(), s); s << "]) does not match type (["; interleaveComma(type.getShape(), s); s << "])"; return (emitError(s.str()), nullptr); } return builder.getDenseElementsAttr(type, literalParser.getValues()) .cast(); } /// Vector or tensor type for elements attribute. /// /// vector-or-tensor-type ::= vector-type | tensor-type /// /// This method also checks the type has static shape and ranked. VectorOrTensorType Parser::parseVectorOrTensorType() { auto elementType = parseType(); if (!elementType) return nullptr; auto type = elementType.dyn_cast(); if (!type) { return (emitError("expected elements literal has a tensor or vector type"), nullptr); } if (parseToken(Token::comma, "expected ','")) return nullptr; if (!type.hasStaticShape() || type.getRank() == -1) { return (emitError("tensor literals must be ranked and have static shape"), nullptr); } return type; } /// Debug Location. /// /// location ::= `loc` inline-location /// inline-location ::= '(' location-inst ')' /// ParseResult Parser::parseLocation(llvm::Optional *loc) { assert(loc && "loc is expected to be non-null"); // Check for 'loc' identifier. if (getToken().isNot(Token::kw_loc)) return emitError("expected location keyword"); consumeToken(Token::kw_loc); // Parse the inline-location. if (parseToken(Token::l_paren, "expected '(' in inline location") || parseLocationInstance(loc) || parseToken(Token::r_paren, "expected ')' in inline location")) return ParseFailure; return ParseSuccess; } /// Specific location instances. /// /// location-inst ::= filelinecol-location | /// name-location | /// callsite-location | /// fused-location | /// unknown-location /// filelinecol-location ::= string-literal ':' integer-literal /// ':' integer-literal /// name-location ::= string-literal /// callsite-location ::= 'callsite' '(' location-inst 'at' location-inst ')' /// fused-location ::= fused ('<' attribute-value '>')? /// '[' location-inst (location-inst ',')* ']' /// unknown-location ::= 'unknown' /// ParseResult Parser::parseLocationInstance(llvm::Optional *loc) { auto *ctx = getContext(); // Handle either name or filelinecol locations. if (getToken().is(Token::string)) { auto str = getToken().getStringValue(); consumeToken(Token::string); // If the next token is ':' this is a filelinecol location. if (consumeIf(Token::colon)) { // Parse the line number. if (getToken().isNot(Token::integer)) return emitError("expected integer line number in FileLineColLoc"); auto line = getToken().getUnsignedIntegerValue(); if (!line.hasValue()) return emitError("expected integer line number in FileLineColLoc"); consumeToken(Token::integer); // Parse the ':'. if (parseToken(Token::colon, "expected ':' in FileLineColLoc")) return ParseFailure; // Parse the column number. if (getToken().isNot(Token::integer)) return emitError("expected integer column number in FileLineColLoc"); auto column = getToken().getUnsignedIntegerValue(); if (!column.hasValue()) return emitError("expected integer column number in FileLineColLoc"); consumeToken(Token::integer); auto file = UniquedFilename::get(str, ctx); *loc = FileLineColLoc::get(file, line.getValue(), column.getValue(), ctx); return ParseSuccess; } // Otherwise, this is a NameLoc. *loc = NameLoc::get(Identifier::get(str, ctx), ctx); return ParseSuccess; } // Check for a 'unknown' for an unknown location. if (getToken().is(Token::bare_identifier) && getToken().getSpelling() == "unknown") { consumeToken(Token::bare_identifier); *loc = UnknownLoc::get(ctx); return ParseSuccess; } // If the token is 'fused', then this is a fused location. if (getToken().is(Token::bare_identifier) && getToken().getSpelling() == "fused") { consumeToken(Token::bare_identifier); // Try to parse the optional metadata. Attribute metadata; if (consumeIf(Token::less)) { metadata = parseAttribute(); if (!metadata) return emitError("expected valid attribute metadata"); // Parse the '>' token. if (parseToken(Token::greater, "expected '>' after fused location metadata")) return ParseFailure; } // Parse the '['. if (parseToken(Token::l_square, "expected '[' in fused location")) return ParseFailure; // Parse the internal locations. llvm::SmallVector locations; do { llvm::Optional newLoc; if (parseLocationInstance(&newLoc)) return ParseFailure; locations.push_back(*newLoc); // Parse the ','. } while (consumeIf(Token::comma)); // Parse the ']'. if (parseToken(Token::r_square, "expected ']' in fused location")) return ParseFailure; // Return the fused location. if (metadata) *loc = FusedLoc::get(locations, metadata, getContext()); else *loc = FusedLoc::get(locations, ctx); return ParseSuccess; } // Check for the 'callsite' signifying a callsite location. if (getToken().is(Token::bare_identifier) && getToken().getSpelling() == "callsite") { consumeToken(Token::bare_identifier); // Parse the '('. if (parseToken(Token::l_paren, "expected '(' in callsite location")) return ParseFailure; // Parse the callee location. llvm::Optional calleeLoc; if (parseLocationInstance(&calleeLoc)) return ParseFailure; // Parse the 'at'. if (getToken().isNot(Token::bare_identifier) || getToken().getSpelling() != "at") return emitError("expected 'at' in callsite location"); consumeToken(Token::bare_identifier); // Parse the caller location. llvm::Optional callerLoc; if (parseLocationInstance(&callerLoc)) return ParseFailure; // Parse the ')'. if (parseToken(Token::r_paren, "expected ')' in callsite location")) return ParseFailure; // Return the callsite location. *loc = CallSiteLoc::get(*calleeLoc, *callerLoc, ctx); return ParseSuccess; } return emitError("expected location instance"); } /// Attribute dictionary. /// /// attribute-dict ::= `{` `}` /// | `{` attribute-entry (`,` attribute-entry)* `}` /// attribute-entry ::= `:`? bare-id `:` attribute-value /// ParseResult Parser::parseAttributeDict(SmallVectorImpl &attributes) { if (!consumeIf(Token::l_brace)) return ParseFailure; auto parseElt = [&]() -> ParseResult { // Check for an internal attribute. bool isInternalAttr = consumeIf(Token::colon); // We allow keywords as attribute names. if (getToken().isNot(Token::bare_identifier, Token::inttype) && !getToken().isKeyword()) return emitError("expected attribute name"); Identifier nameId = isInternalAttr ? builder.getIdentifier(Twine(":" + getTokenSpelling()).str()) : builder.getIdentifier(getTokenSpelling()); consumeToken(); if (parseToken(Token::colon, "expected ':' in attribute list")) return ParseFailure; auto attr = parseAttribute(); if (!attr) return ParseFailure; attributes.push_back({nameId, attr}); return ParseSuccess; }; if (parseCommaSeparatedListUntil(Token::r_brace, parseElt)) return ParseFailure; return ParseSuccess; } //===----------------------------------------------------------------------===// // Polyhedral structures. //===----------------------------------------------------------------------===// /// Lower precedence ops (all at the same precedence level). LNoOp is false in /// the boolean sense. enum AffineLowPrecOp { /// Null value. LNoOp, Add, Sub }; /// Higher precedence ops - all at the same precedence level. HNoOp is false /// in the boolean sense. enum AffineHighPrecOp { /// Null value. HNoOp, Mul, FloorDiv, CeilDiv, Mod }; namespace { /// This is a specialized parser for affine structures (affine maps, affine /// expressions, and integer sets), maintaining the state transient to their /// bodies. class AffineParser : public Parser { public: explicit AffineParser(ParserState &state) : Parser(state) {} AffineMap parseAffineMapInline(); AffineMap parseAffineMapRange(unsigned numDims, unsigned numSymbols); IntegerSet parseIntegerSetInline(); ParseResult parseAffineMapOrIntegerSetInline(AffineMap &map, IntegerSet &set); IntegerSet parseIntegerSetConstraints(unsigned numDims, unsigned numSymbols); private: // Binary affine op parsing. AffineLowPrecOp consumeIfLowPrecOp(); AffineHighPrecOp consumeIfHighPrecOp(); // Identifier lists for polyhedral structures. ParseResult parseDimIdList(unsigned &numDims); ParseResult parseSymbolIdList(unsigned &numSymbols); ParseResult parseDimAndOptionalSymbolIdList(unsigned &numDims, unsigned &numSymbols); ParseResult parseIdentifierDefinition(AffineExpr idExpr); AffineExpr parseAffineExpr(); AffineExpr parseParentheticalExpr(); AffineExpr parseNegateExpression(AffineExpr lhs); AffineExpr parseIntegerExpr(); AffineExpr parseBareIdExpr(); AffineExpr getAffineBinaryOpExpr(AffineHighPrecOp op, AffineExpr lhs, AffineExpr rhs, SMLoc opLoc); AffineExpr getAffineBinaryOpExpr(AffineLowPrecOp op, AffineExpr lhs, AffineExpr rhs); AffineExpr parseAffineOperandExpr(AffineExpr lhs); AffineExpr parseAffineLowPrecOpExpr(AffineExpr llhs, AffineLowPrecOp llhsOp); AffineExpr parseAffineHighPrecOpExpr(AffineExpr llhs, AffineHighPrecOp llhsOp, SMLoc llhsOpLoc); AffineExpr parseAffineConstraint(bool *isEq); private: SmallVector, 4> dimsAndSymbols; }; } // end anonymous namespace /// Create an affine binary high precedence op expression (mul's, div's, mod). /// opLoc is the location of the op token to be used to report errors /// for non-conforming expressions. AffineExpr AffineParser::getAffineBinaryOpExpr(AffineHighPrecOp op, AffineExpr lhs, AffineExpr rhs, SMLoc opLoc) { // TODO: make the error location info accurate. switch (op) { case Mul: if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant()) { emitError(opLoc, "non-affine expression: at least one of the multiply " "operands has to be either a constant