mirror of
https://github.com/intel/llvm.git
synced 2026-01-16 13:35:38 +08:00
1322 lines
55 KiB
C++
1322 lines
55 KiB
C++
//===- Transforms.cpp - Linalg transformations as patterns ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements logic and helpers to expose Linalg transforms as rewrite
|
|
// patterns.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
#include "mlir/Dialect/Linalg/Transforms/HoistPadding.h"
|
|
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
|
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Dialect/Tensor/IR/TensorTilingInterfaceImpl.h"
|
|
#include "mlir/Dialect/Tensor/Utils/Utils.h"
|
|
#include "mlir/Dialect/Utils/IndexingUtils.h"
|
|
#include "mlir/Dialect/Utils/StaticValueUtils.h"
|
|
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
|
|
#include "mlir/Dialect/Vector/IR/VectorOps.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Support/LLVM.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
#define DEBUG_TYPE "linalg-transforms"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::linalg;
|
|
|
|
#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ")
|
|
#define DBGSNL() (llvm::dbgs() << "\n")
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transformations exposed as rewrite patterns.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LinalgTilingOptions &
|
|
mlir::linalg::LinalgTilingOptions::setTileSizes(ArrayRef<int64_t> ts) {
|
|
assert(!tileSizeComputationFunction && "tile sizes already set");
|
|
SmallVector<int64_t, 4> tileSizes(ts.begin(), ts.end());
|
|
tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) {
|
|
OpBuilder::InsertionGuard guard(b);
|
|
b.setInsertionPointToStart(
|
|
&op->getParentOfType<func::FuncOp>().getBody().front());
|
|
return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) {
|
|
Value v = b.create<arith::ConstantIndexOp>(op->getLoc(), s);
|
|
return v;
|
|
}));
|
|
};
|
|
return *this;
|
|
}
|
|
|
|
/// Pad the `opOperand` in the `paddingDimensions` using the padding value and
|
|
/// the nofold flag found in `paddingValues` and `packPaddings`, respectively.
|
|
/// Exit early and return the `opOperand` value if the shape dimensions that
|
|
/// match `paddingDimensions` have a static size and the nofold flag is not set.
|
|
/// Otherwise, try to pad the shape dimensions that match the iterator
|
|
/// dimensions `paddingDimensions` and return the tensor::PadOp result if
|
|
/// padding succeeds or failure otherwise.
|
|
static FailureOr<Value> padOperandToSmallestStaticBoundingBox(
|
|
OpBuilder &b, linalg::LinalgOp opToPad, OpOperand *opOperand,
|
|
ArrayRef<int64_t> paddingDimensions, ArrayRef<Attribute> paddingValues,
|
|
ArrayRef<bool> packPaddings) {
|
|
AffineMap indexingMap = opToPad.getMatchingIndexingMap(opOperand);
|
|
ArrayRef<int64_t> shape = opToPad.getShape(opOperand);
|
|
|
|
// Collect the shape dimension that are a function of the `paddingDimensions`.
|
|
llvm::SmallDenseSet<int64_t> shapeDimsToPad;
|
|
for (int64_t dim : paddingDimensions)
|
|
for (const auto &en : enumerate(indexingMap.getResults()))
|
|
if (en.value().isFunctionOfDim(dim))
|
|
shapeDimsToPad.insert(en.index());
|
|
|
|
// Return the unpadded operand if padding to a static shape is not needed and
|
|
// if the nofold flag is not set.
|
|
bool nofold = opOperand->getOperandNumber() < packPaddings.size()
|
|
? packPaddings[opOperand->getOperandNumber()]
|
|
: false;
|
|
bool hasStaticShape = llvm::none_of(shapeDimsToPad, [&](int64_t dim) {
|
|
return ShapedType::isDynamic(shape[dim]);
|
|
});
|
|
if (!nofold && hasStaticShape)
|
|
return opOperand->get();
|
|
|
|
// Fail if `paddingValues` specifies no padding value.
|
|
if (opOperand->getOperandNumber() >= paddingValues.size())
|
|
return failure();
|
|
Attribute paddingAttr = paddingValues[opOperand->getOperandNumber()];
|
|
Type paddingType = b.getType<NoneType>();
|
|
if (auto typedAttr = paddingAttr.dyn_cast<TypedAttr>())
|
|
paddingType = typedAttr.getType();
|
|
Value paddingValue =
|
|
b.create<arith::ConstantOp>(opToPad.getLoc(), paddingType, paddingAttr);
|
|
|
|
// Follow the use-def chain if `currOpOperand` is defined by a LinalgOp.
|
|
OpOperand *currOpOperand = opOperand;
|
|
while (auto linalgOp = currOpOperand->get().getDefiningOp<LinalgOp>()) {
|
|
OpResult result = currOpOperand->get().cast<OpResult>();
|
|
currOpOperand = linalgOp.getDpsInitOperand(result.getResultNumber());
|
|
}
|
|
|
|
// Fail if `currOpOperand` is not defined by an ExtractSliceOp or EmptyOp.
|
|
auto sliceOp = currOpOperand->get().getDefiningOp<tensor::ExtractSliceOp>();
|
|
auto emptyOp = currOpOperand->get().getDefiningOp<tensor::EmptyOp>();
|
|
if (!sliceOp && !emptyOp)
|
|
return failure();
|
|
|
|
llvm::SmallBitVector droppedDims;
|
|
SmallVector<OpFoldResult> mixedSizes;
|
|
if (sliceOp) {
|
|
// Compute the dropped dimensions if `sliceOp` is ranke-reducing.
|
|
droppedDims = sliceOp.getDroppedDims();
|
|
mixedSizes = sliceOp.getMixedSizes();
|
|
}
|
|
if (emptyOp) {
|
|
mixedSizes = emptyOp.getMixedSizes();
|
|
droppedDims.resize(mixedSizes.size());
|
|
}
|
|
|
|
// Upper bound the sizes to obtain a static bounding box.
