//===- OpenMPDialect.cpp - MLIR Dialect for OpenMP implementation ---------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the OpenMP dialect and its operations. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/OpenMP/OpenMPDialect.h" #include "mlir/Dialect/LLVMIR/LLVMTypes.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/DialectImplementation.h" #include "mlir/IR/OpImplementation.h" #include "mlir/IR/OperationSupport.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/TypeSwitch.h" #include #include "mlir/Dialect/OpenMP/OpenMPOpsDialect.cpp.inc" #include "mlir/Dialect/OpenMP/OpenMPOpsEnums.cpp.inc" #include "mlir/Dialect/OpenMP/OpenMPOpsInterfaces.cpp.inc" #include "mlir/Dialect/OpenMP/OpenMPTypeInterfaces.cpp.inc" using namespace mlir; using namespace mlir::omp; namespace { /// Model for pointer-like types that already provide a `getElementType` method. template struct PointerLikeModel : public PointerLikeType::ExternalModel, T> { Type getElementType(Type pointer) const { return pointer.cast().getElementType(); } }; } // namespace void OpenMPDialect::initialize() { addOperations< #define GET_OP_LIST #include "mlir/Dialect/OpenMP/OpenMPOps.cpp.inc" >(); addAttributes< #define GET_ATTRDEF_LIST #include "mlir/Dialect/OpenMP/OpenMPOpsAttributes.cpp.inc" >(); LLVM::LLVMPointerType::attachInterface< PointerLikeModel>(*getContext()); MemRefType::attachInterface>(*getContext()); } //===----------------------------------------------------------------------===// // Parser and printer for Allocate Clause //===----------------------------------------------------------------------===// /// Parse an allocate clause with allocators and a list of operands with types. /// /// allocate-operand-list :: = allocate-operand | /// allocator-operand `,` allocate-operand-list /// allocate-operand :: = ssa-id-and-type -> ssa-id-and-type /// ssa-id-and-type ::= ssa-id `:` type static ParseResult parseAllocateAndAllocator( OpAsmParser &parser, SmallVectorImpl &operandsAllocate, SmallVectorImpl &typesAllocate, SmallVectorImpl &operandsAllocator, SmallVectorImpl &typesAllocator) { return parser.parseCommaSeparatedList([&]() { OpAsmParser::UnresolvedOperand operand; Type type; if (parser.parseOperand(operand) || parser.parseColonType(type)) return failure(); operandsAllocator.push_back(operand); typesAllocator.push_back(type); if (parser.parseArrow()) return failure(); if (parser.parseOperand(operand) || parser.parseColonType(type)) return failure(); operandsAllocate.push_back(operand); typesAllocate.push_back(type); return success(); }); } /// Print allocate clause static void printAllocateAndAllocator(OpAsmPrinter &p, Operation *op, OperandRange varsAllocate, TypeRange typesAllocate, OperandRange varsAllocator, TypeRange typesAllocator) { for (unsigned i = 0; i < varsAllocate.size(); ++i) { std::string separator = i == varsAllocate.size() - 1 ? "" : ", "; p << varsAllocator[i] << " : " << typesAllocator[i] << " -> "; p << varsAllocate[i] << " : " << typesAllocate[i] << separator; } } //===----------------------------------------------------------------------===// // Parser and printer for a clause attribute (StringEnumAttr) //===----------------------------------------------------------------------===// template static ParseResult parseClauseAttr(AsmParser &parser, ClauseAttr &attr) { using ClauseT = decltype(std::declval().getValue()); StringRef enumStr; SMLoc loc = parser.getCurrentLocation(); if (parser.parseKeyword(&enumStr)) return failure(); if (Optional enumValue = symbolizeEnum(enumStr)) { attr = ClauseAttr::get(parser.getContext(), *enumValue); return success(); } return parser.emitError(loc, "invalid clause value: '") << enumStr << "'"; } template void printClauseAttr(OpAsmPrinter &p, Operation *op, ClauseAttr attr) { p << stringifyEnum(attr.getValue()); } //===----------------------------------------------------------------------===// // Parser and printer for Linear Clause //===----------------------------------------------------------------------===// /// linear ::= `linear` `(` linear-list `)` /// linear-list := linear-val | linear-val linear-list /// linear-val := ssa-id-and-type `=` ssa-id-and-type static ParseResult parseLinearClause(OpAsmParser &parser, SmallVectorImpl &vars, SmallVectorImpl &types, SmallVectorImpl &stepVars) { return parser.parseCommaSeparatedList([&]() { OpAsmParser::UnresolvedOperand var; Type type; OpAsmParser::UnresolvedOperand stepVar; if (parser.parseOperand(var) || parser.parseEqual() || parser.parseOperand(stepVar) || parser.parseColonType(type)) return failure(); vars.push_back(var); types.push_back(type); stepVars.push_back(stepVar); return success(); }); } /// Print Linear Clause static void printLinearClause(OpAsmPrinter &p, Operation *op, ValueRange linearVars, TypeRange linearVarTypes, ValueRange linearStepVars) { size_t linearVarsSize = linearVars.size(); for (unsigned i = 0; i < linearVarsSize; ++i) { std::string separator = i == linearVarsSize - 1 ? "" : ", "; p << linearVars[i]; if (linearStepVars.size() > i) p << " = " << linearStepVars[i]; p << " : " << linearVars[i].getType() << separator; } } //===----------------------------------------------------------------------===// // Parser, printer and verifier for Schedule Clause //===----------------------------------------------------------------------===// static ParseResult verifyScheduleModifiers(OpAsmParser &parser, SmallVectorImpl> &modifiers) { if (modifiers.size() > 2) return parser.emitError(parser.getNameLoc()) << " unexpected modifier(s)"; for (const auto &mod : modifiers) { // Translate the string. If it has no value, then it was not a valid // modifier! auto symbol = symbolizeScheduleModifier(mod); if (!symbol.hasValue()) return parser.emitError(parser.getNameLoc()) << " unknown modifier type: " << mod; } // If we have one modifier that is "simd", then stick a "none" modiifer in // index 0. if (modifiers.size() == 1) { if (symbolizeScheduleModifier(modifiers[0]) == ScheduleModifier::simd) { modifiers.push_back(modifiers[0]); modifiers[0] = stringifyScheduleModifier(ScheduleModifier::none); } } else if (modifiers.size() == 2) { // If there are two modifier: // First modifier should not be simd, second one should be simd if (symbolizeScheduleModifier(modifiers[0]) == ScheduleModifier::simd || symbolizeScheduleModifier(modifiers[1]) != ScheduleModifier::simd) return parser.emitError(parser.getNameLoc()) << " incorrect modifier order"; } return success(); } /// schedule ::= `schedule` `(` sched-list `)` /// sched-list ::= sched-val | sched-val sched-list | /// sched-val `,` sched-modifier /// sched-val ::= sched-with-chunk | sched-wo-chunk /// sched-with-chunk ::= sched-with-chunk-types (`=` ssa-id-and-type)? /// sched-with-chunk-types ::= `static` | `dynamic` | `guided` /// sched-wo-chunk ::= `auto` | `runtime` /// sched-modifier ::= sched-mod-val | sched-mod-val `,` sched-mod-val /// sched-mod-val ::= `monotonic` | `nonmonotonic` | `simd` | `none` static ParseResult parseScheduleClause( OpAsmParser &parser, ClauseScheduleKindAttr &scheduleAttr, ScheduleModifierAttr &scheduleModifier, UnitAttr &simdModifier, Optional &chunkSize, Type &chunkType) { StringRef keyword; if (parser.parseKeyword(&keyword)) return failure(); llvm::Optional schedule = symbolizeClauseScheduleKind(keyword); if (!schedule) return parser.emitError(parser.getNameLoc()) << " expected schedule kind"; scheduleAttr = ClauseScheduleKindAttr::get(parser.getContext(), *schedule); switch (*schedule) { case ClauseScheduleKind::Static: case ClauseScheduleKind::Dynamic: case ClauseScheduleKind::Guided: if (succeeded(parser.parseOptionalEqual())) { chunkSize = OpAsmParser::UnresolvedOperand{}; if (parser.parseOperand(*chunkSize) || parser.parseColonType(chunkType)) return failure(); } else { chunkSize = llvm::NoneType::None; } break; case ClauseScheduleKind::Auto: case ClauseScheduleKind::Runtime: chunkSize = llvm::NoneType::None; } // If there is a comma, we have one or more modifiers.. SmallVector> modifiers; while (succeeded(parser.parseOptionalComma())) { StringRef mod; if (parser.parseKeyword(&mod)) return failure(); modifiers.push_back(mod); } if (verifyScheduleModifiers(parser, modifiers)) return failure(); if (!modifiers.empty()) { SMLoc loc = parser.getCurrentLocation(); if (Optional mod = symbolizeScheduleModifier(modifiers[0])) { scheduleModifier = ScheduleModifierAttr::get(parser.getContext(), *mod); } else { return parser.emitError(loc, "invalid schedule modifier"); } // Only SIMD attribute is allowed here! if (modifiers.size() > 