or symbolic"); return nullptr; } return lhs * rhs; case FloorDiv: if (!rhs.isSymbolicOrConstant()) { emitError(opLoc, "non-affine expression: right operand of floordiv " "has to be either a constant or symbolic"); return nullptr; } return lhs.floorDiv(rhs); case CeilDiv: if (!rhs.isSymbolicOrConstant()) { emitError(opLoc, "non-affine expression: right operand of ceildiv " "has to be either a constant or symbolic"); return nullptr; } return lhs.ceilDiv(rhs); case Mod: if (!rhs.isSymbolicOrConstant()) { emitError(opLoc, "non-affine expression: right operand of mod " "has to be either a constant or symbolic"); return nullptr; } return lhs % rhs; case HNoOp: llvm_unreachable("can't create affine expression for null high prec op"); return nullptr; } } /// Create an affine binary low precedence op expression (add, sub). AffineExpr AffineParser::getAffineBinaryOpExpr(AffineLowPrecOp op, AffineExpr lhs, AffineExpr rhs) { switch (op) { case AffineLowPrecOp::Add: return lhs + rhs; case AffineLowPrecOp::Sub: return lhs - rhs; case AffineLowPrecOp::LNoOp: llvm_unreachable("can't create affine expression for null low prec op"); return nullptr; } } /// Consume this token if it is a lower precedence affine op (there are only /// two precedence levels). AffineLowPrecOp AffineParser::consumeIfLowPrecOp() { switch (getToken().getKind()) { case Token::plus: consumeToken(Token::plus); return AffineLowPrecOp::Add; case Token::minus: consumeToken(Token::minus); return AffineLowPrecOp::Sub; default: return AffineLowPrecOp::LNoOp; } } /// Consume this token if it is a higher precedence affine op (there are only /// two precedence levels) AffineHighPrecOp AffineParser::consumeIfHighPrecOp() { switch (getToken().getKind()) { case Token::star: consumeToken(Token::star); return Mul; case Token::kw_floordiv: consumeToken(Token::kw_floordiv); return FloorDiv; case Token::kw_ceildiv: consumeToken(Token::kw_ceildiv); return CeilDiv; case Token::kw_mod: consumeToken(Token::kw_mod); return Mod; default: return HNoOp; } } /// Parse a high precedence op expression list: mul, div, and mod are high /// precedence binary ops, i.e., parse a /// expr_1 op_1 expr_2 op_2 ... expr_n /// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod). /// All affine binary ops are left associative. /// Given llhs, returns (llhs llhsOp lhs) op rhs, or (lhs op rhs) if llhs is /// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is /// null. llhsOpLoc is the location of the llhsOp token that will be used to /// report an error for non-conforming expressions. AffineExpr AffineParser::parseAffineHighPrecOpExpr(AffineExpr llhs, AffineHighPrecOp llhsOp, SMLoc llhsOpLoc) { AffineExpr lhs = parseAffineOperandExpr(llhs); if (!lhs) return nullptr; // Found an LHS. Parse the remaining expression. auto opLoc = getToken().getLoc(); if (AffineHighPrecOp op = consumeIfHighPrecOp()) { if (llhs) { AffineExpr expr = getAffineBinaryOpExpr(llhsOp, llhs, lhs, opLoc); if (!expr) return nullptr; return parseAffineHighPrecOpExpr(expr, op, opLoc); } // No LLHS, get RHS return parseAffineHighPrecOpExpr(lhs, op, opLoc); } // This is the last operand in this expression. if (llhs) return getAffineBinaryOpExpr(llhsOp, llhs, lhs, llhsOpLoc); // No llhs, 'lhs' itself is the expression. return lhs; } /// Parse an affine expression inside parentheses. /// /// affine-expr ::= `(` affine-expr `)` AffineExpr AffineParser::parseParentheticalExpr() { if (parseToken(Token::l_paren, "expected '('")) return nullptr; if (getToken().is(Token::r_paren)) return (emitError("no expression inside parentheses"), nullptr); auto expr = parseAffineExpr(); if (!expr) return nullptr; if (parseToken(Token::r_paren, "expected ')'")) return nullptr; return expr; } /// Parse the negation expression. /// /// affine-expr ::= `-` affine-expr AffineExpr AffineParser::parseNegateExpression(AffineExpr lhs) { if (parseToken(Token::minus, "expected '-'")) return nullptr; AffineExpr operand = parseAffineOperandExpr(lhs); // Since negation has the highest precedence of all ops (including high // precedence ops) but lower than parentheses, we are only going to use // parseAffineOperandExpr instead of parseAffineExpr here. if (!operand) // Extra error message although parseAffineOperandExpr would have // complained. Leads to a better diagnostic. return (emitError("missing operand of negation"), nullptr); return (-1) * operand; } /// Parse a bare id that may appear in an affine expression. /// /// affine-expr ::= bare-id AffineExpr AffineParser::parseBareIdExpr() { if (getToken().isNot(Token::bare_identifier)) return (emitError("expected bare identifier"), nullptr); StringRef sRef = getTokenSpelling(); for (auto entry : dimsAndSymbols) { if (entry.first == sRef) { consumeToken(Token::bare_identifier); return entry.second; } } return (emitError("use of undeclared identifier"), nullptr); } /// Parse a positive integral constant appearing in an affine expression. /// /// affine-expr ::= integer-literal AffineExpr AffineParser::parseIntegerExpr() { auto val = getToken().getUInt64IntegerValue(); if (!val.hasValue() || (int64_t)val.getValue() < 0) return (emitError("constant too large for index"), nullptr); consumeToken(Token::integer); return builder.getAffineConstantExpr((int64_t)val.getValue()); } /// Parses an expression that can be a valid operand of an affine expression. /// lhs: if non-null, lhs is an affine expression that is the lhs of a binary /// operator, the rhs of which is being parsed. This is used to determine /// whether an error should be emitted for a missing right operand. // Eg: for an expression without parentheses (like i + j + k + l), each // of the four identifiers is an operand. For i + j*k + l, j*k is not an // operand expression, it's an op expression and will be parsed via // parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and // -l are valid operands that will be parsed by this function. AffineExpr AffineParser::parseAffineOperandExpr(AffineExpr lhs) { switch (getToken().getKind()) { case Token::bare_identifier: return parseBareIdExpr(); case Token::integer: return parseIntegerExpr(); case Token::l_paren: return parseParentheticalExpr(); case Token::minus: return parseNegateExpression(lhs); case Token::kw_ceildiv: case Token::kw_floordiv: case Token::kw_mod: case Token::plus: case Token::star: if (lhs) emitError("missing right operand of binary operator"); else emitError("missing left operand of binary operator"); return nullptr; default: if (lhs) emitError("missing right operand of binary operator"); else emitError("expected affine expression"); return nullptr; } } /// Parse affine expressions that are bare-id's, integer constants, /// parenthetical affine expressions, and affine op expressions that are a /// composition of those. /// /// All binary op's associate from left to right. /// /// {add, sub} have lower precedence than {mul, div, and mod}. /// /// Add, sub'are themselves at the same precedence level. Mul, floordiv, /// ceildiv, and mod are at the same higher precedence level. Negation has /// higher precedence than any binary op. /// /// llhs: the affine expression appearing on the left of the one being parsed. /// This function will return ((llhs llhsOp lhs) op rhs) if llhs is non null, /// and lhs op rhs otherwise; if there is no rhs, llhs llhsOp lhs is returned /// if llhs is non-null; otherwise lhs is returned. This is to deal with left /// associativity. /// /// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function /// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where /// (e2*e3) will be parsed using parseAffineHighPrecOpExpr(). AffineExpr AffineParser::parseAffineLowPrecOpExpr(AffineExpr llhs, AffineLowPrecOp llhsOp) { AffineExpr lhs; if (!(lhs = parseAffineOperandExpr(llhs))) return nullptr; // Found an LHS. Deal with the ops. if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) { if (llhs) { AffineExpr sum = getAffineBinaryOpExpr(llhsOp, llhs, lhs); return parseAffineLowPrecOpExpr(sum, lOp); } // No LLHS, get RHS and form the expression. return parseAffineLowPrecOpExpr(lhs, lOp); } auto opLoc = getToken().getLoc(); if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) { // We have a higher precedence op here. Get the rhs operand for the llhs // through parseAffineHighPrecOpExpr. AffineExpr highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc); if (!highRes) return nullptr; // If llhs is null, the product forms the first operand of the yet to be // found expression. If non-null, the op to associate with llhs is llhsOp. AffineExpr expr = llhs ? getAffineBinaryOpExpr(llhsOp, llhs, highRes) : highRes; // Recurse for subsequent low prec op's after the affine high prec op // expression. if (AffineLowPrecOp nextOp = consumeIfLowPrecOp()) return parseAffineLowPrecOpExpr(expr, nextOp); return expr; } // Last operand in the expression list. if (llhs) return getAffineBinaryOpExpr(llhsOp, llhs, lhs); // No llhs, 'lhs' itself is the expression. return lhs; } /// Parse an affine expression. /// affine-expr ::= `(` affine-expr `)` /// | `-` affine-expr /// | affine-expr `+` affine-expr /// | affine-expr `-` affine-expr /// | affine-expr `*` affine-expr /// | affine-expr `floordiv` affine-expr /// | affine-expr `ceildiv` affine-expr /// | affine-expr `mod` affine-expr /// | bare-id /// | integer-literal /// /// Additional conditions are checked depending on the production. For eg., /// one of the operands for `*` has to be either constant/symbolic; the second /// operand for floordiv, ceildiv, and mod has to be a positive integer. AffineExpr AffineParser::parseAffineExpr() { return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp); } /// Parse a dim or symbol from the lists appearing before the actual /// expressions of the affine map. Update our state to store the /// dimensional/symbolic identifier. ParseResult AffineParser::parseIdentifierDefinition(AffineExpr idExpr) { if (getToken().isNot(Token::bare_identifier)) return emitError("expected bare identifier"); auto name = getTokenSpelling(); for (auto entry : dimsAndSymbols) { if (entry.first == name) return emitError("redefinition of identifier '" + Twine(name) + "'"); } consumeToken(Token::bare_identifier); dimsAndSymbols.push_back({name, idExpr}); return ParseSuccess; } /// Parse the list of dimensional identifiers to an affine map. ParseResult AffineParser::parseDimIdList(unsigned &numDims) { if (parseToken(Token::l_paren, "expected '(' at start of dimensional identifiers list")) { return ParseFailure; } auto parseElt = [&]() -> ParseResult { auto dimension = getAffineDimExpr(numDims++, getContext()); return parseIdentifierDefinition(dimension); }; return parseCommaSeparatedListUntil(Token::r_paren, parseElt); } /// Parse the list of symbolic identifiers to an affine map. ParseResult AffineParser::parseSymbolIdList(unsigned &numSymbols) { consumeToken(Token::l_square); auto parseElt = [&]() -> ParseResult { auto symbol = getAffineSymbolExpr(numSymbols++, getContext()); return parseIdentifierDefinition(symbol); }; return parseCommaSeparatedListUntil(Token::r_square, parseElt); } /// Parse the list of symbolic identifiers to an affine map. ParseResult AffineParser::parseDimAndOptionalSymbolIdList(unsigned &numDims, unsigned &numSymbols) { if (parseDimIdList(numDims)) { return ParseResult::ParseFailure; } if (!getToken().is(Token::l_square)) { numSymbols = 0; return ParseResult::ParseSuccess; } return parseSymbolIdList(numSymbols); } /// Parses an affine map definition inline. /// /// affine-map-inline ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr /// (`size` `(` dim-size (`,` dim-size)* `)`)? /// dim-size ::= affine-expr | `min` `(` affine-expr ( `,` affine-expr)+ `)` /// /// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `) /// AffineMap AffineParser::parseAffineMapInline() { unsigned numDims = 0, numSymbols = 0; // List of dimensional and optional symbol identifiers. if (parseDimAndOptionalSymbolIdList(numDims, numSymbols)) { return AffineMap(); } if (parseToken(Token::arrow, "expected '->' or '['")) { return AffineMap(); } // Parse the affine map. return parseAffineMapRange(numDims, numSymbols); } /// Parses an integer set definition inline. /// /// integer-set-inline /// ::= dim-and-symbol-id-lists `:` /// affine-constraint-conjunction /// affine-constraint-conjunction ::= /*empty*/ /// | affine-constraint (`,` /// affine-constraint)* /// IntegerSet AffineParser::parseIntegerSetInline() { unsigned numDims = 0, numSymbols = 0; // List of dimensional and optional symbol identifiers. if (parseDimAndOptionalSymbolIdList(numDims, numSymbols)) { return IntegerSet(); } if (parseToken(Token::colon, "expected ':' or '['")) { return IntegerSet(); } return parseIntegerSetConstraints(numDims, numSymbols); } /// Parses an ambiguous affine map or integer set definition inline. ParseResult AffineParser::parseAffineMapOrIntegerSetInline(AffineMap &map, IntegerSet &set) { unsigned numDims = 0, numSymbols = 0; // List of dimensional and optional symbol identifiers. if (parseDimAndOptionalSymbolIdList(numDims, numSymbols)) { return ParseResult::ParseFailure; } // This is needed for parsing attributes as we wouldn't know whether we would // be parsing an integer set attribute or an affine map attribute. bool isArrow = getToken().is(Token::arrow); bool isColon = getToken().is(Token::colon); if (!isArrow && !isColon) { return emitError("expected '->' or ':'"); } else if (isArrow) { parseToken(Token::arrow, "expected '->' or '['"); map = parseAffineMapRange(numDims, numSymbols); return map ? ParseSuccess : ParseFailure; } else if (parseToken(Token::colon, "expected ':' or '['")) { return ParseFailure; } if ((set = parseIntegerSetConstraints(numDims, numSymbols))) return ParseSuccess; return ParseFailure; } /// Parse the range and sizes affine map definition inline. /// /// affine-map-inline ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr /// (`size` `(` dim-size (`,` dim-size)* `)`)? /// dim-size ::= affine-expr | `min` `(` affine-expr ( `,` affine-expr)+ `)` /// /// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `) AffineMap AffineParser::parseAffineMapRange(unsigned numDims, unsigned numSymbols) { parseToken(Token::l_paren, "expected '(' at start of affine map range"); SmallVector exprs; auto parseElt = [&]() -> ParseResult { auto elt = parseAffineExpr(); ParseResult res = elt ? ParseSuccess : ParseFailure; exprs.push_back(elt); return res; }; // Parse a multi-dimensional affine expression (a comma-separated list of // 1-d affine expressions); the list cannot be empty. Grammar: // multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `) if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, false)) return AffineMap(); // Parse optional range sizes. // range-sizes ::= (`size` `(` dim-size (`,` dim-size)* `)`)? // dim-size ::= affine-expr | `min` `(` affine-expr (`,` affine-expr)+ `)` // TODO(bondhugula): support for min of several affine expressions. // TODO: check if sizes are non-negative whenever they are constant. SmallVector rangeSizes; if (consumeIf(Token::kw_size)) { // Location of the l_paren token (if it exists) for error reporting later. auto loc = getToken().getLoc(); if (parseToken(Token::l_paren, "expected '(' at start of affine map range")) return AffineMap(); auto parseRangeSize = [&]() -> ParseResult { auto loc = getToken().getLoc(); auto elt = parseAffineExpr(); if (!elt) return ParseFailure; if (!elt.isSymbolicOrConstant()) return emitError(loc, "size expressions cannot refer to dimension values"); rangeSizes.push_back(elt); return ParseSuccess; }; if (parseCommaSeparatedListUntil(Token::r_paren, parseRangeSize, false)) return AffineMap(); if (exprs.size() > rangeSizes.size()) return (emitError(loc, "fewer range sizes than range expressions"), AffineMap()); if (exprs.size() < rangeSizes.size()) return (emitError(loc, "more range sizes than range expressions"), AffineMap()); } // Parsed a valid affine map. return builder.getAffineMap(numDims, numSymbols, exprs, rangeSizes); } /// Parse a reference to an integer set. /// integer-set ::= integer-set-id | integer-set-inline /// integer-set-id ::= `#` suffix-id /// IntegerSet Parser::parseIntegerSetReference() { if (getToken().isNot(Token::hash_identifier)) { // Try to parse inline integer set. return AffineParser(state).parseIntegerSetInline(); } // Parse integer set identifier and verify that it exists. StringRef id = getTokenSpelling().drop_front(); if (getState().integerSetDefinitions.count(id) > 0) { consumeToken(Token::hash_identifier); return getState().integerSetDefinitions[id]; } // The id isn't among any of the recorded definitions. emitError("undefined integer set id '" + id + "'"); return IntegerSet(); } /// Parse a reference to an affine map. /// affine-map ::= affine-map-id | affine-map-inline /// affine-map-id ::= `#` suffix-id /// AffineMap Parser::parseAffineMapReference() { if (getToken().isNot(Token::hash_identifier)) { // Try to parse inline affine map. return AffineParser(state).parseAffineMapInline(); } // Parse affine map identifier and verify that it exists. StringRef id = getTokenSpelling().drop_front(); if (getState().affineMapDefinitions.count(id) > 0) { consumeToken(Token::hash_identifier); return getState().affineMapDefinitions[id]; } // The id isn't among any of the recorded definitions. emitError("undefined affine map id '" + id + "'"); return AffineMap(); } /// Parse an ambiguous reference to either and affine map or an integer set. ParseResult Parser::parseAffineMapOrIntegerSetReference(AffineMap &map, IntegerSet &set) { if (getToken().isNot(Token::hash_identifier)) { // Try to parse inline affine map. return AffineParser(state).parseAffineMapOrIntegerSetInline(map, set); } // Parse affine map / integer set identifier and verify that it exists. // Note that an id can't be in both affineMapDefinitions and // integerSetDefinitions since they use the same sigil '#'. StringRef id = getTokenSpelling().drop_front(); if (getState().affineMapDefinitions.count(id) > 0) { consumeToken(Token::hash_identifier); map = getState().affineMapDefinitions[id]; return ParseSuccess; } if (getState().integerSetDefinitions.count(id) > 0) { consumeToken(Token::hash_identifier); set = getState().integerSetDefinitions[id]; return ParseSuccess; } // The id isn't among any of the recorded definitions. emitError("undefined affine map or integer set id '" + id + "'"); return ParseFailure; } //===----------------------------------------------------------------------===// // FunctionParser //===----------------------------------------------------------------------===// namespace { /// This class contains parser state that is common across CFG and ML /// functions, notably for dealing with operations and SSA values. class FunctionParser : public Parser { public: /// This builder intentionally shadows the builder in the base