|
|
SmallVector<int64_t> paddedShape(shape.begin(), shape.end());
|
|
int64_t shapeIdx = 0;
|
|
for (const auto &en : enumerate(mixedSizes)) {
|
|
// Skip dropped dimensions.
|
|
if (droppedDims.test(en.index()))
|
|
continue;
|
|
// Skip dimensions that do not require padding.
|
|
if (!shapeDimsToPad.contains(shapeIdx)) {
|
|
shapeIdx++;
|
|
continue;
|
|
}
|
|
// If the size is an attribute add it directly to `paddedShape`.
|
|
if (en.value().is<Attribute>()) {
|
|
paddedShape[shapeIdx++] =
|
|
en.value().get<Attribute>().dyn_cast<IntegerAttr>().getInt();
|
|
continue;
|
|
}
|
|
// Otherwise, try to compute a constant upper bound for the size value.
|
|
FailureOr<int64_t> upperBound =
|
|
getConstantUpperBoundForIndex(en.value().get<Value>());
|
|
if (failed(upperBound)) {
|
|
LLVM_DEBUG(DBGS() << "No constant bounding box can be found for padding");
|
|
return failure();
|
|
}
|
|
paddedShape[shapeIdx++] = *upperBound;
|
|
}
|
|
assert(shapeIdx == static_cast<int64_t>(shape.size()) &&
|
|
"expect the dynamic and static ranks to match");
|
|
|
|
// Pad the operand to the bounding box defined by `paddedShape`.
|
|
auto paddedTensorType = RankedTensorType::get(
|
|
paddedShape, getElementTypeOrSelf(opOperand->get()));
|
|
return makeComposedPadHighOp(b, opToPad->getLoc(), paddedTensorType,
|
|
opOperand->get(), paddingValue, nofold);
|
|
}
|
|
|
|
FailureOr<SmallVector<Value>>
|
|
linalg::rewriteAsPaddedOp(OpBuilder &b, LinalgOp opToPad,
|
|
ArrayRef<int64_t> paddingDimensions,
|
|
ArrayRef<Attribute> paddingValues,
|
|
ArrayRef<bool> packPaddings, LinalgOp &paddedOp) {
|
|
Location loc = opToPad->getLoc();
|
|
|
|
// TODO: there are cases where we may still want to pad to larger sizes.
|
|
assert(opToPad.hasTensorSemantics() &&
|
|
"expected operation to have tensor semantics");
|
|
|
|
OpBuilder::InsertionGuard g(b);
|
|
// Set IP after op because we also take the dims of the original output.
|
|
b.setInsertionPointAfter(opToPad);
|
|
// Make a copy of the shaped operands and update it.
|
|
SmallVector<Value> newOperands;
|
|
newOperands.reserve(opToPad->getNumOperands());
|
|
for (OpOperand &opOperand : opToPad->getOpOperands()) {
|
|
FailureOr<Value> paddedOperand = padOperandToSmallestStaticBoundingBox(
|
|
b, opToPad, &opOperand, paddingDimensions, paddingValues, packPaddings);
|
|
// Exit if `paddingDimensions` cannot be bounded statically.
|
|
if (failed(paddedOperand))
|
|
return failure();
|
|
newOperands.push_back(*paddedOperand);
|
|
}
|
|
|
|
SmallVector<SmallVector<Value>> reifiedResultShapes;
|
|
if (failed(cast<ReifyRankedShapedTypeOpInterface>(opToPad.getOperation())
|
|
.reifyResultShapes(b, reifiedResultShapes)))
|
|
return failure();
|
|
assert(reifiedResultShapes.size() == opToPad->getNumResults() &&
|
|
"expected same number of results");
|
|
|
|
// Clone `opToPad` to operate on the statically padded shapes.
|
|
auto resultTensorTypes =
|
|
ValueRange(newOperands).take_back(opToPad.getNumDpsInits()).getTypes();
|
|
paddedOp = clone(b, opToPad, resultTensorTypes, newOperands);
|
|
|
|
// Recover the slice out of the new static results. This keeps the original
|
|
// linalg op around because it uses the dims of the original results.
|
|
SmallVector<Value> paddedSubviewResults;
|
|
paddedSubviewResults.reserve(opToPad->getNumResults());
|
|
for (const auto &en : llvm::enumerate(paddedOp->getResults())) {
|
|
Value paddedResult = en.value();
|
|
int64_t resultNumber = en.index();
|
|
int64_t rank = paddedResult.getType().cast<RankedTensorType>().getRank();
|
|
SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0));
|
|
SmallVector<OpFoldResult> sizes;
|
|
for (Value v : reifiedResultShapes[resultNumber])
|
|
sizes.push_back(getAsOpFoldResult(v));
|
|
SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1));
|
|
paddedSubviewResults.push_back(b.create<tensor::ExtractSliceOp>(
|
|
loc, paddedResult, offsets, sizes, strides));
|
|
}
|
|
return paddedSubviewResults;
|
|
}
|
|
|
|
/// Try to peel a loop `op` and return the new result.
|
|
// TODO: Add support for scf.parallel and affine.for loops.
|
|
SmallVector<Value> mlir::linalg::peelLoop(RewriterBase &rewriter,
|
|
Operation *op) {
|
|
return llvm::TypeSwitch<Operation *, SmallVector<Value, 4>>(op)
|
|
.Case<scf::ForOp>([&](scf::ForOp forOp) {
|
|
scf::ForOp partialIteration;
|
|
if (succeeded(scf::peelAndCanonicalizeForLoop(rewriter, forOp,
|
|
partialIteration)))
|
|
return partialIteration->getResults();
|
|
assert(!partialIteration && "expected that loop was not peeled");
|
|
return forOp->getResults();
|
|
})
|
|
.Default([&](Operation *op) { return op->getResults(); });
|
|
}
|
|
|
|
/// Peel and canonicalize 'loops'.