1) { assert(symbolizeScheduleModifier(modifiers[1]) == ScheduleModifier::simd); simdModifier = UnitAttr::get(parser.getBuilder().getContext()); } } return success(); } /// Print schedule clause static void printScheduleClause(OpAsmPrinter &p, Operation *op, ClauseScheduleKindAttr schedAttr, ScheduleModifierAttr modifier, UnitAttr simd, Value scheduleChunkVar, Type scheduleChunkType) { p << stringifyClauseScheduleKind(schedAttr.getValue()); if (scheduleChunkVar) p << " = " << scheduleChunkVar << " : " << scheduleChunkVar.getType(); if (modifier) p << ", " << stringifyScheduleModifier(modifier.getValue()); if (simd) p << ", simd"; } //===----------------------------------------------------------------------===// // Parser, printer and verifier for ReductionVarList //===----------------------------------------------------------------------===// /// reduction-entry-list ::= reduction-entry /// | reduction-entry-list `,` reduction-entry /// reduction-entry ::= symbol-ref `->` ssa-id `:` type static ParseResult parseReductionVarList(OpAsmParser &parser, SmallVectorImpl &operands, SmallVectorImpl &types, ArrayAttr &redcuctionSymbols) { SmallVector reductionVec; if (failed(parser.parseCommaSeparatedList([&]() { if (parser.parseAttribute(reductionVec.emplace_back()) || parser.parseArrow() || parser.parseOperand(operands.emplace_back()) || parser.parseColonType(types.emplace_back())) return failure(); return success(); }))) return failure(); SmallVector reductions(reductionVec.begin(), reductionVec.end()); redcuctionSymbols = ArrayAttr::get(parser.getContext(), reductions); return success(); } /// Print Reduction clause static void printReductionVarList(OpAsmPrinter &p, Operation *op, OperandRange reductionVars, TypeRange reductionTypes, Optional reductions) { for (unsigned i = 0, e = reductions->size(); i < e; ++i) { if (i != 0) p << ", "; p << (*reductions)[i] << " -> " << reductionVars[i] << " : " << reductionVars[i].getType(); } } /// Verifies Reduction Clause static LogicalResult verifyReductionVarList(Operation *op, Optional reductions, OperandRange reductionVars) { if (!reductionVars.empty()) { if (!reductions || reductions->size() != reductionVars.size()) return op->emitOpError() << "expected as many reduction symbol references " "as reduction variables"; } else { if (reductions) return op->emitOpError() << "unexpected reduction symbol references"; return success(); } // TODO: The followings should be done in // SymbolUserOpInterface::verifySymbolUses. DenseSet accumulators; for (auto args : llvm::zip(reductionVars, *reductions)) { Value accum = std::get<0>(args); if (!accumulators.insert(accum).second) return op->emitOpError() << "accumulator variable used more than once"; Type varType = accum.getType().cast(); auto symbolRef = std::get<1>(args).cast(); auto decl = SymbolTable::lookupNearestSymbolFrom(op, symbolRef); if (!decl) return op->emitOpError() << "expected symbol reference " << symbolRef << " to point to a reduction declaration"; if (decl.getAccumulatorType() && decl.getAccumulatorType() != varType) return op->emitOpError() << "expected accumulator (" << varType << ") to be the same type as reduction declaration (" << decl.getAccumulatorType() << ")"; } return success(); } //===----------------------------------------------------------------------===// // Parser, printer and verifier for Synchronization Hint (2.17.12) //===----------------------------------------------------------------------===// /// Parses a Synchronization Hint clause. The value of hint is an integer /// which is a combination of different hints from `omp_sync_hint_t`. /// /// hint-clause = `hint` `(` hint-value `)` static ParseResult parseSynchronizationHint(OpAsmParser &parser, IntegerAttr &hintAttr) { StringRef hintKeyword; int64_t hint = 0; if (succeeded(parser.parseOptionalKeyword("none"))) { hintAttr = IntegerAttr::get(parser.getBuilder().getI64Type(), 0); return success(); } auto parseKeyword = [&]() -> ParseResult { if (failed(parser.parseKeyword(&hintKeyword))) return failure(); if (hintKeyword == "uncontended") hint |= 1; else if (hintKeyword == "contended") hint |= 2; else if (hintKeyword == "nonspeculative") hint |= 4; else if (hintKeyword == "speculative") hint |= 8; else return parser.emitError(parser.getCurrentLocation()) << hintKeyword << " is not a valid hint"; return success(); }; if (parser.parseCommaSeparatedList(parseKeyword)) return failure(); hintAttr = IntegerAttr::get(parser.getBuilder().getI64Type(), hint); return success(); } /// Prints a Synchronization Hint clause static void printSynchronizationHint(OpAsmPrinter &p, Operation *op, IntegerAttr hintAttr) { int64_t hint = hintAttr.getInt(); if (hint == 0) { p << "none"; return; } // Helper function to get n-th bit from the right end of `value` auto bitn = [](int value, int n) -> bool { return value & (1 << n); }; bool uncontended = bitn(hint, 0); bool contended = bitn(hint, 1); bool nonspeculative = bitn(hint, 2); bool speculative = bitn(hint, 3); SmallVector hints; if (uncontended) hints.push_back("uncontended"); if (contended) hints.push_back("contended"); if (nonspeculative) hints.push_back("nonspeculative"); if (speculative) hints.push_back("speculative"); llvm::interleaveComma(hints, p); } /// Verifies a synchronization hint clause static LogicalResult verifySynchronizationHint(Operation *op, uint64_t hint) { // Helper function to get n-th bit from the right end of `value` auto bitn = [](int value, int n) -> bool { return value & (1 << n); }; bool uncontended = bitn(hint, 0); bool contended = bitn(hint, 1); bool nonspeculative = bitn(hint, 2); bool speculative = bitn(hint, 3); if (uncontended && contended) return op->emitOpError() << "the hints omp_sync_hint_uncontended and " "omp_sync_hint_contended cannot be combined"; if (nonspeculative && speculative) return op->emitOpError() << "the hints omp_sync_hint_nonspeculative and " "omp_sync_hint_speculative cannot be combined."; return success(); } //===----------------------------------------------------------------------===// // ParallelOp //===----------------------------------------------------------------------===// void ParallelOp::build(OpBuilder &builder, OperationState &state, ArrayRef attributes) { ParallelOp::build( builder, state, /*if_expr_var=*/nullptr, /*num_threads_var=*/nullptr, /*allocate_vars=*/ValueRange(), /*allocators_vars=*/ValueRange(), /*reduction_vars=*/ValueRange(), /*reductions=*/nullptr, /*proc_bind_val=*/nullptr); state.addAttributes(attributes); } LogicalResult ParallelOp::verify() { if (allocate_vars().size() != allocators_vars().size()) return emitError( "expected equal sizes for allocate and allocator variables"); return verifyReductionVarList(*this, reductions(), reduction_vars()); } //===----------------------------------------------------------------------===// // Verifier for SectionsOp //===----------------------------------------------------------------------===// LogicalResult SectionsOp::verify() { if (allocate_vars().size() != allocators_vars().size()) return emitError( "expected equal sizes for allocate and allocator variables"); return verifyReductionVarList(*this, reductions(), reduction_vars()); } LogicalResult SectionsOp::verifyRegions() { for (auto &inst : *region().begin()) { if (!(isa(inst) || isa(inst))) { return emitOpError() << "expected omp.section op or terminator op inside region"; } } return success(); } LogicalResult SingleOp::verify() { // Check for allocate clause restrictions if (allocate_vars().size() != allocators_vars().size()) return emitError( "expected equal sizes for allocate and allocator variables"); return success(); } //===----------------------------------------------------------------------===// // WsLoopOp //===----------------------------------------------------------------------===// /// loop-control ::= `(` ssa-id-list `)` `:` type `=` loop-bounds /// loop-bounds := `(` ssa-id-list `)` to `(` ssa-id-list `)` inclusive? steps /// steps := `step` `(`ssa-id-list`)` ParseResult parseWsLoopControl(OpAsmParser &parser, Region ®ion, SmallVectorImpl &lowerBound, SmallVectorImpl &upperBound, SmallVectorImpl &steps, SmallVectorImpl &loopVarTypes, UnitAttr &inclusive) { // Parse an opening `(` followed by induction variables followed by `)` SmallVector ivs; Type loopVarType; if (parser.parseArgumentList(ivs, OpAsmParser::Delimiter::Paren) || parser.parseColonType(loopVarType) || // Parse loop bounds. parser.parseEqual() || parser.parseOperandList(lowerBound, ivs.size(), OpAsmParser::Delimiter::Paren) || parser.parseKeyword("to") || parser.parseOperandList(upperBound, ivs.size(), OpAsmParser::Delimiter::Paren)) return