Files
llvm/lld/ELF/ICF.cpp
Rui Ueyama 045d828158 Re-implement the optimization that I removed in r288527.
I removed a wrong optimization for ICF in r288527. Sean Silva suggested
in a post commit review that the correct algorithm can be implemented
easily. So is this patch.

llvm-svn: 288620
2016-12-04 16:33:13 +00:00

381 lines
14 KiB
C++

//===- ICF.cpp ------------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// ICF is short for Identical Code Folding. That is a size optimization to
// identify and merge two or more read-only sections (typically functions)
// that happened to have the same contents. It usually reduces output size
// by a few percent.
//
// In ICF, two sections are considered identical if they have the same
// section flags, section data, and relocations. Relocations are tricky,
// because two relocations are considered the same if they have the same
// relocation types, values, and if they point to the same sections *in
// terms of ICF*.
//
// Here is an example. If foo and bar defined below are compiled to the
// same machine instructions, ICF can and should merge the two, although
// their relocations point to each other.
//
// void foo() { bar(); }
// void bar() { foo(); }
//
// If you merge the two, their relocations point to the same section and
// thus you know they are mergeable, but how do we know they are mergeable
// in the first place? This is not an easy problem to solve.
//
// What we are doing in LLD is some sort of coloring algorithm.
//
// We color non-identical sections in different colors repeatedly.
// Sections in the same color when the algorithm terminates are considered
// identical. Here are the details:
//
// 1. First, we color all sections using their hash values of section
// types, section contents, and numbers of relocations. At this moment,
// relocation targets are not taken into account. We just color
// sections that apparently differ in different colors.
//
// 2. Next, for each color C, we visit sections in color C to compare
// relocation target colors. We recolor sections A and B in different
// colors if A's and B's relocations are different in terms of target
// colors.
//
// 3. If we recolor some section in step 2, relocations that were
// previously pointing to the same color targets may now be pointing to
// different colors. Therefore, repeat 2 until a convergence is
// obtained.
//
// 4. For each color C, pick an arbitrary section in color C, and merges
// other sections in color C with it.
//
// For small programs, this algorithm needs 3-5 iterations. For large
// programs such as Chromium, it takes more than 20 iterations.
//
// We parallelize each step so that multiple threads can work on different
// colors concurrently. That gave us a large performance boost when
// applying ICF on large programs. For example, MSVC link.exe or GNU gold
// takes 10-20 seconds to apply ICF on Chromium, whose output size is
// about 1.5 GB, but LLD can finish it in less than 2 seconds on a 2.8 GHz
// 40 core machine. Even without threading, LLD's ICF is still faster than
// MSVC or gold though.
//
//===----------------------------------------------------------------------===//
#include "ICF.h"
#include "Config.h"
#include "SymbolTable.h"
#include "Threads.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/ELF.h"
#include <algorithm>
#include <atomic>
using namespace lld;
using namespace lld::elf;
using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
namespace {
template <class ELFT> class ICF {
public:
void run();
private:
void segregate(size_t Begin, size_t End, bool Constant);
template <class RelTy>
bool constantEq(ArrayRef<RelTy> RelsA, ArrayRef<RelTy> RelsB);
template <class RelTy>
bool variableEq(const InputSection<ELFT> *A, ArrayRef<RelTy> RelsA,
const InputSection<ELFT> *B, ArrayRef<RelTy> RelsB);
bool equalsConstant(const InputSection<ELFT> *A, const InputSection<ELFT> *B);
bool equalsVariable(const InputSection<ELFT> *A, const InputSection<ELFT> *B);
size_t findBoundary(size_t Begin, size_t End);
void forEachColorRange(size_t Begin, size_t End,
std::function<void(size_t, size_t)> Fn);
void forEachColor(std::function<void(size_t, size_t)> Fn);
std::vector<InputSection<ELFT> *> Sections;
// We repeat the main loop while `Repeat` is true.
std::atomic<bool> Repeat;
// The main loop counter.
int Cnt = 0;
// We have two locations for colors. On the first iteration of the main
// loop, Color[0] has a valid value, and Color[1] contains garbage. We
// read colors from slot 0 and write to slot 1. So, Color[0] represents
// the current color, and Color[1] represents the next color. On each
// iteration, they switch the roles, so we use them alternately.
//
// Why are we doing this? Recall that other threads may be working on
// other colors in parallel. They may read colors that we are updating.
// We cannot update colors in place because it breaks the invariance
// that all possibly-identical sections must have the same color at any
// moment. In other words, the for loop to update colors is not an
// atomic operation, and that is observable from other threads. By
// writing new colors to write-only places, we can keep the invariance.
