//===- VectorOps.cpp - MLIR Super Vectorizer Operations -------------------===// // // Copyright 2019 The MLIR Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // ============================================================================= // // This file implements convenience types for working with super-vectorization // operations, in particular super-vector loads and stores. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/VectorOps/VectorOps.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/Builders.h" #include "mlir/IR/OpImplementation.h" #include "mlir/IR/TypeUtilities.h" #include "mlir/Support/LLVM.h" using namespace mlir; using namespace mlir::vector; //===----------------------------------------------------------------------===// // VectorOpsDialect //===----------------------------------------------------------------------===// mlir::vector::VectorOpsDialect::VectorOpsDialect(MLIRContext *context) : Dialect(getDialectNamespace(), context) { addOperations< #define GET_OP_LIST #include "mlir/Dialect/VectorOps/VectorOps.cpp.inc" >(); } //===----------------------------------------------------------------------===// // VectorExtractElementOp //===----------------------------------------------------------------------===// static Type inferExtractOpResultType(VectorType vectorType, ArrayAttr position) { if (static_cast(position.size()) == vectorType.getRank()) return vectorType.getElementType(); return VectorType::get(vectorType.getShape().drop_front(position.size()), vectorType.getElementType()); } void VectorExtractElementOp::build(Builder *builder, OperationState &result, Value *source, ArrayRef position) { result.addOperands(source); auto positionAttr = builder->getI32ArrayAttr(position); result.addTypes(inferExtractOpResultType(source->getType().cast(), positionAttr)); result.addAttribute(getPositionAttrName(), positionAttr); } static void print(OpAsmPrinter &p, VectorExtractElementOp op) { p << op.getOperationName() << " " << *op.vector() << op.position(); p.printOptionalAttrDict(op.getAttrs(), {"position"}); p << " : " << op.vector()->getType(); } static ParseResult parseVectorExtractElementOp(OpAsmParser &parser, OperationState &result) { llvm::SMLoc attributeLoc, typeLoc; SmallVector attrs; OpAsmParser::OperandType vector; Type type; Attribute attr; if (parser.parseOperand(vector) || parser.getCurrentLocation(&attributeLoc) || parser.parseAttribute(attr, "position", attrs) || parser.parseOptionalAttrDict(attrs) || parser.getCurrentLocation(&typeLoc) || parser.parseColonType(type)) return failure(); auto vectorType = type.dyn_cast(); if (!vectorType) return parser.emitError(typeLoc, "expected vector type"); auto positionAttr = attr.dyn_cast(); if (!positionAttr || static_cast(positionAttr.size()) > vectorType.getRank()) return parser.emitError( attributeLoc, "expected position attribute of rank smaller than vector"); Type resType = inferExtractOpResultType(vectorType, positionAttr); result.attributes = attrs; return failure(parser.resolveOperand(vector, type, result.operands) || parser.addTypeToList(resType, result.types)); } static LogicalResult verify(VectorExtractElementOp op) { auto positionAttr = op.position().getValue(); if (positionAttr.empty()) return op.emitOpError("expected non-empty position attribute"); if (positionAttr.size() > static_cast(op.getVectorType().getRank())) return op.emitOpError( "expected position attribute of rank smaller than vector"); for (auto en : llvm::enumerate(positionAttr)) { auto attr = en.value().dyn_cast(); if (!attr || attr.getInt() < 0 || attr.getInt() > op.getVectorType().getDimSize(en.index())) return op.emitOpError("expected position attribute #") << (en.index() + 1) << " to be a positive integer smaller than the corresponding " "vector dimension"; } return success(); } //===----------------------------------------------------------------------===// // VectorOuterProductOp //===----------------------------------------------------------------------===// static void print(OpAsmPrinter &p, VectorOuterProductOp op) { p << op.getOperationName() << " " << *op.lhs() << ", " << *op.rhs(); if (llvm::size(op.acc()) > 0) p << ", " << **op.acc().begin(); p << " : " << op.lhs()->getType() << ", " << op.rhs()->getType(); } static ParseResult parseVectorOuterProductOp(OpAsmParser &parser, OperationState &result) { SmallVector operandsInfo; Type tLHS, tRHS; if (parser.parseOperandList(operandsInfo) || parser.parseColonType(tLHS) || parser.parseComma() || parser.parseType(tRHS)) return