failure(); if (succeeded(parser.parseOptionalKeyword("inclusive"))) inclusive = UnitAttr::get(parser.getBuilder().getContext()); // Parse step values. if (parser.parseKeyword("step") || parser.parseOperandList(steps, ivs.size(), OpAsmParser::Delimiter::Paren)) return failure(); // Now parse the body. loopVarTypes = SmallVector(ivs.size(), loopVarType); for (auto &iv : ivs) iv.type = loopVarType; return parser.parseRegion(region, ivs); } void printWsLoopControl(OpAsmPrinter &p, Operation *op, Region ®ion, ValueRange lowerBound, ValueRange upperBound, ValueRange steps, TypeRange loopVarTypes, UnitAttr inclusive) { auto args = region.front().getArguments(); p << " (" << args << ") : " << args[0].getType() << " = (" << lowerBound << ") to (" << upperBound << ") "; if (inclusive) p << "inclusive "; p << "step (" << steps << ") "; p.printRegion(region, /*printEntryBlockArgs=*/false); } //===----------------------------------------------------------------------===// // SimdLoopOp //===----------------------------------------------------------------------===// /// Parses an OpenMP Simd construct [2.9.3.1] /// /// simdloop ::= `omp.simdloop` loop-control clause-list /// loop-control ::= `(` ssa-id-list `)` `:` type `=` loop-bounds /// loop-bounds := `(` ssa-id-list `)` to `(` ssa-id-list `)` steps /// steps := `step` `(`ssa-id-list`)` /// clause-list ::= clause clause-list | empty /// clause ::= TODO ParseResult SimdLoopOp::parse(OpAsmParser &parser, OperationState &result) { // Parse an opening `(` followed by induction variables followed by `)` SmallVector ivs; Type loopVarType; SmallVector lower, upper, steps; if (parser.parseArgumentList(ivs, OpAsmParser::Delimiter::Paren) || parser.parseColonType(loopVarType) || // Parse loop bounds. parser.parseEqual() || parser.parseOperandList(lower, ivs.size(), OpAsmParser::Delimiter::Paren) || parser.resolveOperands(lower, loopVarType, result.operands) || parser.parseKeyword("to") || parser.parseOperandList(upper, ivs.size(), OpAsmParser::Delimiter::Paren) || parser.resolveOperands(upper, loopVarType, result.operands) || // Parse step values. parser.parseKeyword("step") || parser.parseOperandList(steps, ivs.size(), OpAsmParser::Delimiter::Paren) || parser.resolveOperands(steps, loopVarType, result.operands)) return failure(); int numIVs = static_cast(ivs.size()); SmallVector segments{numIVs, numIVs, numIVs}; // TODO: Add parseClauses() when we support clauses result.addAttribute("operand_segment_sizes", parser.getBuilder().getI32VectorAttr(segments)); // Now parse the body. Region *body = result.addRegion(); for (auto &iv : ivs) iv.type = loopVarType; return parser.parseRegion(*body, ivs); } void SimdLoopOp::print(OpAsmPrinter &p) { auto args = getRegion().front().getArguments(); p << " (" << args << ") : " << args[0].getType() << " = (" << lowerBound() << ") to (" << upperBound() << ") "; p << "step (" << step() << ") "; p.printRegion(region(), /*printEntryBlockArgs=*/false); } //===----------------------------------------------------------------------===// // Verifier for Simd construct [2.9.3.1] //===----------------------------------------------------------------------===// LogicalResult SimdLoopOp::verify() { if (this->lowerBound().empty()) { return emitOpError() << "empty lowerbound for simd loop operation"; } return success(); } //===----------------------------------------------------------------------===// // ReductionOp //===----------------------------------------------------------------------===// static ParseResult parseAtomicReductionRegion(OpAsmParser &parser, Region ®ion) { if (parser.parseOptionalKeyword("atomic")) return success(); return parser.parseRegion(region); } static void printAtomicReductionRegion(OpAsmPrinter &printer, ReductionDeclareOp op, Region ®ion) { if (region.empty()) return; printer << "atomic "; printer.printRegion(region); } LogicalResult ReductionDeclareOp::verifyRegions() { if (initializerRegion().empty()) return emitOpError() << "expects non-empty initializer region"; Block &initializerEntryBlock = initializerRegion().front(); if (initializerEntryBlock.getNumArguments() != 1 || initializerEntryBlock.getArgument(0).getType() != type()) { return