|
|
void mlir::linalg::peelLoops(RewriterBase &rewriter,
|
|
ArrayRef<scf::ForOp> loops) {
|
|
for (auto loopOp : loops)
|
|
peelLoop(rewriter, loopOp);
|
|
}
|
|
|
|
/// Linalg padding pattern.
|
|
mlir::linalg::LinalgPaddingPattern::LinalgPaddingPattern(
|
|
MLIRContext *context, LinalgPaddingOptions options, PatternBenefit benefit)
|
|
: OpInterfaceRewritePattern<LinalgOp>(context, benefit),
|
|
options(std::move(options)) {}
|
|
|
|
FailureOr<LinalgOp>
|
|
mlir::linalg::LinalgPaddingPattern::returningMatchAndRewrite(
|
|
LinalgOp linalgOp, PatternRewriter &rewriter) const {
|
|
if (!linalgOp.hasTensorSemantics())
|
|
return failure();
|
|
|
|
// Pad the operation.
|
|
LinalgOp paddedOp;
|
|
FailureOr<SmallVector<Value>> newResults =
|
|
rewriteAsPaddedOp(rewriter, linalgOp, options.paddingDimensions,
|
|
options.paddingValues, options.packPaddings, paddedOp);
|
|
if (failed(newResults))
|
|
return failure();
|
|
|
|
// Hoist the padding.
|
|
for (const auto &en : enumerate(options.hoistPaddings)) {
|
|
if (static_cast<int64_t>(en.index()) >= paddedOp->getNumOperands())
|
|
break;
|
|
OpOperand &opOperand = paddedOp->getOpOperand(en.index());
|
|
auto padOp = opOperand.get().getDefiningOp<tensor::PadOp>();
|
|
if (!padOp || en.value() == 0)
|
|
continue;
|
|
|
|
// Fail hoisting if the operand shape is not fully static.
|
|
if (llvm::any_of(paddedOp.getShape(&opOperand), ShapedType::isDynamic))
|
|
return failure();
|
|
|
|
tensor::PadOp hoistedOp;
|
|
SmallVector<GenericOp> transposeOps;
|
|
SmallVector<int64_t> transposeVector =
|
|
en.index() < options.transposePaddings.size()
|
|
? options.transposePaddings[en.index()]
|
|
: SmallVector<int64_t>{};
|
|
|
|
FailureOr<Value> newResult = hoistPaddingOnTensors(
|
|
padOp, en.value(), transposeVector, hoistedOp, transposeOps);
|
|
if (failed(newResult))
|
|
continue;
|
|
rewriter.replaceOp(padOp, *newResult);
|
|
}
|
|
|
|
// Replace the original operation to pad.
|
|
rewriter.replaceOp(linalgOp, *newResults);
|
|
|
|
return paddedOp;
|
|
}
|
|
|
|
LogicalResult mlir::linalg::CopyVectorizationPattern::matchAndRewrite(
|
|
memref::CopyOp copyOp, PatternRewriter &rewriter) const {
|
|
return vectorizeCopy(rewriter, copyOp);
|
|
}
|
|
|
|
static SmallVector<utils::IteratorType>
|
|
getNParallelLoopsAttrs(unsigned nParallelLoops) {
|
|
return SmallVector<utils::IteratorType>(nParallelLoops,
|
|
utils::IteratorType::parallel);
|
|
}
|
|
|
|
/// Rewrite a tensor::PadOp into a sequence of EmptyOp, FillOp (to
|
|
/// initialize with pad_val) and GenericOp (to copy contents).
|
|
LogicalResult
|
|
PadOpTransformationPattern::matchAndRewrite(tensor::PadOp padOp,
|
|
PatternRewriter &rewriter) const {
|
|
|
|
auto inputShapedType = padOp.getSource().getType().cast<ShapedType>();
|
|
auto resultShapedType = padOp.getResult().getType().cast<ShapedType>();
|
|
|
|
// Bail on non-static shapes.
|
|
if (!inputShapedType.hasStaticShape())
|
|
return failure();
|
|
if (!resultShapedType.hasStaticShape())
|
|
return failure();
|
|
|
|
// Only support padding with a constant for now, i.e. either:
|
|
// 1. A BBarg from a different block.
|
|
// 2. A value defined outside of the current block.
|
|
Block &block = padOp.getRegion().front();
|
|
auto yieldOp = cast<tensor::YieldOp>(block.getTerminator());
|
|
Value padValue = yieldOp.getValue();
|
|
Operation *definingOp = padValue.getDefiningOp();
|
|
if (definingOp && definingOp->getBlock() == &block)
|
|
return failure();
|
|
if (!definingOp && padValue.cast<BlockArgument>().getOwner() == &block)
|
|
return failure();
|
|
|
|
// Create tensor with the padded shape
|
|
Location loc = padOp.getLoc();
|
|
SmallVector<Value> indices(resultShapedType.getRank(),
|
|
rewriter.create<arith::ConstantIndexOp>(loc, 0));
|
|
Value emptyTensor = rewriter.create<tensor::EmptyOp>(
|
|
loc, resultShapedType.getShape(), resultShapedType.getElementType());
|
|
|
|
// Initialize tensor with the pad value
|
|
Value tmpTensor = rewriter
|
|
.create<linalg::FillOp>(loc, ValueRange{padValue},
|
|
ValueRange{emptyTensor})
|
|
.result();
|
|
|
|
// Copy original contents into new tensor
|
|
// Uses linalg.generic, but could be done with tensor.insert_slice
|
|
SmallVector<AffineExpr, 4> outputExprs;
|
|
for (unsigned i = 0; i < resultShapedType.getRank(); ++i) {
|
|
outputExprs.push_back(getAffineDimExpr(i, rewriter.getContext()) +
|
|
padOp.getStaticLow()[i]);
|
|
}
|
|
|
|
SmallVector<AffineMap, 2> transferMaps = {
|
|
rewriter.getMultiDimIdentityMap(inputShapedType.getRank()),
|
|
AffineMap::get(resultShapedType.getRank(),
|
|
/*symbolCount=*/0, outputExprs, rewriter.getContext())};
|
|
|
|
rewriter.replaceOpWithNewOp<linalg::GenericOp>(
|
|
padOp, resultShapedType, padOp.getSource(), tmpTensor, transferMaps,
|
|
getNParallelLoopsAttrs(resultShapedType.getRank()),
|
|
[&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) {
|
|
nestedBuilder.create<linalg::YieldOp>(nestedLoc, args[0]);
|
|
});
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Filling `dest` using FillOp constant padding value if possible.
