//===- LoopAnalysis.cpp - Misc loop analysis routines //-------------------===// // // Copyright 2019 The MLIR Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // ============================================================================= // // This file implements miscellaneous loop analysis routines. // //===----------------------------------------------------------------------===// #include "mlir/Analysis/LoopAnalysis.h" #include "mlir/Analysis/AffineAnalysis.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/Statements.h" #include "mlir/Support/MathExtras.h" using namespace mlir; /// Returns the trip count of the loop as an affine expression if the latter is /// expressible as an affine expression, and nullptr otherwise. The trip count /// expression is simplified before returning. AffineExprRef mlir::getTripCountExpr(const ForStmt &forStmt) { // upper_bound - lower_bound + 1 int64_t loopSpan; int64_t step = forStmt.getStep(); auto *context = forStmt.getContext(); if (forStmt.hasConstantBounds()) { int64_t lb = forStmt.getConstantLowerBound(); int64_t ub = forStmt.getConstantUpperBound(); loopSpan = ub - lb + 1; } else { auto *lbMap = forStmt.getLowerBoundMap(); auto *ubMap = forStmt.getUpperBoundMap(); // TODO(bondhugula): handle max/min of multiple expressions. if (lbMap->getNumResults() != 1 || ubMap->getNumResults() != 1) return nullptr; // TODO(bondhugula): handle bounds with different operands. // Bounds have different operands, unhandled for now. if (!forStmt.matchingBoundOperandList()) return nullptr; // ub_expr - lb_expr + 1 AffineExprRef lbExpr(lbMap->getResult(0)); AffineExprRef ubExpr(ubMap->getResult(0)); auto loopSpanExpr = simplifyAffineExpr( ubExpr - lbExpr + 1, std::max(lbMap->getNumDims(), ubMap->getNumDims()), std::max(lbMap->getNumSymbols(), ubMap->getNumSymbols())); auto cExpr = loopSpanExpr.dyn_cast(); if (!cExpr) return AffineBinaryOpExpr::getCeilDiv(loopSpanExpr, step, context); loopSpan = cExpr->getValue(); } // 0 iteration loops. if (loopSpan < 0) return 0; return AffineConstantExpr::get(static_cast(ceilDiv(loopSpan, step)), context); } /// Returns the trip count of the loop if it's a constant, None otherwise. This /// method uses affine expression analysis (in turn using getTripCount) and is /// able to determine constant trip count in non-trivial cases. llvm::Optional mlir::getConstantTripCount(const ForStmt &forStmt) { auto tripCountExpr = getTripCountExpr(forStmt); if (!tripCountExpr) return None; if (auto constExpr = tripCountExpr.dyn_cast()) return constExpr->getValue(); return None; } /// Returns the greatest known integral divisor of the trip count. Affine /// expression analysis is used (indirectly through getTripCount), and /// this method is thus able to determine non-trivial divisors. uint64_t mlir::getLargestDivisorOfTripCount(const ForStmt &forStmt) { auto tripCountExpr = getTripCountExpr(forStmt); if (!tripCountExpr) return 1; if (auto constExpr = tripCountExpr.dyn_cast()) { uint64_t tripCount = constExpr->getValue(); // 0 iteration loops (greatest divisor is 2^64 - 1). if (tripCount == 0) return ULONG_MAX; // The greatest divisor is the trip count. return tripCount; } // Trip count is not a known constant; return its largest known divisor. return tripCountExpr->getLargestKnownDivisor(); }