class, with a /// more specific builder type. #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wshadow-field" FuncBuilder builder; #pragma clang diagnostic pop FunctionParser(ParserState &state, Function *function) : Parser(state), builder(function), function(function) {} ~FunctionParser(); ParseResult parseFunctionBody(bool hadNamedArguments); /// Parse a single operation successor and it's operand list. bool parseSuccessorAndUseList(Block *&dest, SmallVectorImpl &operands); /// Parse a comma-separated list of operation successors in brackets. ParseResult parseSuccessors(SmallVectorImpl &destinations, SmallVectorImpl> &operands); /// After the function is finished parsing, this function checks to see if /// there are any remaining issues. ParseResult finalizeFunction(SMLoc loc); /// This represents a use of an SSA value in the program. The first two /// entries in the tuple are the name and result number of a reference. The /// third is the location of the reference, which is used in case this ends /// up being a use of an undefined value. struct SSAUseInfo { StringRef name; // Value name, e.g. %42 or %abc unsigned number; // Number, specified with #12 SMLoc loc; // Location of first definition or use. }; /// Given a reference to an SSA value and its type, return a reference. This /// returns null on failure. Value *resolveSSAUse(SSAUseInfo useInfo, Type type); /// Register a definition of a value with the symbol table. ParseResult addDefinition(SSAUseInfo useInfo, Value *value); // SSA parsing productions. ParseResult parseSSAUse(SSAUseInfo &result); ParseResult parseOptionalSSAUseList(SmallVectorImpl &results); template ResultType parseSSADefOrUseAndType( const std::function &action); Value *parseSSAUseAndType() { return parseSSADefOrUseAndType( [&](SSAUseInfo useInfo, Type type) -> Value * { return resolveSSAUse(useInfo, type); }); } template ParseResult parseOptionalSSAUseAndTypeList(SmallVectorImpl &results); // Block references. ParseResult parseOperationBlockList(SmallVectorImpl &results, ArrayRef> entryArguments); ParseResult parseBlockListBody(SmallVectorImpl &results); ParseResult parseBlock(Block *&block); ParseResult parseBlockBody(Block *block); ParseResult parseOptionalBlockArgList(SmallVectorImpl &results, Block *owner); /// Cleans up the memory for allocated blocks when a parser error occurs. void cleanupInvalidBlocks(ArrayRef invalidBlocks) { // Add the referenced blocks to the function so that they can be properly // cleaned up when the function is destroyed. for (auto *block : invalidBlocks) function->push_back(block); } /// Get the block with the specified name, creating it if it doesn't /// already exist. The location specified is the point of use, which allows /// us to diagnose references to blocks that are not defined precisely. Block *getBlockNamed(StringRef name, SMLoc loc); // Define the block with the specified name. Returns the Block* or // nullptr in the case of redefinition. Block *defineBlockNamed(StringRef name, SMLoc loc, Block *existing); // Operations ParseResult parseOperation(); Instruction *parseGenericOperation(); Instruction *parseCustomOperation(); ParseResult parseInstructions(Block *block); private: Function *function; // This keeps track of the block names as well as the location of the first // reference, used to diagnose invalid block references and memoize them. llvm::StringMap> blocksByName; DenseMap forwardRef; /// This keeps track of all of the SSA values we are tracking, indexed by /// their name. This has one entry per result number. llvm::StringMap, 1>> values; /// These are all of the placeholders we've made along with the location of /// their first reference, to allow checking for use of undefined values. DenseMap forwardReferencePlaceholders; Value *createForwardReferencePlaceholder(SMLoc loc, Type type); /// Return true if this is a forward reference. bool isForwardReferencePlaceholder(Value *value) { return forwardReferencePlaceholders.count(value); } }; } // end anonymous namespace ParseResult FunctionParser::parseFunctionBody(bool hadNamedArguments) { auto braceLoc = getToken().getLoc(); if (parseToken(Token::l_brace, "expected '{' in function")) return ParseFailure; // Make sure we have at least one block. if (getToken().is(Token::r_brace)) return emitError("function must have a body"); // If we had named arguments, then we don't allow a block name. if (hadNamedArguments) { if (getToken().is(Token::caret_identifier)) return emitError("invalid block name in function with named arguments"); } // The first block is already created and should be filled in. auto firstBlock = &function->front(); // Parse the first block. if (parseBlock(firstBlock)) return ParseFailure; // Parse the remaining list of blocks. SmallVector blocks; if (parseBlockListBody(blocks)) return ParseFailure; function->getBlocks().insert(function->end(), blocks.begin(), blocks.end()); // Verify that all referenced blocks were defined. if (!forwardRef.empty()) { SmallVector, 4> errors; // Iteration over the map isn't deterministic, so sort by source location. for (auto entry : forwardRef) { errors.push_back({entry.second.getPointer(), entry.first}); cleanupInvalidBlocks(entry.first); } llvm::array_pod_sort(errors.begin(), errors.end()); for (auto entry : errors) { auto loc = SMLoc::getFromPointer(entry.first); emitError(loc, "reference to an undefined block"); } return ParseFailure; } return finalizeFunction(braceLoc); } /// Block list. /// /// block-list ::= '{' block-list-body /// ParseResult FunctionParser::parseOperationBlockList( SmallVectorImpl &results, ArrayRef> entryArguments) { // Parse the '{'. if (parseToken(Token::l_brace, "expected '{' to begin block list")) return ParseFailure; // Check for an empty block list. if (entryArguments.empty() && consumeIf(Token::r_brace)) return ParseSuccess; Block *currentBlock = builder.getInsertionBlock(); // Parse the first block directly to allow for it to be unnamed. Block *block = new Block(); // Add arguments to the entry block. for (auto &placeholderArgPair : entryArguments) if (addDefinition(placeholderArgPair.first, block->addArgument(placeholderArgPair.second))) { delete block; return ParseFailure; } if (parseBlock(block)) { delete block; return ParseFailure; } // Verify that no other arguments were parsed. if (!entryArguments.empty() && block->getNumArguments() > entryArguments.size()) { delete block; return emitError("entry block arguments were already defined"); } // Parse the rest of the block list. results.push_back(block); if (parseBlockListBody(results)) return ParseFailure; // Reset insertion point to the current block. builder.setInsertionPointToEnd(currentBlock); return ParseSuccess; } /// Block list. /// /// block-list-body ::= block* '}' /// ParseResult FunctionParser::parseBlockListBody(SmallVectorImpl &results) { // Parse the block list. while (!consumeIf(Token::r_brace)) { Block *newBlock = nullptr; if (parseBlock(newBlock)) { cleanupInvalidBlocks(results); return ParseFailure; } results.push_back(newBlock); } return ParseSuccess; } /// Block declaration. /// /// block ::= block-label? instruction* terminator-inst /// block-label ::= block-id block-arg-list? `:` /// block-id ::= caret-id /// block-arg-list ::= `(` ssa-id-and-type-list? `)` /// ParseResult FunctionParser::parseBlock(Block *&block) { // The first block for a function is already created. if (block) { // The name for a first block is optional. if (getToken().isNot(Token::caret_identifier)) return parseBlockBody(block); } SMLoc nameLoc = getToken().getLoc(); auto name = getTokenSpelling(); if (parseToken(Token::caret_identifier, "expected block name")) return ParseFailure; block = defineBlockNamed(name, nameLoc, block); // Fail if redefinition. if (!block) return emitError(nameLoc, "redefinition of block '" + name.str() + "'"); // If an argument list is present, parse it. if (consumeIf(Token::l_paren)) { SmallVector bbArgs; if (parseOptionalBlockArgList(bbArgs, block) || parseToken(Token::r_paren, "expected ')' to end argument list")) return ParseFailure; } if (parseToken(Token::colon, "expected ':' after block name")) return ParseFailure; return parseBlockBody(block); } ParseResult FunctionParser::parseBlockBody(Block *block) { // Set the insertion point to the block we want to insert new operations // into. builder.setInsertionPointToEnd(block); // Parse the list of operations that make up the body of the block. while (getToken().isNot(Token::caret_identifier, Token::r_brace)) { switch (getToken().getKind()) { default: if (parseOperation()) return ParseFailure; break; } } return ParseSuccess; } /// Create and remember a new placeholder for a forward reference. Value *FunctionParser::createForwardReferencePlaceholder(SMLoc loc, Type type) { // Forward references are always created as instructions, even in ML // functions, because we just need something with a def/use chain. // // We create these placeholders as having an empty name, which we know // cannot be created through normal user input, allowing us to distinguish // them. auto name = OperationName("placeholder", getContext()); auto *inst = Instruction::create( getEncodedSourceLocation(loc), name, /*operands=*/{}, type, /*attributes=*/{}, /*successors=*/{}, /*numBlockLists=*/0, /*resizableOperandList=*/false, getContext()); forwardReferencePlaceholders[inst->getResult(0)] = loc; return inst->getResult(0); } /// Given an unbound reference