emitOpError() << "expects initializer region with one argument " "of the reduction type"; } for (YieldOp yieldOp : initializerRegion().getOps()) { if (yieldOp.results().size() != 1 || yieldOp.results().getTypes()[0] != type()) return emitOpError() << "expects initializer region to yield a value " "of the reduction type"; } if (reductionRegion().empty()) return emitOpError() << "expects non-empty reduction region"; Block &reductionEntryBlock = reductionRegion().front(); if (reductionEntryBlock.getNumArguments() != 2 || reductionEntryBlock.getArgumentTypes()[0] != reductionEntryBlock.getArgumentTypes()[1] || reductionEntryBlock.getArgumentTypes()[0] != type()) return emitOpError() << "expects reduction region with two arguments of " "the reduction type"; for (YieldOp yieldOp : reductionRegion().getOps()) { if (yieldOp.results().size() != 1 || yieldOp.results().getTypes()[0] != type()) return emitOpError() << "expects reduction region to yield a value " "of the reduction type"; } if (atomicReductionRegion().empty()) return success(); Block &atomicReductionEntryBlock = atomicReductionRegion().front(); if (atomicReductionEntryBlock.getNumArguments() != 2 || atomicReductionEntryBlock.getArgumentTypes()[0] != atomicReductionEntryBlock.getArgumentTypes()[1]) return emitOpError() << "expects atomic reduction region with two " "arguments of the same type"; auto ptrType = atomicReductionEntryBlock.getArgumentTypes()[0] .dyn_cast(); if (!ptrType || ptrType.getElementType() != type()) return emitOpError() << "expects atomic reduction region arguments to " "be accumulators containing the reduction type"; return success(); } LogicalResult ReductionOp::verify() { auto *op = (*this)->getParentWithTrait(); if (!op) return emitOpError() << "must be used within an operation supporting " "reduction clause interface"; while (op) { for (const auto &var : cast(op).getReductionVars()) if (var == accumulator()) return success(); op = op->getParentWithTrait(); } return emitOpError() << "the accumulator is not used by the parent"; } //===----------------------------------------------------------------------===// // TaskOp //===----------------------------------------------------------------------===// LogicalResult TaskOp::verify() { return verifyReductionVarList(*this, in_reductions(), in_reduction_vars()); } //===----------------------------------------------------------------------===// // WsLoopOp //===----------------------------------------------------------------------===// void WsLoopOp::build(OpBuilder &builder, OperationState &state, ValueRange lowerBound, ValueRange upperBound, ValueRange step, ArrayRef attributes) { build(builder, state, lowerBound, upperBound, step, /*linear_vars=*/ValueRange(), /*linear_step_vars=*/ValueRange(), /*reduction_vars=*/ValueRange(), /*reductions=*/nullptr, /*schedule_val=*/nullptr, /*schedule_chunk_var=*/nullptr, /*schedule_modifier=*/nullptr, /*simd_modifier=*/false, /*collapse_val=*/nullptr, /*nowait=*/false, /*ordered_val=*/nullptr, /*order_val=*/nullptr, /*inclusive=*/false); state.addAttributes(attributes); } LogicalResult WsLoopOp::verify() { return verifyReductionVarList(*this, reductions(), reduction_vars()); } //===----------------------------------------------------------------------===// // Verifier for critical construct (2.17.1) //===----------------------------------------------------------------------===// LogicalResult CriticalDeclareOp::verify() { return verifySynchronizationHint(*this, hint_val()); } LogicalResult CriticalOp::verifySymbolUses(SymbolTableCollection &symbolTable) { if (nameAttr()) { SymbolRefAttr symbolRef = nameAttr(); auto decl = symbolTable.lookupNearestSymbolFrom( *this, symbolRef); if (!decl) { return emitOpError() << "expected symbol reference " << symbolRef << " to point to a critical declaration"; } } return success(); } //===----------------------------------------------------------------------===// // Verifier for ordered construct //===----------------------------------------------------------------------===// LogicalResult OrderedOp::verify() { auto container = (*this)->getParentOfType(); if (!container || !container.ordered_valAttr() || container.ordered_valAttr().getInt() == 0) return emitOpError() << "ordered depend directive must be