failure(); if (operandsInfo.size() < 2) return parser.emitError(parser.getNameLoc(), "expected at least 2 operands"); VectorType vLHS = tLHS.dyn_cast(); VectorType vRHS = tRHS.dyn_cast(); if (!vLHS || !vRHS) return parser.emitError(parser.getNameLoc(), "expected 2 vector types"); VectorType resType = VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)}, vLHS.getElementType()); return failure( parser.resolveOperand(operandsInfo[0], tLHS, result.operands) || parser.resolveOperand(operandsInfo[1], tRHS, result.operands) || (operandsInfo.size() > 2 && parser.resolveOperand(operandsInfo[2], resType, result.operands)) || parser.addTypeToList(resType, result.types)); } static LogicalResult verify(VectorOuterProductOp op) { VectorType vLHS = op.getOperandVectorTypeLHS(), vRHS = op.getOperandVectorTypeRHS(), vACC = op.getOperandVectorTypeACC(), vRES = op.getVectorType(); if (vLHS.getRank() != 1) return op.emitOpError("expected 1-d vector for operand #1"); if (vRHS.getRank() != 1) return op.emitOpError("expected 1-d vector for operand #2"); if (vRES.getRank() != 2) return op.emitOpError("expected 2-d vector result"); if (vLHS.getDimSize(0) != vRES.getDimSize(0)) return op.emitOpError("expected #1 operand dim to match result dim #1"); if (vRHS.getDimSize(0) != vRES.getDimSize(1)) return op.emitOpError("expected #2 operand dim to match result dim #2"); if (vACC && vACC != vRES) return op.emitOpError("expected operand #3 of same type as result type"); return success(); } //===----------------------------------------------------------------------===// // VectorTransferReadOp //===----------------------------------------------------------------------===// template static LogicalResult verifyPermutationMap(AffineMap permutationMap, EmitFun emitOpError) { SmallVector seen(permutationMap.getNumInputs(), false); for (auto expr : permutationMap.getResults()) { auto dim = expr.dyn_cast(); auto zero = expr.dyn_cast(); if (zero) { if (zero.getValue() != 0) { return emitOpError( "requires a projected permutation_map (at most one dim or the zero " "constant can appear in each result)"); } continue; } if (!dim) { return emitOpError("requires a projected permutation_map (at most one " "dim or the zero constant can appear in each result)"); } if (seen[dim.getPosition()]) { return emitOpError( "requires a permutation_map that is a permutation (found one dim " "used more than once)"); } seen[dim.getPosition()] = true; } return success(); } static void print(OpAsmPrinter &p, VectorTransferReadOp op) { p << op.getOperationName() << " "; p.printOperand(op.memref()); p << "["; p.printOperands(op.indices()); p << "], "; p.printOperand(op.padding()); p << " "; p.printOptionalAttrDict(op.getAttrs()); p << " : " << op.getMemRefType(); p << ", " << op.getVectorType(); } ParseResult parseVectorTransferReadOp(OpAsmParser &parser, OperationState &result) { llvm::SMLoc typesLoc; OpAsmParser::OperandType memrefInfo; SmallVector indexInfo; OpAsmParser::OperandType paddingInfo; SmallVector types; // Parsing with support for optional paddingValue. if (parser.parseOperand(memrefInfo) || parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || parser.parseComma() || parser.parseOperand(paddingInfo) || parser.parseOptionalAttrDict(result.attributes) || parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) return failure(); if (types.size() != 2) return parser.emitError(typesLoc, "two types required"); auto indexType = parser.getBuilder().getIndexType(); MemRefType memRefType = types[0].dyn_cast(); if (!memRefType) return parser.emitError(typesLoc, "memref type required"), failure(); Type vectorType = types[1]; return failure( parser.resolveOperand(memrefInfo, memRefType, result.operands) || parser.resolveOperands(indexInfo, indexType, result.operands) || parser.resolveOperand(paddingInfo, memRefType.getElementType(), result.operands) || parser.addTypeToList(vectorType, result.types)); } static LogicalResult verify(VectorTransferReadOp op) { // Consistency of elemental types in memref and vector. MemRefType memrefType = op.getMemRefType(); VectorType vectorType = op.getVectorType(); if (memrefType.getElementType() != vectorType.getElementType()) return op.emitOpError( "requires memref and vector types of the same elemental type"); auto elementalType = op.padding()->getType(); if (!VectorType::isValidElementType(elementalType)) return op.emitOpError("requires valid padding vector elemental type"); if (elementalType != vectorType.getElementType()) return op.emitOpError( "requires