|
|
/// Otherwise, generate a tensor::GenerateOp.
|
|
Value GeneralizePadOpPattern::createFillOrGenerateOp(
|
|
PatternRewriter &rewriter, tensor::PadOp padOp, Value dest,
|
|
const SmallVector<Value> &dynSizes) const {
|
|
auto padValue = padOp.getConstantPaddingValue();
|
|
if (padValue)
|
|
return rewriter.create<FillOp>(padOp.getLoc(), padValue, dest).result();
|
|
|
|
// Fill could not be optimized: Lower to tensor::GenerateOp with region.
|
|
auto generateOp = rewriter.create<tensor::GenerateOp>(
|
|
padOp.getLoc(), padOp.getResultType(), dynSizes);
|
|
// Copy region to new op.
|
|
IRMapping bvm;
|
|
padOp.getRegion().cloneInto(&generateOp.getRegion(), bvm);
|
|
return generateOp;
|
|
}
|
|
|
|
LogicalResult
|
|
GeneralizePadOpPattern::matchAndRewrite(tensor::PadOp padOp,
|
|
PatternRewriter &rewriter) const {
|
|
// Given an OpFoldResult, return an index-typed value.
|
|
auto getIdxValue = [&](OpFoldResult ofr) {
|
|
if (auto val = ofr.dyn_cast<Value>())
|
|
return val;
|
|
return rewriter
|
|
.create<arith::ConstantIndexOp>(
|
|
padOp.getLoc(), ofr.get<Attribute>().cast<IntegerAttr>().getInt())
|
|
.getResult();
|
|
};
|
|
|
|
auto resultType = padOp.getResultType();
|
|
// Compute size of EmptyOp. Any combination of static/dynamic is supported.
|
|
SmallVector<Value> dynSizes;
|
|
SmallVector<int64_t> staticSizes;
|
|
for (unsigned dim = 0; dim < resultType.getRank(); ++dim) {
|
|
if (resultType.isDynamicDim(dim)) {
|
|
auto srcSize = rewriter.createOrFold<tensor::DimOp>(
|
|
padOp.getLoc(), padOp.getSource(), dim);
|
|
// Add low and high padding value.
|
|
auto plusLow = rewriter.createOrFold<arith::AddIOp>(
|
|
padOp.getLoc(), srcSize, getIdxValue(padOp.getMixedLowPad()[dim]));
|
|
auto plusHigh = rewriter.createOrFold<arith::AddIOp>(
|
|
padOp.getLoc(), plusLow, getIdxValue(padOp.getMixedHighPad()[dim]));
|
|
dynSizes.push_back(plusHigh);
|
|
}
|
|
staticSizes.push_back(resultType.getDimSize(dim));
|
|
}
|
|
|
|
// Init tensor and fill it with padding.
|
|
Value emptyTensor = rewriter.create<tensor::EmptyOp>(
|
|
padOp.getLoc(), staticSizes, resultType.getElementType(), dynSizes);
|
|
Value fill = createFillOrGenerateOp(rewriter, padOp, emptyTensor, dynSizes);
|
|
|
|
// Try optimize the copy of source.
|
|
if (optimizeCopyFn && optimizeCopyFn(rewriter, padOp, fill).succeeded())
|
|
return success();
|
|
|
|
// tensor::PadOps cannot be optimized. Generate a InsertSliceOp instead
|
|
// for copying the PadOp source.
|
|
auto sourceType = padOp.getSourceType();
|
|
// Compute size of source of tensor::PadOp.
|
|
SmallVector<OpFoldResult> srcSizes;
|
|
for (unsigned dim = 0; dim < sourceType.getRank(); ++dim) {
|
|
if (sourceType.isDynamicDim(dim)) {
|
|
srcSizes.push_back(rewriter.createOrFold<tensor::DimOp>(
|
|
padOp.getLoc(), padOp.getSource(), dim));
|
|
} else {
|
|
srcSizes.push_back(rewriter.getIndexAttr(sourceType.getDimSize(dim)));
|
|
}
|
|
}
|
|
// Strides of InsertSliceOp are all 1.
|
|
SmallVector<OpFoldResult> strides(sourceType.getRank(),
|
|
rewriter.getIndexAttr(1));
|
|
rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>(
|
|
padOp, padOp.getSource(), fill, padOp.getMixedLowPad(), srcSizes,
|
|
strides);
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ExtractSliceOfPadTensorSwapPattern::matchAndRewrite(
|
|
tensor::ExtractSliceOp sliceOp, PatternRewriter &rewriter) const {
|
|
if (!sliceOp.hasUnitStride())
|
|
return failure();
|
|
|
|
auto padOp = sliceOp.getSource().getDefiningOp<tensor::PadOp>();
|
|
if (!padOp)
|
|
return failure();
|
|
|
|
bool zeroSliceGuard = true;
|
|
if (controlFn) {
|
|
if (std::optional<bool> control = controlFn(sliceOp))
|
|
zeroSliceGuard = *control;
|
|
else
|
|
return failure();
|
|
}
|
|
|
|
Operation *tiledPadOp =
|
|
tensor::bubbleUpPadSlice(rewriter, padOp, sliceOp.getMixedOffsets(),
|
|
sliceOp.getMixedSizes(), zeroSliceGuard);
|
|
// All shapes are static and the data source is actually used. Rewrite into
|
|
// pad(extract_slice(x)).