closely " << "nested inside a worksharing-loop with ordered " << "clause with parameter present"; if (container.ordered_valAttr().getInt() != (int64_t)num_loops_val().getValue()) return emitOpError() << "number of variables in depend clause does not " << "match number of iteration variables in the " << "doacross loop"; return success(); } LogicalResult OrderedRegionOp::verify() { // TODO: The code generation for ordered simd directive is not supported yet. if (simd()) return failure(); if (auto container = (*this)->getParentOfType()) { if (!container.ordered_valAttr() || container.ordered_valAttr().getInt() != 0) return emitOpError() << "ordered region must be closely nested inside " << "a worksharing-loop region with an ordered " << "clause without parameter present"; } return success(); } //===----------------------------------------------------------------------===// // Verifier for AtomicReadOp //===----------------------------------------------------------------------===// LogicalResult AtomicReadOp::verify() { if (auto mo = memory_order_val()) { if (*mo == ClauseMemoryOrderKind::Acq_rel || *mo == ClauseMemoryOrderKind::Release) { return emitError( "memory-order must not be acq_rel or release for atomic reads"); } } if (x() == v()) return emitError( "read and write must not be to the same location for atomic reads"); return verifySynchronizationHint(*this, hint_val()); } //===----------------------------------------------------------------------===// // Verifier for AtomicWriteOp //===----------------------------------------------------------------------===// LogicalResult AtomicWriteOp::verify() { if (auto mo = memory_order_val()) { if (*mo == ClauseMemoryOrderKind::Acq_rel || *mo == ClauseMemoryOrderKind::Acquire) { return emitError( "memory-order must not be acq_rel or acquire for atomic writes"); } } if (address().getType().cast().getElementType() != value().getType()) return emitError("address must dereference to value type"); return verifySynchronizationHint(*this, hint_val()); } //===----------------------------------------------------------------------===// // Verifier for AtomicUpdateOp //===----------------------------------------------------------------------===// LogicalResult AtomicUpdateOp::verify() { if (auto mo = memory_order_val()) { if (*mo == ClauseMemoryOrderKind::Acq_rel || *mo == ClauseMemoryOrderKind::Acquire) { return emitError( "memory-order must not be acq_rel or acquire for atomic updates"); } } if (x().getType().cast().getElementType() != region().getArgument(0).getType()) { return emitError("the type of the operand must be a pointer type whose " "element type is the same as that of the region argument"); } return verifySynchronizationHint(*this, hint_val()); } LogicalResult AtomicUpdateOp::verifyRegions() { if (region().getNumArguments() != 1) return emitError("the region must accept exactly one argument"); if (region().front().getOperations().size() < 2) return emitError() << "the update region must have at least two operations " "(binop and terminator)"; YieldOp yieldOp = *region().getOps().begin(); if (yieldOp.results().size() != 1) return emitError("only updated value must be returned"); if (yieldOp.results().front().getType() != region().getArgument(0).getType()) return emitError("input and yielded value must have the same type"); return success(); } //===----------------------------------------------------------------------===// // Verifier for AtomicCaptureOp //===----------------------------------------------------------------------===// Operation *AtomicCaptureOp::getFirstOp() { return &getRegion().front().getOperations().front(); } Operation *AtomicCaptureOp::getSecondOp() { auto &ops = getRegion().front().getOperations(); return ops.getNextNode(ops.front()); } AtomicReadOp AtomicCaptureOp::getAtomicReadOp() { if (auto op = dyn_cast(getFirstOp())) return op; return dyn_cast(getSecondOp()); } AtomicWriteOp AtomicCaptureOp::getAtomicWriteOp() { if (auto op = dyn_cast(getFirstOp())) return op; return dyn_cast(getSecondOp()); } AtomicUpdateOp AtomicCaptureOp::getAtomicUpdateOp() { if (auto op = dyn_cast(getFirstOp())) return op; return dyn_cast(getSecondOp()); } LogicalResult AtomicCaptureOp::verify() { return verifySynchronizationHint(*this, hint_val()); } LogicalResult AtomicCaptureOp::verifyRegions() { Block::OpListType &ops = region().front().getOperations(); if (ops.size() != 3) return emitError() << "expected three operations in omp.atomic.capture region (one " "terminator, and two atomic ops)"; auto &firstOp = ops.front(); auto &secondOp = *ops.getNextNode(firstOp); auto firstReadStmt = dyn_cast(firstOp); auto firstUpdateStmt = dyn_cast(firstOp); auto secondReadStmt = dyn_cast(secondOp); auto secondUpdateStmt = dyn_cast(secondOp); auto secondWriteStmt = dyn_cast(secondOp); if (!