//
// Below, `Current` has the index of the current color, and `Next` has
// the index of the next color. If threading is enabled, they are
// either (0, 1) or (1, 0).
//
// Note on single-thread: if that's the case, they are always (0, 0)
// because we can safely read next colors without worrying about race
// conditions. Using the same location makes this algorithm converge
// faster because it uses results of the same iteration earlier.
int Current = 0;
int Next = 0;
};
}
// Returns a hash value for S. Note that the information about
// relocation targets is not included in the hash value.
template <class ELFT> static uint32_t getHash(InputSection<ELFT> *S) {
return hash_combine(S->Flags, S->getSize(), S->NumRelocations);
}
// Returns true if section S is subject of ICF.
template <class ELFT> static bool isEligible(InputSection<ELFT> *S) {
// .init and .fini contains instructions that must be executed to
// initialize and finalize the process. They cannot and should not
// be merged.
return S->Live && (S->Flags & SHF_ALLOC) && !(S->Flags & SHF_WRITE) &&
S->Name != ".init" && S->Name != ".fini";
}
// Split a range into smaller ranges by recoloring sections
// in a given range.
template <class ELFT>
void ICF<ELFT>::segregate(size_t Begin, size_t End, bool Constant) {
// This loop rearranges sections in [Begin, End) so that all sections
// that are equal in terms of equals{Constant,Variable} are contiguous
// in [Begin, End).
//
// The algorithm is quadratic in the worst case, but that is not an
// issue in practice because the number of the distinct sections in
// each range is usually very small.
while (Begin < End) {
// Divide [Begin, End) into two. Let Mid be the start index of the
// second group.
auto Bound = std::stable_partition(
Sections.begin() + Begin + 1, Sections.begin() + End,
[&](InputSection<ELFT> *S) {
if (Constant)
return equalsConstant(Sections[Begin], S);
return equalsVariable(Sections[Begin], S);
});
size_t Mid = Bound - Sections.begin();
// Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
// updating the sections in [Begin, End). We use Mid as a color ID
// because every group ends with a unique index.
for (size_t I = Begin; I < Mid; ++I)
Sections[I]->Color[Next] = Mid;
// If we created a group, we need to iterate the main loop again.
if (Mid != End)
Repeat = true;
Begin = Mid;
}
}
// Compare two lists of relocations.
template <class ELFT>
template <class RelTy>
bool ICF<ELFT>::constantEq(ArrayRef<RelTy> RelsA, ArrayRef<RelTy> RelsB) {
auto Eq = [](const RelTy &A, const RelTy &B) {
return A.r_offset == B.r_offset &&
A.getType(Config->Mips64EL) == B.getType(Config->Mips64EL) &&
getAddend<ELFT>(A) == getAddend<ELFT>(B);
};
return RelsA.size() == RelsB.size() &&
std::equal(RelsA.begin(), RelsA.end(), RelsB.begin(), Eq);
}
// Compare "non-moving" part of two InputSections, namely everything
// except relocation targets.
template <class ELFT>
bool ICF<ELFT>::equalsConstant(const InputSection<ELFT> *A,
const InputSection<ELFT> *B) {
if (A->NumRelocations != B->NumRelocations || A->Flags != B->Flags ||
A->getSize() != B->getSize() || A->Data != B->Data)
return false;
if (A->AreRelocsRela)
return constantEq(A->relas(), B->relas());
return constantEq(A->rels(), B->rels());
}
// Compare two lists of relocations. Returns true if all pairs of
// relocations point to the same section in terms of ICF.
template <class ELFT>
template <class RelTy>
bool ICF<ELFT>::variableEq(const InputSection<ELFT> *A, ArrayRef<RelTy> RelsA,
const InputSection<ELFT> *B, ArrayRef<RelTy> RelsB) {
auto Eq = [&](const RelTy &RA, const RelTy &RB) {
// The two sections must be identical.
SymbolBody &SA = A->getFile()->getRelocTargetSym(RA);
SymbolBody &SB = B->getFile()->getRelocTargetSym(RB);
if (&SA == &SB)
return true;
// Or, the two sections must have the same color.
auto *DA = dyn_cast<DefinedRegular<ELFT>>(&SA);
auto *DB = dyn_cast<DefinedRegular<ELFT>>(&SB);
if (!DA || !DB)
return false;
if (DA->Value != DB->Value)
return false;
auto *X = dyn_cast<InputSection<ELFT>>(DA->Section);
auto *Y = dyn_cast<InputSection<ELFT>>(DB->Section);
if (!X || !Y)
return false;
// Ineligible sections have the special color 0.