|
|
rewriter.replaceOp(sliceOp, tiledPadOp->getResults());
|
|
return success();
|
|
}
|
|
|
|
/// Returns a tensor.pad op if padding value is set. Otherwise, returns the
|
|
/// source directly. The method assumes that the `packOp` has static shapes.
|
|
static Value getPackOpSourceOrPaddedSource(OpBuilder &builder,
|
|
tensor::PackOp packOp) {
|
|
Value input = packOp.getSource();
|
|
if (!packOp.getPaddingValue()) {
|
|
return input;
|
|
}
|
|
|
|
Location loc = packOp.getLoc();
|
|
ShapedType inputType = packOp.getSourceType();
|
|
int64_t inputRank = inputType.getRank();
|
|
assert(llvm::all_of(packOp.getDestType().getShape().take_front(inputRank),
|
|
[](int64_t val) { return val == 1; }));
|
|
|
|
SmallVector<int64_t> paddedShape;
|
|
DenseMap<int64_t, OpFoldResult> tileAndPosMapping =
|
|
packOp.getDimAndTileMapping();
|
|
for (int64_t dim = 0; dim < inputRank; ++dim) {
|
|
int64_t size = inputType.getDimSize(dim);
|
|
if (!tileAndPosMapping.count(dim)) {
|
|
paddedShape.push_back(size);
|
|
continue;
|
|
}
|
|
|
|
// The size is less than or equal to tileSize because outer dims are all 1s.
|
|
std::optional<int64_t> tileSize =
|
|
getConstantIntValue(tileAndPosMapping.lookup(dim));
|
|
assert(tileSize.has_value() && "dynamic inner tile size is not supported");
|
|
paddedShape.push_back(tileSize.value());
|
|
}
|
|
auto resultType =
|
|
RankedTensorType::get(paddedShape, inputType.getElementType());
|
|
return tensor::createPadHighOp(resultType, input, packOp.getPaddingValue(),
|
|
/*nofold=*/false, loc, builder);
|
|
}
|
|
|
|
static SmallVector<int64_t>
|
|
getPackUnpackNormalizedInnerPerm(int rank, ArrayRef<int64_t> innerDimsPos) {
|
|
constexpr int64_t kNonTiledMarker = -1;
|
|
SmallVector<int64_t> vec(rank, kNonTiledMarker);
|
|
for (auto [index, value] : llvm::enumerate(innerDimsPos))
|
|
vec[value] = index;
|
|
SmallVector<int64_t> perm = llvm::to_vector(llvm::make_filter_range(
|
|
vec, [&](int64_t v) { return v != kNonTiledMarker; }));
|
|
return perm;
|
|
}
|
|
|
|
LogicalResult GeneralizeOuterUnitDimsPackOpPattern::matchAndRewrite(
|
|
tensor::PackOp packOp, PatternRewriter &rewriter) const {
|
|
// TODO: support the case that outer dimensions are not all 1s A
|
|
// tensor.expand_shape will be generated in this case.
|
|
int64_t srcRank = packOp.getSourceRank();
|
|
if (llvm::any_of(packOp.getDestType().getShape().take_front(srcRank),
|
|
[](int64_t val) { return val != 1; })) {
|
|
return rewriter.notifyMatchFailure(
|
|
packOp, "require the outer dimension of the result are all 1s");
|
|
}
|
|
|
|
if (llvm::any_of(packOp.getMixedTiles(),
|
|
[](OpFoldResult tile) { return tile.is<Value>(); })) {
|
|
return rewriter.notifyMatchFailure(packOp,
|
|
"require inner tile sizes being static");
|
|
}
|
|
|
|
// 1. Use rank-reduced tensor.extract_slice op to extract the tile.
|
|
Location loc = packOp.getLoc();
|
|
Attribute zeroIdxAttr = rewriter.getIndexAttr(0);
|
|
Attribute oneIdxAttr = rewriter.getIndexAttr(1);
|
|
SmallVector<OpFoldResult> readOffsets(srcRank, zeroIdxAttr);
|
|
SmallVector<OpFoldResult> readStrides(srcRank, oneIdxAttr);
|
|
SmallVector<OpFoldResult> readSizes;
|
|
SmallVector<int64_t> readShape;
|
|
DenseMap<int64_t, OpFoldResult> dimAndTileMapping =
|
|
packOp.getDimAndTileMapping();
|
|
for (auto i : llvm::seq<unsigned>(0, srcRank)) {
|
|
if (!dimAndTileMapping.count(i)) {
|
|
readSizes.push_back(oneIdxAttr);
|
|
continue;
|
|
}
|
|
readSizes.push_back(dimAndTileMapping[i]);
|
|
readShape.push_back(getConstantIntValue(dimAndTileMapping[i])
|
|
.value_or(ShapedType::kDynamic));
|
|
}
|
|
Type elemType = packOp.getSourceType().getElementType();
|
|
auto readType = RankedTensorType::get(readShape, elemType);
|
|
|
|
Value input = getPackOpSourceOrPaddedSource(rewriter, packOp);
|
|
Value tile = rewriter.create<tensor::ExtractSliceOp>(
|
|
loc, readType, input, readOffsets, readSizes, readStrides);
|
|
|
|
// 2. Transpose the tile to match the inner tile order.
|
|
SmallVector<int64_t> perm =
|
|
getPackUnpackNormalizedInnerPerm(srcRank, packOp.getInnerDimsPos());
|
|
SmallVector<int64_t> transpShape = readShape;
|
|
applyPermutationToVector<int64_t>(transpShape, perm);
|
|
|
|
Value empty = rewriter.create<tensor::EmptyOp>(loc, transpShape, elemType);
|
|
auto transposedOp =
|
|
rewriter.create<linalg::TransposeOp>(loc, tile, empty, perm);
|
|
|
|
// 3. Insert the inner tile to the destination.