formal padding and vector of the same elemental type"); if (llvm::size(op.indices()) != memrefType.getRank()) return op.emitOpError("requires ") << memrefType.getRank() << " indices"; auto permutationMap = op.permutation_map(); if (permutationMap.getNumSymbols() != 0) return op.emitOpError("requires permutation_map without symbols"); if (permutationMap.getNumInputs() != memrefType.getRank()) return op.emitOpError("requires a permutation_map with input dims of the " "same rank as the memref type"); if (permutationMap.getNumResults() != vectorType.getRank()) return op.emitOpError("requires a permutation_map with result dims of the " "same rank as the vector type"); return verifyPermutationMap(permutationMap, [&op](Twine t) { return op.emitOpError(t); }); } //===----------------------------------------------------------------------===// // VectorTransferWriteOp //===----------------------------------------------------------------------===// static void print(OpAsmPrinter &p, VectorTransferWriteOp op) { p << op.getOperationName() << " " << *op.vector() << ", " << *op.memref(); p << "["; p.printOperands(op.indices()); p << "]"; p.printOptionalAttrDict(op.getAttrs()); p << " : "; p.printType(op.getVectorType()); p << ", "; p.printType(op.getMemRefType()); } ParseResult parseVectorTransferWriteOp(OpAsmParser &parser, OperationState &result) { llvm::SMLoc typesLoc; OpAsmParser::OperandType storeValueInfo; OpAsmParser::OperandType memRefInfo; SmallVector indexInfo; SmallVector types; if (parser.parseOperand(storeValueInfo) || parser.parseComma() || parser.parseOperand(memRefInfo) || parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || parser.parseOptionalAttrDict(result.attributes) || parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) return failure(); if (types.size() != 2) return parser.emitError(typesLoc, "two types required"); auto indexType = parser.getBuilder().getIndexType(); Type vectorType = types[0], memRefType = types[1]; return failure( parser.resolveOperand(storeValueInfo, vectorType, result.operands) || parser.resolveOperand(memRefInfo, memRefType, result.operands) || parser.resolveOperands(indexInfo, indexType, result.operands)); } static LogicalResult verify(VectorTransferWriteOp op) { // Consistency of elemental types in memref and vector. MemRefType memrefType = op.getMemRefType(); VectorType vectorType = op.getVectorType(); if (memrefType.getElementType() != vectorType.getElementType()) return op.emitOpError( "requires memref and vector types of the same elemental type"); if (llvm::size(op.indices()) != memrefType.getRank()) return op.emitOpError("requires ") << memrefType.getRank() << " indices"; // Consistency of AffineMap attribute. auto permutationMap = op.permutation_map(); if (permutationMap.getNumSymbols() != 0) return op.emitOpError("requires a symbol-less permutation_map"); if (permutationMap.getNumInputs() != memrefType.getRank()) return op.emitOpError("requires a permutation_map with input dims of the " "same rank as the memref type: ") << permutationMap.getNumInputs() << " vs " << memrefType; if (permutationMap.getNumResults() != vectorType.getRank()) return op.emitOpError("requires a permutation_map with result dims of the " "same rank as the vector type.") << permutationMap.getNumResults() << " vs " << vectorType; return verifyPermutationMap(permutationMap, [&op](Twine t) { return op.emitOpError(t); }); } //===----------------------------------------------------------------------===// // VectorTypeCastOp //===----------------------------------------------------------------------===// static MemRefType inferVectorTypeCastResultType(MemRefType t) { return MemRefType::get({}, VectorType::get(t.getShape(), t.getElementType())); } void VectorTypeCastOp::build(Builder *builder, OperationState &result, Value *source) { result.addOperands(source); result.addTypes( inferVectorTypeCastResultType(source->getType().cast())); } static void print(OpAsmPrinter &p, VectorTypeCastOp &op) { auto type = op.getOperand()->getType().cast(); p << op.getOperationName() << ' ' << *op.memref() << " : " << type << " to " << inferVectorTypeCastResultType(type); } static LogicalResult verify(VectorTypeCastOp &op) { auto resultType = inferVectorTypeCastResultType(op.getMemRefType()); if (op.getResultMemRefType() != resultType) return op.emitOpError("expects result type to be: ") << resultType; return success(); } namespace mlir { #define GET_OP_CLASSES #include "mlir/Dialect/VectorOps/VectorOps.cpp.inc" } // namespace mlir