// They can never be the same in terms of section colors.
if (X->Color[Current] == 0)
return false;
return X->Color[Current] == Y->Color[Current];
};
return std::equal(RelsA.begin(), RelsA.end(), RelsB.begin(), Eq);
}
// Compare "moving" part of two InputSections, namely relocation targets.
template <class ELFT>
bool ICF<ELFT>::equalsVariable(const InputSection<ELFT> *A,
const InputSection<ELFT> *B) {
if (A->AreRelocsRela)
return variableEq(A, A->relas(), B, B->relas());
return variableEq(A, A->rels(), B, B->rels());
}
template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t Begin, size_t End) {
for (size_t I = Begin + 1; I < End; ++I)
if (Sections[Begin]->Color[Current] != Sections[I]->Color[Current])
return I;
return End;
}
// Sections in the same color are contiguous in Sections vector.
// Therefore, Sections vector can be considered as contiguous groups
// of sections, grouped by colors.
//
// This function calls Fn on every group that starts within [Begin, End).
// Note that a group must starts in that range but doesn't necessarily
// have to end before End.
template <class ELFT>
void ICF<ELFT>::forEachColorRange(size_t Begin, size_t End,
std::function<void(size_t, size_t)> Fn) {
if (Begin > 0)
Begin = findBoundary(Begin - 1, End);
while (Begin < End) {
size_t Mid = findBoundary(Begin, Sections.size());
Fn(Begin, Mid);
Begin = Mid;
}
}
// Call Fn on each color group.
template <class ELFT>
void ICF<ELFT>::forEachColor(std::function<void(size_t, size_t)> Fn) {
// If threading is disabled or the number of sections are
// too small to use threading, call Fn sequentially.
if (!Config->Threads || Sections.size() < 1024) {
forEachColorRange(0, Sections.size(), Fn);
++Cnt;
return;
}
Current = Cnt % 2;
Next = (Cnt + 1) % 2;
// Split sections into 256 shards and call Fn in parallel.
size_t NumShards = 256;
size_t Step = Sections.size() / NumShards;
forLoop(0, NumShards,
[&](size_t I) { forEachColorRange(I * Step, (I + 1) * Step, Fn); });
forEachColorRange(Step * NumShards, Sections.size(), Fn);
++Cnt;
}
// The main function of ICF.
template <class ELFT> void ICF<ELFT>::run() {
// Collect sections to merge.
for (InputSectionBase<ELFT> *Sec : Symtab<ELFT>::X->Sections)
if (auto *S = dyn_cast<InputSection<ELFT>>(Sec))
if (isEligible(S))
Sections.push_back(S);
// Initially, we use hash values to color sections. Therefore, if
// two sections have the same color, they are likely (but not
// guaranteed) to have the same static contents in terms of ICF.
for (InputSection<ELFT> *S : Sections)
// Set MSB to 1 to avoid collisions with non-hash colors.
S->Color[0] = getHash(S) | (1 << 31);
// From now on, sections in Sections are ordered so that sections in
// the same color are consecutive in the vector.
std::stable_sort(Sections.begin(), Sections.end(),
[](InputSection<ELFT> *A, InputSection<ELFT> *B) {
if (A->Color[0] != B->Color[0])
return A->Color[0] < B->Color[0];
// Within a group, put the highest alignment
// requirement first, so that's the one we'll keep.
return B->Alignment < A->Alignment;
});
// Compare static contents and assign unique IDs for each static content.
forEachColor([&](size_t Begin, size_t End) { segregate(Begin, End, true); });
// Split groups by comparing relocations until convergence is obtained.
do {
Repeat = false;
forEachColor(
[&](size_t Begin, size_t End) { segregate(Begin, End, false); });
} while (Repeat);
log("ICF needed " + Twine(Cnt) + " iterations");
// Merge sections in the same colors.
forEachColor([&](size_t Begin, size_t End) {
if (End - Begin == 1)
return;
log("selected " + Sections[Begin]->Name);
for (size_t I = Begin + 1; I < End; ++I) {
log(" removed " + Sections[I]->Name);
Sections[Begin]->replace(Sections[I]);
}
});
}
// ICF entry point function.
template <class ELFT> void elf::doIcf() { ICF<ELFT>().run(); }
template void elf::doIcf<ELF32LE>();
template void elf::doIcf<ELF32BE>();
template void elf::doIcf<ELF64LE>();
template void elf::doIcf<ELF64BE>();