|
|
int64_t destRank = packOp.getDestRank();
|
|
SmallVector<OpFoldResult> writeStrides(destRank, oneIdxAttr);
|
|
SmallVector<OpFoldResult> writeOffsets(destRank, zeroIdxAttr);
|
|
SmallVector<OpFoldResult> writeSizes(srcRank, oneIdxAttr);
|
|
for (auto size : transpShape)
|
|
writeSizes.push_back(rewriter.getIndexAttr(size));
|
|
|
|
auto insert = rewriter.create<tensor::InsertSliceOp>(
|
|
loc, transposedOp.getResult()[0], packOp.getDest(), writeOffsets,
|
|
writeSizes, writeStrides);
|
|
rewriter.replaceOp(packOp, insert.getResult());
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult GeneralizeOuterUnitDimsUnPackOpPattern::matchAndRewrite(
|
|
tensor::UnPackOp unpackOp, PatternRewriter &rewriter) const {
|
|
int64_t srcRank = unpackOp.getSourceRank();
|
|
int64_t destRank = unpackOp.getDestRank();
|
|
ArrayRef<int64_t> srcShape = unpackOp.getSourceType().getShape();
|
|
if (llvm::any_of(srcShape.take_front(destRank),
|
|
[](int64_t val) { return val != 1; })) {
|
|
return rewriter.notifyMatchFailure(
|
|
unpackOp, "require the outer dimension of the result are all 1s");
|
|
}
|
|
|
|
// 1. Use rank-reduced tensor.extract_slice op to extract the tile.
|
|
Location loc = unpackOp.getLoc();
|
|
Attribute zeroIdxAttr = rewriter.getIndexAttr(0);
|
|
Attribute oneIdxAttr = rewriter.getIndexAttr(1);
|
|
SmallVector<OpFoldResult> readOffsets(srcRank, zeroIdxAttr);
|
|
SmallVector<OpFoldResult> readStrides(srcRank, oneIdxAttr);
|
|
|
|
auto mixedTiles = unpackOp.getMixedTiles();
|
|
SmallVector<OpFoldResult> readSizes(destRank, oneIdxAttr);
|
|
readSizes.append(mixedTiles.begin(), mixedTiles.end());
|
|
|
|
// Explicitly create the type for extract_slice op because the inner tile
|
|
// size could be 1. We want to represent the whole inner tile in this case.
|
|
ArrayRef<int64_t> readShape = srcShape.drop_front(destRank);
|
|
Type elemType = unpackOp.getSourceType().getElementType();
|
|
auto readType = RankedTensorType::get(readShape, elemType);
|
|
Value innerTile = rewriter.create<tensor::ExtractSliceOp>(
|
|
loc, readType, unpackOp.getSource(), readOffsets, readSizes, readStrides);
|
|
|
|
// 2. Transpose the tile to match the outer corresponding tile order.
|
|
ArrayRef<int64_t> innerDimsPos = unpackOp.getInnerDimsPos();
|
|
SmallVector<int64_t> perm =
|
|
getPackUnpackNormalizedInnerPerm(srcRank, innerDimsPos);
|
|
SmallVector<int64_t> transpShape(readShape);
|
|
applyPermutationToVector<int64_t>(transpShape, perm);
|
|
|
|
Value empty = rewriter.create<tensor::EmptyOp>(loc, transpShape, elemType);
|
|
auto transposedOp =
|
|
rewriter.create<linalg::TransposeOp>(loc, innerTile, empty, perm);
|
|
|
|
// 3. Handle in-complete tiles if needed. It truncates trailing data from the
|
|
// transposed tile.
|
|
int numLoops = transpShape.size();
|
|
SmallVector<OpFoldResult> tileStrides(numLoops, oneIdxAttr);
|
|
SmallVector<OpFoldResult> tileOffsets(numLoops, zeroIdxAttr);
|
|
SmallVector<OpFoldResult> tileSizes;
|
|
for (int dim : innerDimsPos)
|
|
tileSizes.push_back(getAsOpFoldResult(
|
|
rewriter.createOrFold<tensor::DimOp>(loc, unpackOp.getDest(), dim)));
|
|
|
|
applyPermutationToVector<OpFoldResult>(tileSizes, perm);
|
|
auto partialTile = rewriter.create<tensor::ExtractSliceOp>(
|
|
loc, transposedOp.getResult()[0], tileOffsets, tileSizes, tileStrides);
|
|
|
|
// 4. Insert the result to the destination tensor.
|
|
SmallVector<OpFoldResult> writeSizes;
|
|
SmallVector<OpFoldResult> writeStrides(destRank, oneIdxAttr);
|
|
SmallVector<OpFoldResult> writeOffsets(destRank, zeroIdxAttr);
|
|
DenseMap<int64_t, OpFoldResult> dimAndTileMapping =
|
|
unpackOp.getDimAndTileMapping();
|
|
for (int i = 0, idx = 0; i < destRank; ++i) {
|
|
if (dimAndTileMapping.count(i))
|
|
writeSizes.push_back(tileSizes[idx++]);
|
|
else
|
|
writeSizes.push_back(oneIdxAttr);
|
|
}
|
|
auto insert = rewriter.create<tensor::InsertSliceOp>(
|
|
loc, partialTile, unpackOp.getDest(), writeOffsets, writeSizes,
|
|
writeStrides);
|
|
rewriter.replaceOp(unpackOp, insert.getResult());
|
|
|
|
return success();
|
|
}
|
|
|
|
// The following are patterns for downscaling convolution ops with size-1
|
|
// window dimensions.