to an SSA value and its type, return the value /// it specifies. This returns null on failure. Value *FunctionParser::resolveSSAUse(SSAUseInfo useInfo, Type type) { auto &entries = values[useInfo.name]; // If we have already seen a value of this name, return it. if (useInfo.number < entries.size() && entries[useInfo.number].first) { auto *result = entries[useInfo.number].first; // Check that the type matches the other uses. if (result->getType() == type) return result; emitError(useInfo.loc, "use of value '" + useInfo.name.str() + "' expects different type than prior uses"); emitError(entries[useInfo.number].second, "prior use here"); return nullptr; } // Make sure we have enough slots for this. if (entries.size() <= useInfo.number) entries.resize(useInfo.number + 1); // If the value has already been defined and this is an overly large result // number, diagnose that. if (entries[0].first && !isForwardReferencePlaceholder(entries[0].first)) return (emitError(useInfo.loc, "reference to invalid result number"), nullptr); // Otherwise, this is a forward reference. Create a placeholder and remember // that we did so. auto *result = createForwardReferencePlaceholder(useInfo.loc, type); entries[useInfo.number].first = result; entries[useInfo.number].second = useInfo.loc; return result; } /// After the function is finished parsing, this function checks to see if /// there are any remaining issues. ParseResult FunctionParser::finalizeFunction(SMLoc loc) { // Check for any forward references that are left. If we find any, error // out. if (!forwardReferencePlaceholders.empty()) { SmallVector, 4> errors; // Iteration over the map isn't deterministic, so sort by source location. for (auto entry : forwardReferencePlaceholders) errors.push_back({entry.second.getPointer(), entry.first}); llvm::array_pod_sort(errors.begin(), errors.end()); for (auto entry : errors) { auto loc = SMLoc::getFromPointer(entry.first); emitError(loc, "use of undeclared SSA value name"); } return ParseFailure; } return ParseSuccess; } FunctionParser::~FunctionParser() { for (auto &fwd : forwardReferencePlaceholders) { // Drop all uses of undefined forward declared reference and destroy // defining instruction. fwd.first->dropAllUses(); fwd.first->getDefiningInst()->destroy(); } } /// Register a definition of a value with the symbol table. ParseResult FunctionParser::addDefinition(SSAUseInfo useInfo, Value *value) { auto &entries = values[useInfo.name]; // Make sure there is a slot for this value. if (entries.size() <= useInfo.number) entries.resize(useInfo.number + 1); // If we already have an entry for this, check to see if it was a definition // or a forward reference. if (auto *existing = entries[useInfo.number].first) { if (!isForwardReferencePlaceholder(existing)) { emitError(useInfo.loc, "redefinition of SSA value '" + useInfo.name + "'"); return emitError(entries[useInfo.number].second, "previously defined here"); } // If it was a forward reference, update everything that used it to use // the actual definition instead, delete the forward ref, and remove it // from our set of forward references we track. existing->replaceAllUsesWith(value); existing->getDefiningInst()->destroy(); forwardReferencePlaceholders.erase(existing); } entries[useInfo.number].first = value; entries[useInfo.number].second = useInfo.loc; return ParseSuccess; } /// Parse a SSA operand for an instruction or instruction. /// /// ssa-use ::= ssa-id /// ParseResult FunctionParser::parseSSAUse(SSAUseInfo &result) { result.name = getTokenSpelling(); result.number = 0; result.loc = getToken().getLoc(); if (parseToken(Token::percent_identifier, "expected SSA operand")) return ParseFailure; // If we have an affine map ID, it is a result number. if (getToken().is(Token::hash_identifier)) { if (auto value = getToken().getHashIdentifierNumber()) result.number = value.getValue(); else return emitError("invalid SSA value result number"); consumeToken(Token::hash_identifier); } return ParseSuccess; } /// Parse a (possibly empty) list of SSA operands. /// /// ssa-use-list ::= ssa-use (`,` ssa-use)* /// ssa-use-list-opt ::= ssa-use-list? /// ParseResult FunctionParser::parseOptionalSSAUseList(SmallVectorImpl &results) { if (getToken().isNot(Token::percent_identifier)) return ParseSuccess; return parseCommaSeparatedList([&]() -> ParseResult { SSAUseInfo result; if (parseSSAUse(result)) return ParseFailure; results.push_back(result); return ParseSuccess; }); } /// Parse an SSA use with an associated type. /// /// ssa-use-and-type ::= ssa-use `:` type template ResultType FunctionParser::parseSSADefOrUseAndType( const std::function &action) { SSAUseInfo useInfo; if (parseSSAUse(useInfo) || parseToken(Token::colon, "expected ':' and type for SSA operand")) return nullptr; auto type = parseType(); if (!type) return nullptr; return action(useInfo, type); } /// Parse a (possibly empty) list of SSA operands, followed by a colon, then /// followed by a type list. /// /// ssa-use-and-type-list /// ::= ssa-use-list ':' type-list-no-parens /// template ParseResult FunctionParser::parseOptionalSSAUseAndTypeList( SmallVectorImpl &results) { SmallVector valueIDs; if (parseOptionalSSAUseList(valueIDs)) return ParseFailure; // If there were no operands, then there is no colon or type lists. if (valueIDs.empty()) return ParseSuccess; SmallVector types; if (parseToken(Token::colon, "expected ':' in operand list") || parseTypeListNoParens(types)) return ParseFailure; if (valueIDs.size() != types.size()) return emitError("expected " + Twine(valueIDs.size()) + " types to match operand list"); results.reserve(valueIDs.size()); for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) { if (auto *value = resolveSSAUse(valueIDs[i], types[i])) results.push_back(cast(value)); else return ParseFailure; } return ParseSuccess; } /// Get the block with the specified name, creating it if it doesn't already /// exist. The location specified is the point of use, which allows /// us to diagnose references to blocks that are not defined precisely. Block *FunctionParser::getBlockNamed(StringRef name, SMLoc loc) { auto &blockAndLoc = blocksByName[name]; if (!blockAndLoc.first) { blockAndLoc.first = new Block(); forwardRef[blockAndLoc.first] = loc; blockAndLoc.second = loc; } return blockAndLoc.first; } /// Define the block with the specified name. Returns the Block* or nullptr in /// the case of redefinition. Block *FunctionParser::defineBlockNamed(StringRef name, SMLoc loc, Block *existing) { auto &blockAndLoc = blocksByName[name]; if (!blockAndLoc.first) { // If the caller provided a block, use it. Otherwise create a new one. if (!existing) existing = new Block(); blockAndLoc.first = existing; blockAndLoc.second = loc; return blockAndLoc.first; } // Forward declarations are removed once defined, so if we are defining a // existing block and it is not a forward declaration, then it is a // redeclaration. if (!forwardRef.erase(blockAndLoc.first)) return nullptr; return blockAndLoc.first; } /// Parse a single operation successor and it's operand list. /// /// successor ::= block-id branch-use-list? /// branch-use-list ::= `(` ssa-use-list ':' type-list-no-parens `)` /// bool FunctionParser::parseSuccessorAndUseList( Block *&dest, SmallVectorImpl &operands) { // Verify branch is identifier and get the matching block. if (!getToken().is(Token::caret_identifier)) return emitError("expected block name"); dest = getBlockNamed(getTokenSpelling(), getToken().getLoc()); consumeToken(); // Handle optional arguments. if (consumeIf(Token::l_paren) && (parseOptionalSSAUseAndTypeList(operands) || parseToken(Token::r_paren, "expected ')' to close argument list"))) { return true; } return false; } /// Parse a comma-separated list of operation successors in brackets. /// /// successor-list ::= `[` successor (`,` successor )* `]` /// ParseResult FunctionParser::parseSuccessors( SmallVectorImpl &destinations, SmallVectorImpl> &operands) { if (parseToken(Token::l_square, "expected '['")) return ParseFailure; auto parseElt = [this, &destinations, &operands]() { Block *dest; SmallVector destOperands; bool r = parseSuccessorAndUseList(dest, destOperands); destinations.push_back(dest); operands.push_back(destOperands); return r ? ParseFailure : ParseSuccess; }; return parseCommaSeparatedListUntil(Token::r_square, parseElt, /*allowEmptyList=*/false); } /// Parse a (possibly empty) list of SSA operands with types as block arguments. /// /// ssa-id-and-type-list ::= ssa-id-and-type (`,` ssa-id-and-type)* /// ParseResult FunctionParser::parseOptionalBlockArgList( SmallVectorImpl &results, Block *owner) { if (getToken().is(Token::r_brace)) return ParseSuccess; // If the block already has arguments, then we're handling the entry block. // Parse and register the names for the arguments, but do not add them. bool definingExistingArgs = owner->getNumArguments() != 0; unsigned nextArgument = 0; return parseCommaSeparatedList([&]() -> ParseResult { auto type = parseSSADefOrUseAndType( [&](SSAUseInfo useInfo, Type type) -> Type { BlockArgument *arg; if (!definingExistingArgs) { arg = owner->addArgument(type); } else if (nextArgument >= owner->getNumArguments()) { emitError("too many arguments specified in argument list"); return {}; } else { arg = owner->getArgument(nextArgument++); if (arg->getType() != type) { emitError("argument and block argument type mismatch"); return {}; } } if (addDefinition(useInfo, arg)) return {}; return type; }); return type ? ParseSuccess : ParseFailure; }); } /// Parse an operation. /// /// operation ::= /// (ssa-id `=`)? string '(' ssa-use-list? ')' attribute-dict? /// `:` function-type trailing-location? /// ParseResult FunctionParser::parseOperation() { auto loc = getToken().getLoc(); StringRef resultID; if (getToken().is(Token::percent_identifier)) { resultID = getTokenSpelling(); consumeToken(Token::percent_identifier); if (parseToken(Token::equal, "expected '=' after SSA name")) return ParseFailure; } Instruction *op; if (getToken().is(Token::bare_identifier) || getToken().isKeyword()) op = parseCustomOperation(); else if (getToken().is(Token::string)) op = parseGenericOperation(); else return emitError("expected operation name in quotes"); // If parsing of the basic operation failed, then this whole thing fails. if (!op) return ParseFailure; // If the instruction had a name, register it. if (!resultID.empty()) { if (op->getNumResults() == 0) return emitError(loc, "cannot name an operation with no results"); for (unsigned i = 0, e = op->getNumResults(); i != e; ++i) if (addDefinition({resultID, i, loc}, op->getResult(i))) return ParseFailure; } // Try to parse the optional trailing location. if (parseOptionalTrailingLocation(op)) return ParseFailure; return ParseSuccess; } Instruction *FunctionParser::parseGenericOperation() { // Get location information for the operation. auto srcLocation = getEncodedSourceLocation(getToken().getLoc()); auto name = getToken().getStringValue(); if (name.empty()) return (emitError("empty operation name is invalid"), nullptr); if (name.find('\0') != StringRef::npos) return (emitError("null character not allowed in operation name"), nullptr); consumeToken(Token::string); OperationState result(builder.getContext(), srcLocation, name); // Generic operations have a resizable operation list. result.setOperandListToResizable(); // Parse the operand list. SmallVector operandInfos; if (parseToken(Token::l_paren, "expected '(' to start operand list") || parseOptionalSSAUseList(operandInfos) || parseToken(Token::r_paren, "expected ')' to end operand list")) { return nullptr; } // Parse the successor list but don't add successors to the result yet to // avoid messing up with the argument order. SmallVector successors; SmallVector, 2> successorOperands; if (getToken().is(Token::l_square)) { // Check if the operation is a known terminator. const AbstractOperation *abstractOp = result.name.getAbstractOperation(); if (abstractOp && !abstractOp->hasProperty(OperationProperty::Terminator)) return emitError("successors in non-terminator"), nullptr; if (parseSuccessors(successors, successorOperands)) return nullptr; } if (getToken().is(Token::l_brace)) { if (parseAttributeDict(result.attributes)) return nullptr; } if (parseToken(Token::colon, "expected ':' followed by instruction type")) return nullptr; auto typeLoc = getToken().getLoc(); auto type = parseType(); if (!type) return nullptr; auto fnType = type.dyn_cast(); if (!fnType) return (emitError(typeLoc, "expected function type"), nullptr); result.addTypes(fnType.getResults()); // Check that we have the right number of types for the operands. auto operandTypes = fnType.getInputs(); if (operandTypes.size() != operandInfos.size()) { auto plural = "s"[operandInfos.size() == 1]; return (emitError(typeLoc, "expected " + llvm::utostr(operandInfos.size()) + " operand type" + plural + " but had " + llvm::utostr(operandTypes.size())), nullptr); } // Resolve all of the operands. for (unsigned i = 0, e = operandInfos.size(); i != e; ++i) { result.operands.push_back(resolveSSAUse(operandInfos[i], operandTypes[i])); if (!result.operands.back()) return nullptr; } // Add the sucessors, and their operands after the proper operands. for (const auto &succ : llvm::zip(successors, successorOperands)) { Block *successor = std::get<0>(succ); const SmallVector &operands = std::get<1>(succ); result.addSuccessor(successor, operands); } // Parse the optional block lists for this operation. std::vector> blocks; while (getToken().is(Token::l_brace)) { SmallVector newBlocks; if (parseOperationBlockList(newBlocks, /*entryArguments=*/llvm::None)) { for (auto &blockList : blocks) cleanupInvalidBlocks(blockList); return nullptr; } blocks.emplace_back(newBlocks); } result.reserveBlockLists(blocks.size()); auto *opInst = builder.createOperation(result); // Initialize the parsed block lists. for (unsigned i = 0, e = blocks.size(); i != e; ++i) { auto &blockList = opInst->getBlockList(i).getBlocks(); blockList.insert(blockList.end(), blocks[i].begin(), blocks[i].end()); } return opInst; } namespace { class CustomOpAsmParser : public OpAsmParser { public: CustomOpAsmParser(SMLoc nameLoc, StringRef opName, FunctionParser &parser) : nameLoc(nameLoc), opName(opName), parser(parser) {} bool parseOperation(const AbstractOperation *opDefinition, OperationState *opState) { if (opDefinition->parseAssembly(this, opState)) return true; // Check that enough block lists were reserved for those that were parsed. if (parsedBlockLists.size() > opState->numBlockLists) { return emitError( nameLoc, "parsed more block lists than those reserved in the operation state"); } // Check there were no dangling entry block arguments. if (!parsedBlockListEntryArguments.empty()) { return emitError( nameLoc, "no block list was attached to parsed entry block arguments"); } // Check that none of the operands of the current operation reference an // entry block argument for any of the block lists. for (auto *entryArg : parsedBlockListEntryArgumentPlaceholders) if (llvm::is_contained(opState->operands, entryArg)) return emitError(nameLoc, "operand use before it's defined"); return false; } //===--------------------------------------------------------------------===// // High level parsing methods. //===--------------------------------------------------------------------===// bool getCurrentLocation(llvm::SMLoc *loc) override { *loc = parser.getToken().getLoc(); return false; } bool parseComma() override { return parser.parseToken(Token::comma, "expected ','"); } bool parseEqual() override { return parser.parseToken(Token::equal, "expected '='"); } bool parseType(Type &result) override { return !(result = parser.parseType()); } bool parseColonType(Type &result) override { return parser.parseToken(Token::colon, "expected ':'") || !(result = parser.parseType()); } bool parseColonTypeList(SmallVectorImpl &result) override { if (parser.parseToken(Token::colon, "expected ':'")) return true; do { if (auto type = parser.parseType()) result.push_back(type); else return true; } while (parser.consumeIf(Token::comma)); return false; } bool parseTrailingOperandList(SmallVectorImpl &result, int requiredOperandCount, Delimiter delimiter) override { if (parser.getToken().is(Token::comma)) { parseComma(); return parseOperandList(result, requiredOperandCount, delimiter); } if (requiredOperandCount != -1) return emitError(parser.getToken().getLoc(), "expected " + Twine(requiredOperandCount) + " operands"); return false; } /// Parse an optional keyword. bool parseOptionalKeyword(const char *keyword) override { // Check that the current token is a bare identifier or keyword. if (parser.getToken().isNot(Token::bare_identifier) && !parser.getToken().isKeyword()) return true; if (parser.getTokenSpelling() == keyword) { parser.consumeToken(); return false; } return true; } /// Parse an arbitrary attribute of a given type and return it in result. This /// also adds the attribute to the specified attribute list with the specified /// name. bool parseAttribute(Attribute &result, Type type, StringRef attrName, SmallVectorImpl &attrs) override { result = parser.parseAttribute(type); if (!result) return true; attrs.push_back(parser.builder.getNamedAttr(attrName, result)); return false; } /// Parse an arbitrary attribute and return it in result. This also adds /// the attribute to the specified attribute list with the specified name. bool parseAttribute(Attribute &result, StringRef attrName, SmallVectorImpl &attrs) override { return parseAttribute(result, Type(), attrName, attrs); } /// If a named attribute list is present, parse is into result. bool parseOptionalAttributeDict(SmallVectorImpl &result) override { if (parser.getToken().isNot(Token::l_brace)) return false; return parser.parseAttributeDict(result) == ParseFailure; } /// Parse a function name like '@foo' and return the name in a form that can /// be passed to resolveFunctionName when a function type is available. virtual bool parseFunctionName(StringRef &result, llvm::SMLoc &loc) { loc = parser.getToken().getLoc(); if (parser.getToken().isNot(Token::at_identifier)) return emitError(loc, "expected function name"); result = parser.getTokenSpelling(); parser.consumeToken(Token::at_identifier); return false; } bool parseOperand(OperandType &result) override { FunctionParser::SSAUseInfo useInfo; if (parser.parseSSAUse(useInfo)) return true; result = {useInfo.loc, useInfo.name, useInfo.number}; return false; } bool parseSuccessorAndUseList(Block *&dest, SmallVectorImpl &operands) override { // Defer successor parsing to the function parsers. return parser.parseSuccessorAndUseList(dest, operands); } bool parseOperandList(SmallVectorImpl &result, int requiredOperandCount = -1, Delimiter delimiter = Delimiter::None) override { auto startLoc = parser.getToken().getLoc(); // Handle delimiters. switch (delimiter) { case Delimiter::None: // Don't check for the absence of a delimiter if the number of operands // is unknown (and hence the operand list could be empty). if (requiredOperandCount == -1) break; // Token already matches an identifier and so can't be a delimiter. if (parser.getToken().is(Token::percent_identifier)) break; // Test against known delimiters. if (parser.getToken().is(Token::l_paren) || parser.getToken().is(Token::l_square)) return emitError(startLoc, "unexpected delimiter"); return emitError(startLoc, "invalid operand"); case Delimiter::OptionalParen: if (parser.getToken().isNot(Token::l_paren)) return false; LLVM_FALLTHROUGH; case Delimiter::Paren: if (parser.parseToken(Token::l_paren, "expected '(' in operand list")) return true; break; case Delimiter::OptionalSquare: if (parser.getToken().isNot(Token::l_square)) return false; LLVM_FALLTHROUGH; case Delimiter::Square: if (parser.parseToken(Token::l_square, "expected '[' in operand list")) return true; break; } // Check for zero operands. if (parser.getToken().is(Token::percent_identifier)) { do { OperandType operand; if (parseOperand(operand)) return true; result.push_back(operand); } while (parser.consumeIf(Token::comma)); } // Handle delimiters. If we reach here, the optional delimiters were // present, so we need to parse their closing one. switch (delimiter) { case Delimiter::None: break; case Delimiter::OptionalParen: case Delimiter::Paren: if (parser.parseToken(Token::r_paren, "expected ')' in operand list")) return true; break; case Delimiter::OptionalSquare: case Delimiter::Square: if (parser.parseToken(Token::r_square, "expected ']' in operand list")) return true; break; } if (requiredOperandCount != -1 && result.size() != requiredOperandCount) return emitError(startLoc, "expected " + Twine(requiredOperandCount) + " operands"); return false; } /// Resolve a parse function name and a type into a function reference. virtual bool resolveFunctionName(StringRef name, FunctionType type, llvm::SMLoc loc, Function *&result) { result = parser.resolveFunctionReference(name, loc, type); return result == nullptr; } /// Parses a list of blocks. bool parseBlockList() override { // Parse the block list. SmallVector results; if (parser.parseOperationBlockList(results, parsedBlockListEntryArguments)) return true; parsedBlockListEntryArguments.clear(); parsedBlockLists.emplace_back(results); return false; } /// Parses an argument for the entry block of the next block list to be /// parsed. bool parseBlockListEntryBlockArgument(Type argType) override { SmallVector argValues; OperandType operand; if (parseOperand(operand)) return true; // Create a place holder for this argument. FunctionParser::SSAUseInfo operandInfo = {operand.name, operand.number, operand.location}; if (auto *value = parser.resolveSSAUse(operandInfo, argType)) { parsedBlockListEntryArguments.emplace_back(operandInfo, argType); // Track each of the placeholders so that we can detect invalid references // to block list arguments. parsedBlockListEntryArgumentPlaceholders.emplace_back(value); return false; } return true; } //===--------------------------------------------------------------------===// // Methods for interacting with the parser //===--------------------------------------------------------------------===// Builder &getBuilder() const override { return parser.builder; } llvm::SMLoc getNameLoc() const override { return nameLoc; } bool resolveOperand(const OperandType &operand, Type type, SmallVectorImpl &result) override { FunctionParser::SSAUseInfo operandInfo = {operand.name, operand.number, operand.location}; if (auto *value = parser.resolveSSAUse(operandInfo, type)) { result.push_back(value); return false; } return true; } /// Emit a diagnostic at the specified location and return true. bool emitError(llvm::SMLoc loc, const Twine &message) override { // If we emit an error, then cleanup any parsed block lists. for (auto &blockList : parsedBlockLists) parser.cleanupInvalidBlocks(blockList); parsedBlockLists.clear(); parser.emitError(loc, "custom op '" + Twine(opName) + "' " + message); emittedError = true; return true; } bool didEmitError() const { return emittedError; } /// Returns the block lists that were parsed. MutableArrayRef> getParsedBlockLists() { return parsedBlockLists; } private: std::vector> parsedBlockLists; SmallVector, 2> parsedBlockListEntryArguments; SmallVector parsedBlockListEntryArgumentPlaceholders; SMLoc nameLoc; StringRef opName; FunctionParser &parser; bool emittedError = false; }; } // end anonymous namespace. Instruction *FunctionParser::parseCustomOperation() { auto opLoc = getToken().getLoc(); auto opName = getTokenSpelling(); CustomOpAsmParser opAsmParser(opLoc, opName, *this); auto *opDefinition = AbstractOperation::lookup(opName, getContext()); if (!opDefinition && !opName.contains('.')) { // If the operation name has no namespace prefix we treat it as a standard // operation and prefix it with "std". // TODO: Would it be better to just build a mapping of the registered // operations in the standard dialect? opDefinition = AbstractOperation::lookup(Twine("std." + opName).str(), getContext()); } if (!opDefinition) { opAsmParser.emitError(opLoc, "is unknown"); return nullptr; } consumeToken(); // If the custom op parser crashes, produce some indication to help // debugging. std::string opNameStr = opName.str(); llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'", opNameStr.c_str()); // Get location information for the operation. auto srcLocation = getEncodedSourceLocation(opLoc); // Have the op implementation take a crack and parsing this. OperationState opState(builder.getContext(), srcLocation, opDefinition->name); if (opAsmParser.parseOperation(opDefinition, &opState)) return nullptr; // If it emitted an error, we failed. if (opAsmParser.didEmitError()) return nullptr; // Otherwise, we succeeded. Use the state it parsed as our op information. auto *opInst = builder.createOperation(opState); // Resolve any parsed block lists. auto parsedBlockLists = opAsmParser.getParsedBlockLists(); for (unsigned i = 0, e = parsedBlockLists.size(); i != e; ++i) { auto &opBlockList = opInst->getBlockList(i).getBlocks(); opBlockList.insert(opBlockList.end(), parsedBlockLists[i].begin(), parsedBlockLists[i].end()); } return opInst; } /// Parse an affine constraint. /// affine-constraint ::= affine-expr `>=` `0` /// | affine-expr `==` `0` /// /// isEq is set to true if the parsed constraint is an equality, false if it /// is an inequality (greater than or equal). /// AffineExpr AffineParser::parseAffineConstraint(bool *isEq) { AffineExpr expr = parseAffineExpr(); if (!expr) return nullptr; if (consumeIf(Token::greater) && consumeIf(Token::equal) && getToken().is(Token::integer)) { auto dim = getToken().getUnsignedIntegerValue(); if (dim.hasValue() && dim.getValue() == 0) { consumeToken(Token::integer); *isEq = false; return expr; } return (emitError("expected '0' after '>='"), nullptr); } if (consumeIf(Token::equal) && consumeIf(Token::equal) && getToken().is(Token::integer)) { auto dim = getToken().getUnsignedIntegerValue(); if (dim.hasValue() && dim.getValue() == 0) { consumeToken(Token::integer); *isEq = true; return expr; } return (emitError("expected '0' after '=='"), nullptr); } return (emitError("expected '== 0' or '>= 0' at end of affine constraint"), nullptr); } /// Parse the constraints that are part of an integer set definition. /// integer-set-inline /// ::= dim-and-symbol-id-lists `:` /// '(' affine-constraint-conjunction? ')' /// affine-constraint-conjunction ::= affine-constraint (`,` /// affine-constraint)* /// IntegerSet AffineParser::parseIntegerSetConstraints(unsigned numDims, unsigned numSymbols) { if (parseToken(Token::l_paren, "expected '(' at start of integer set constraint list")) return IntegerSet(); SmallVector constraints; SmallVector isEqs; auto parseElt = [&]() -> ParseResult { bool isEq; auto elt = parseAffineConstraint(&isEq); ParseResult res = elt ? ParseSuccess : ParseFailure; if (elt) { constraints.push_back(elt); isEqs.push_back(isEq); } return res; }; // Parse a list of affine constraints (comma-separated). if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true)) return IntegerSet(); // If no constraints were parsed, then treat this as a degenerate 'true' case. if (constraints.empty()) { /* 0 == 0 */ auto zero = getAffineConstantExpr(0, getContext()); return builder.getIntegerSet(numDims, numSymbols, zero, true); } // Parsed a valid integer set. return builder.getIntegerSet(numDims, numSymbols, constraints, isEqs); } //===----------------------------------------------------------------------===// // Top-level entity parsing. //===----------------------------------------------------------------------===// namespace { /// This parser handles entities that are only valid at the top level of the /// file. class ModuleParser : public Parser { public: explicit ModuleParser(ParserState &state) : Parser(state) {} ParseResult parseModule(); private: ParseResult finalizeModule(); ParseResult parseAffineStructureDef(); ParseResult parseTypeAliasDef(); // Functions. ParseResult parseArgumentList(SmallVectorImpl &argTypes, SmallVectorImpl &argNames, SmallVectorImpl> &argAttrs); ParseResult parseFunctionSignature( StringRef &name, FunctionType &type, SmallVectorImpl &argNames, SmallVectorImpl> &argAttrs); ParseResult parseFunc(); }; } // end anonymous namespace /// Parses either an affine map declaration or an integer set declaration. /// /// Affine map declaration. /// /// affine-map-def ::= affine-map-id `=` affine-map-inline /// /// Integer set declaration. /// /// integer-set-decl ::= integer-set-id `=` integer-set-inline /// ParseResult ModuleParser::parseAffineStructureDef() { assert(getToken().is(Token::hash_identifier)); StringRef affineStructureId = getTokenSpelling().drop_front(); // Check for redefinitions. if (getState().affineMapDefinitions.count(affineStructureId) > 0) return emitError("redefinition of affine map id '" + affineStructureId + "'"); if (getState().integerSetDefinitions.count(affineStructureId) > 0) return emitError("redefinition of integer set id '" + affineStructureId + "'"); consumeToken(Token::hash_identifier); // Parse the '=' if (parseToken(Token::equal, "expected '=' in affine map outlined definition")) return ParseFailure; AffineMap map; IntegerSet set; if (AffineParser(getState()).parseAffineMapOrIntegerSetInline(map, set)) return ParseFailure; if (map) { getState().affineMapDefinitions[affineStructureId] = map; return ParseSuccess; } assert(set); getState().integerSetDefinitions[affineStructureId] = set; return ParseSuccess; } /// Parse a type alias declaration. /// /// type-alias-def ::= '!' alias-name `=` 'type' type /// ParseResult ModuleParser::parseTypeAliasDef() { assert(getToken().is(Token::exclamation_identifier)); StringRef aliasName = getTokenSpelling().drop_front(); // Check for redefinitions. if (getState().typeAliasDefinitions.count(aliasName) > 0) return emitError("redefinition of type alias id '" + aliasName + "'"); consumeToken(Token::exclamation_identifier); // Parse the '=' and 'type'. if (parseToken(Token::equal, "expected '=' in type alias definition") || parseToken(Token::kw_type, "expected 'type' in type alias definition")) return ParseFailure; // Parse the type. Type aliasedType = parseType(); if (!aliasedType) return ParseFailure; // Register this alias with the parser state. getState().typeAliasDefinitions.try_emplace(aliasName, aliasedType); return ParseSuccess; } /// Parse a (possibly empty) list of Function arguments with types. /// /// named-argument ::= ssa-id `:` type attribute-dict? /// argument-list ::= named-argument (`,` named-argument)* | /*empty*/ /// argument-list ::= type attribute-dict? (`,` type attribute-dict?)* /// | /*empty*/ /// ParseResult ModuleParser::parseArgumentList( SmallVectorImpl &argTypes, SmallVectorImpl &argNames, SmallVectorImpl> &argAttrs) { consumeToken(Token::l_paren); // The argument list either has to consistently have ssa-id's followed by // types, or just be a type list. It isn't ok to sometimes have SSA ID's and // sometimes not. auto parseElt = [&]() -> ParseResult { // Parse argument name if present. auto loc = getToken().getLoc(); StringRef name = getTokenSpelling(); if (consumeIf(Token::percent_identifier)) { // Reject this if the preceding argument was missing a name. if (argNames.empty() && !argTypes.empty()) return emitError(loc, "expected type instead of SSA identifier"); argNames.push_back(name); if (parseToken(Token::colon, "expected ':'")) return ParseFailure; } else { // Reject this if the preceding argument had a name. if (!argNames.empty()) return emitError("expected SSA identifier"); } // Parse argument type auto elt = parseType(); if (!elt) return ParseFailure; argTypes.push_back(elt); // Parse the attribute dict. SmallVector attrs; if (getToken().is(Token::l_brace)) { if (parseAttributeDict(attrs)) return ParseFailure; } argAttrs.push_back(attrs); return ParseSuccess; }; return parseCommaSeparatedListUntil(Token::r_paren, parseElt); } /// Parse a function signature, starting with a name and including the /// parameter list. /// /// function-signature ::= /// function-id `(` argument-list `)` (`->` type-list)? /// ParseResult ModuleParser::parseFunctionSignature( StringRef &name, FunctionType &type, SmallVectorImpl &argNames, SmallVectorImpl> &argAttrs) { if (getToken().isNot(Token::at_identifier)) return emitError("expected a function identifier like '@foo'"); name = getTokenSpelling().drop_front(); consumeToken(Token::at_identifier); if (getToken().isNot(Token::l_paren)) return emitError("expected '(' in function signature"); SmallVector argTypes; if (parseArgumentList(argTypes, argNames, argAttrs)) return ParseFailure; // Parse the return type if present. SmallVector results; if (consumeIf(Token::arrow)) { if (parseFunctionResultTypes(results)) return ParseFailure; } type = builder.getFunctionType(argTypes, results); return ParseSuccess; } /// Function declarations. /// /// function ::= `func` function-signature function-attributes? /// trailing-location? function-body? /// function-body ::= `{` block+ `}` /// function-attributes ::= `attributes` attribute-dict /// ParseResult ModuleParser::parseFunc() { consumeToken(); StringRef name; FunctionType type; SmallVector argNames; SmallVector, 4> argAttrs; auto loc = getToken().getLoc(); if (parseFunctionSignature(name, type, argNames, argAttrs)) return ParseFailure; // If function attributes are present, parse them. SmallVector attrs; if (consumeIf(Token::kw_attributes)) { if (parseAttributeDict(attrs)) return ParseFailure; } // Okay, the function signature was parsed correctly, create the function now. auto *function = new Function(getEncodedSourceLocation(loc), name, type, attrs); getModule()->getFunctions().push_back(function); // Verify no name collision / redefinition. if (function->getName() != name) return emitError(loc, "redefinition of function named '" + name.str() + "'"); // Parse an optional trailing location. if (parseOptionalTrailingLocation(function)) return ParseFailure; // Add the attributes to the function arguments. for (unsigned i = 0, e = function->getNumArguments(); i != e; ++i) function->setArgAttrs(i, argAttrs[i]); // External functions have no body. if (getToken().isNot(Token::l_brace)) return ParseSuccess; // Create the parser. auto parser = FunctionParser(getState(), function); bool hadNamedArguments = !argNames.empty(); // Add the entry block and argument list. function->addEntryBlock(); // Add definitions of the function arguments. if (hadNamedArguments) { for (unsigned i = 0, e = function->getNumArguments(); i != e; ++i) { if (parser.addDefinition({argNames[i], 0, loc}, function->getArgument(i))) return ParseFailure; } } return parser.parseFunctionBody(hadNamedArguments); } /// Finish the end of module parsing - when the result is valid, do final /// checking. ParseResult ModuleParser::finalizeModule() { // Resolve all forward references, building a remapping table of attributes. DenseMap remappingTable; for (auto forwardRef : getState().functionForwardRefs) { auto name = forwardRef.first; // Resolve the reference. auto *resolvedFunction = getModule()->getNamedFunction(name); if (!resolvedFunction) { forwardRef.second->emitError("reference to undefined function '" + name.str() + "'"); return ParseFailure; } remappingTable[builder.getFunctionAttr(forwardRef.second)] = builder.getFunctionAttr(resolvedFunction); } // If there was nothing to remap, then we're done. if (remappingTable.empty()) return ParseSuccess; // Otherwise, walk the entire module replacing uses of one attribute set // with the correct ones. remapFunctionAttrs(*getModule(), remappingTable); // Now that all references to the forward definition placeholders are // resolved, we can deallocate the placeholders. for (auto forwardRef : getState().functionForwardRefs) delete forwardRef.second; getState().functionForwardRefs.clear(); return ParseSuccess; } /// This is the top-level module parser. ParseResult ModuleParser::parseModule() { while (1) { switch (getToken().getKind()) { default: emitError("expected a top level entity"); return ParseFailure; // If we got to the end of the file, then we're done. case Token::eof: return finalizeModule(); // If we got an error token, then the lexer already emitted an error, just // stop. Someday we could introduce error recovery if there was demand // for it. case Token::error: return ParseFailure; case Token::hash_identifier: if (parseAffineStructureDef()) return ParseFailure; break; case Token::exclamation_identifier: if (parseTypeAliasDef()) return ParseFailure; break; case Token::kw_func: if (parseFunc()) return ParseFailure; break; } } } //===----------------------------------------------------------------------===// /// This parses the file specified by the indicated SourceMgr and returns an /// MLIR module if it was valid. If not, it emits diagnostics and returns /// null. Module *mlir::parseSourceFile(const llvm::SourceMgr &sourceMgr, MLIRContext *context) { // This is the result module we are parsing into. std::unique_ptr module(new Module(context)); ParserState state(sourceMgr, module.get()); if (ModuleParser(state).parseModule()) { return nullptr; } // Make sure the parse module has no other structural problems detected by // the verifier. if (module->verify()) return nullptr; return module.release(); } /// This parses the program string to a MLIR module if it was valid. If not, /// it emits diagnostics and returns null. Module *mlir::parseSourceString(StringRef moduleStr, MLIRContext *context) { auto memBuffer = MemoryBuffer::getMemBuffer(moduleStr); if (!memBuffer) return nullptr; SourceMgr sourceMgr; sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc()); return parseSourceFile(sourceMgr, context); }