((firstUpdateStmt && secondReadStmt) || (firstReadStmt && secondUpdateStmt) || (firstReadStmt && secondWriteStmt))) return ops.front().emitError() << "invalid sequence of operations in the capture region"; if (firstUpdateStmt && secondReadStmt && firstUpdateStmt.x() != secondReadStmt.x()) return firstUpdateStmt.emitError() << "updated variable in omp.atomic.update must be captured in " "second operation"; if (firstReadStmt && secondUpdateStmt && firstReadStmt.x() != secondUpdateStmt.x()) return firstReadStmt.emitError() << "captured variable in omp.atomic.read must be updated in second " "operation"; if (firstReadStmt && secondWriteStmt && firstReadStmt.x() != secondWriteStmt.address()) return firstReadStmt.emitError() << "captured variable in omp.atomic.read must be updated in " "second operation"; if (getFirstOp()->getAttr("hint_val") || getSecondOp()->getAttr("hint_val")) return emitOpError( "operations inside capture region must not have hint clause"); return success(); } //===----------------------------------------------------------------------===// // Verifier for CancelOp //===----------------------------------------------------------------------===// LogicalResult CancelOp::verify() { ClauseCancellationConstructType cct = cancellation_construct_type_val(); Operation *parentOp = (*this)->getParentOp(); if (!parentOp) { return emitOpError() << "must be used within a region supporting " "cancel directive"; } if ((cct == ClauseCancellationConstructType::Parallel) && !isa(parentOp)) { return emitOpError() << "cancel parallel must appear " << "inside a parallel region"; } if (cct == ClauseCancellationConstructType::Loop) { if (!isa(parentOp)) { return emitOpError() << "cancel loop must appear " << "inside a worksharing-loop region"; } if (cast(parentOp).nowaitAttr()) { return emitError() << "A worksharing construct that is canceled " << "must not have a nowait clause"; } if (cast(parentOp).ordered_valAttr()) { return emitError() << "A worksharing construct that is canceled " << "must not have an ordered clause"; } } else if (cct == ClauseCancellationConstructType::Sections) { if (!(isa(parentOp) || isa(parentOp))) { return emitOpError() << "cancel sections must appear " << "inside a sections region"; } if (isa_and_nonnull(parentOp->getParentOp()) && cast(parentOp->getParentOp()).nowaitAttr()) { return emitError() << "A sections construct that is canceled " << "must not have a nowait clause"; } } // TODO : Add more when we support taskgroup. return success(); } //===----------------------------------------------------------------------===// // Verifier for CancelOp //===----------------------------------------------------------------------===// LogicalResult CancellationPointOp::verify() { ClauseCancellationConstructType cct = cancellation_construct_type_val(); Operation *parentOp = (*this)->getParentOp(); if (!parentOp) { return emitOpError() << "must be used within a region supporting " "cancellation point directive"; } if ((cct == ClauseCancellationConstructType::Parallel) && !(isa(parentOp))) { return emitOpError() << "cancellation point parallel must appear " << "inside a parallel region"; } if ((cct == ClauseCancellationConstructType::Loop) && !isa(parentOp)) { return emitOpError() << "cancellation point loop must appear " << "inside a worksharing-loop region"; } if ((cct == ClauseCancellationConstructType::Sections) && !(isa(parentOp) || isa(parentOp))) { return emitOpError() << "cancellation point sections must appear " << "inside a sections region"; } // TODO : Add more when we support taskgroup. return success(); } #define GET_ATTRDEF_CLASSES #include "mlir/Dialect/OpenMP/OpenMPOpsAttributes.cpp.inc" #define GET_OP_CLASSES #include "mlir/Dialect/OpenMP/OpenMPOps.cpp.inc"