|
|
//
|
|
// Note that we'd eventually want to write such transformations in a generic
|
|
// way, e.g., converting to linalg.generic, removing the size-1 dimensions,
|
|
// and then turning back to named ops. But for now it's fine to have a few
|
|
// patterns matching special ops to get started.
|
|
|
|
template <typename Conv2DOp, typename Conv1DOp>
|
|
FailureOr<Conv1DOp> DownscaleSizeOneWindowed2DConvolution<Conv2DOp, Conv1DOp>::
|
|
returningMatchAndRewrite(Conv2DOp convOp, PatternRewriter &rewriter) const {
|
|
if (convOp.hasBufferSemantics())
|
|
return failure(); // To be implemented.
|
|
|
|
Value input = convOp.getInputs().front();
|
|
Value kernel = convOp.getInputs().back();
|
|
Value output = convOp.getOutputs().front();
|
|
|
|
auto inputType = input.getType().dyn_cast<RankedTensorType>();
|
|
auto kernelType = kernel.getType().dyn_cast<RankedTensorType>();
|
|
auto outputType = output.getType().dyn_cast<RankedTensorType>();
|
|
|
|
auto kernelShape = kernelType.getShape();
|
|
auto outputShape = outputType.getShape();
|
|
|
|
// Get domain indices based on conv2D layout.
|
|
auto [khIndex, kwIndex, ohIndex, owIndex] =
|
|
TypeSwitch<Operation *, std::tuple<int64_t, int64_t, int64_t, int64_t>>(
|
|
convOp)
|
|
.Case([&](linalg::Conv2DNhwcHwcfOp op) {
|
|
return std::make_tuple(0, 1, 1, 2);
|
|
})
|
|
.Case([&](linalg::Conv2DNchwFchwOp op) {
|
|
return std::make_tuple(2, 3, 2, 3);
|
|
})
|
|
.Case([&](linalg::PoolingNhwcSumOp op) {
|
|
return std::make_tuple(0, 1, 1, 2);
|
|
})
|
|
.Case([&](linalg::PoolingNchwSumOp op) {
|
|
return std::make_tuple(0, 1, 2, 3);
|
|
})
|
|
.Case([&](linalg::PoolingNhwcMaxOp op) {
|
|
return std::make_tuple(0, 1, 1, 2);
|
|
})
|
|
.Case([&](linalg::PoolingNhwcMaxUnsignedOp op) {
|
|
return std::make_tuple(0, 1, 1, 2);
|
|
})
|
|
.Case([&](linalg::PoolingNhwcMinOp op) {
|
|
return std::make_tuple(0, 1, 1, 2);
|
|
})
|
|
.Case([&](linalg::PoolingNhwcMinUnsignedOp op) {
|
|
return std::make_tuple(0, 1, 1, 2);
|
|
})
|
|
.Case([&](linalg::PoolingNchwMaxOp op) {
|
|
return std::make_tuple(0, 1, 2, 3);
|
|
})
|
|
.Default([&](Operation *op) {
|
|
llvm_unreachable("unexpected conv2d/pool2d operation.");
|
|
return std::make_tuple(0, 0, 0, 0);
|
|
});
|
|
|
|
// Only handle the case where at least one of the window dimensions is
|
|
// of size 1. Other cases can rely on tiling to reduce to such cases.
|
|
int64_t khSize = kernelShape[khIndex], kwSize = kernelShape[kwIndex];
|
|
int64_t ohSize = outputShape[ohIndex], owSize = outputShape[owIndex];
|
|
bool removeH = (khSize == 1 && ohSize == 1);
|
|
bool removeW = (kwSize == 1 && owSize == 1);
|
|
if (!removeH && !removeW)
|
|
return failure();
|
|
|
|
// Get new shapes and types for all operands by removing the size-1
|
|
// dimension.
|
|
using RTTBuilder = RankedTensorType::Builder;
|
|
RankedTensorType newInputType =
|
|
RTTBuilder(inputType).dropDim((removeH ? ohIndex : owIndex));
|
|
RankedTensorType newKernelType =
|
|
RTTBuilder(kernelType).dropDim((removeH ? khIndex : kwIndex));
|
|
RankedTensorType newOutputType =
|
|
RTTBuilder(outputType).dropDim((removeH ? ohIndex : owIndex));
|
|
|
|
// Rank-reduce operands.
|
|
Location loc = convOp.getLoc();
|
|
Value newInput = tensor::createCanonicalRankReducingExtractSliceOp(
|
|
rewriter, loc, input, newInputType);
|
|
Value newKernel = tensor::createCanonicalRankReducingExtractSliceOp(
|
|
rewriter, loc, kernel, newKernelType);
|
|
Value newOutput = tensor::createCanonicalRankReducingExtractSliceOp(
|
|
rewriter, loc, output, newOutputType);
|
|
|
|
// Rank-reduce strides and dilations too.
|
|
// TODO: dropDim 1-liner helper.
|
|
auto strides =
|
|
llvm::to_vector<4>(convOp.getStrides().template getValues<int64_t>());
|
|
strides.erase(strides.begin() + (removeH ? 0 : 1));
|
|
auto stridesAttr = rewriter.getI64VectorAttr(strides);
|
|
|
|
auto dilations =
|
|
llvm::to_vector<4>(convOp.getDilations().template getValues<int64_t>());
|
|
dilations.erase(dilations.begin() + (removeH ? 0 : 1));
|
|
auto dilationsAttr = rewriter.getI64VectorAttr(dilations);
|
|
|
|
auto conv1DOp = rewriter.create<Conv1DOp>(
|
|
loc, newOutputType, ValueRange{newInput, newKernel},
|
|
ValueRange{newOutput}, stridesAttr, dilationsAttr);
|
|
|
|
// Insert back.
|
|
Value inserted = tensor::createCanonicalRankReducingInsertSliceOp(
|
|
rewriter, loc, conv1DOp.getResult(0), output);
|
|
rewriter.replaceOp(convOp, inserted);
|
|
|
|
return conv1DOp;
|
|
}
|
|
|
|
template struct linalg::DownscaleSizeOneWindowed2DConvolution<Conv2DNhwcHwcfOp,
|
|
Conv1DNwcWcfOp>;
|
|
template struct linalg::DownscaleSizeOneWindowed2DConvolution<Conv2DNchwFchwOp,
|
|
Conv1DNcwFcwOp>;
|
|
template struct linalg::DownscaleSizeOneWindowed2DConvolution<PoolingNhwcSumOp,
|
|
PoolingNwcSumOp>;
|
|
template struct linalg::DownscaleSizeOneWindowed2DConvolution<PoolingNchwSumOp,
|
|
PoolingNcwSumOp>;
|
|
template struct linalg::DownscaleSizeOneWindowed2DConvolution<PoolingNhwcMaxOp,
|
|
PoolingNwcMaxOp>;
|
|
template struct linalg::DownscaleSizeOneWindowed2DConvolution<
|
|
PoolingNhwcMaxUnsignedOp, PoolingNwcMaxUnsignedOp>;
|
|
template struct linalg::DownscaleSizeOneWindowed2DConvolution<PoolingNhwcMinOp,
|
|
PoolingNwcMinOp>;
|
|
template struct linalg::DownscaleSizeOneWindowed2DConvolution<
|
|
PoolingNhwcMinUnsignedOp, PoolingNwcMinUnsignedOp>;
|
|
template struct linalg::DownscaleSizeOneWindowed2DConvolution<PoolingNchwMaxOp,
|
|
PoolingNcwMaxOp>;
|
|
|
|
FailureOr<DepthwiseConv1DNwcWcOp>
|
|
DownscaleDepthwiseConv2DNhwcHwcOp::returningMatchAndRewrite(
|
|
DepthwiseConv2DNhwcHwcOp convOp, PatternRewriter &rewriter) const {
|
|
if (convOp.hasBufferSemantics())
|
|
return failure(); // To be implemented.
|
|
|
|
Value input = convOp.getInputs().front();
|
|
Value kernel = convOp.getInputs().back();
|
|
Value output = convOp.getOutputs().front();
|
|
|
|
auto inputType = input.getType().dyn_cast<RankedTensorType>();
|
|
auto kernelType = kernel.getType().dyn_cast<RankedTensorType>();
|
|
auto outputType = output.getType().dyn_cast<RankedTensorType>();
|
|
|
|
auto kernelShape = kernelType.getShape();
|
|
auto outputShape = outputType.getShape();
|
|
|
|
// Only handle the case where at least one of the window dimensions is
|
|
// of size 1. Other cases can rely on tiling to reduce to such cases.
|
|
int64_t khSize = kernelShape[0], kwSize = kernelShape[1];
|
|
int64_t ohSize = outputShape[1], owSize = outputShape[2];
|
|
bool removeH = (khSize == 1 && ohSize == 1);
|
|
bool removeW = (kwSize == 1 && owSize == 1);
|
|
if (!removeH && !removeW)
|
|
return failure();
|
|
|
|
// Get new shapes and types for all operands by removing the size-1
|
|
// dimension.
|
|
using RTTBuilder = RankedTensorType::Builder;
|
|
RankedTensorType newInputType =
|
|
RTTBuilder(inputType).dropDim((removeH ? 1 : 2));
|
|
RankedTensorType newKernelType =
|
|
RTTBuilder(kernelType).dropDim((removeH ? 0 : 1));
|
|
RankedTensorType newOutputType =
|
|
RTTBuilder(outputType).dropDim(removeH ? 1 : 2);
|
|
|
|
// Rank-reduce operands.
|
|
Location loc = convOp.getLoc();
|
|
Value newInput = tensor::createCanonicalRankReducingExtractSliceOp(
|
|
rewriter, loc, input, newInputType);
|
|
Value newKernel = tensor::createCanonicalRankReducingExtractSliceOp(
|
|
rewriter, loc, kernel, newKernelType);
|
|
Value newOutput = tensor::createCanonicalRankReducingExtractSliceOp(
|
|
rewriter, loc, output, newOutputType);
|
|
|
|
// Rank-reduce strides and dilations too.
|
|
// TODO: dropDim 1-liner helper.
|
|
auto strides = llvm::to_vector<4>(convOp.getStrides().getValues<int64_t>());
|
|
strides.erase(strides.begin() + (removeH ? 0 : 1));
|
|
auto stridesAttr = rewriter.getI64VectorAttr(strides);
|
|
|
|
auto dilations =
|
|
llvm::to_vector<4>(convOp.getDilations().getValues<int64_t>());
|
|
dilations.erase(dilations.begin() + (removeH ? 0 : 1));
|
|
auto dilationsAttr = rewriter.getI64VectorAttr(dilations);
|
|
|
|
auto conv1DOp = rewriter.create<DepthwiseConv1DNwcWcOp>(
|
|
loc, newOutputType, ValueRange{newInput, newKernel},
|
|
ValueRange{newOutput}, stridesAttr, dilationsAttr);
|
|
|
|
// Insert back.
|
|
Value inserted = tensor::createCanonicalRankReducingInsertSliceOp(
|
|
rewriter, loc, conv1DOp.getResult(0), output);
|
|
rewriter.replaceOp(convOp, inserted);
|
|
|
|
return conv1DOp;
|
|
}
|
|
|
|
void linalg::populateDecomposeConvolutionPatterns(RewritePatternSet &patterns,
|
|
PatternBenefit benefit) {
|
|
patterns.add<DownscaleSizeOneWindowed2DConvolution<linalg::Conv2DNhwcHwcfOp,
|
|
Conv1DNwcWcfOp>,
|
|
DownscaleSizeOneWindowed2DConvolution<linalg::Conv2DNchwFchwOp,
|
|
Conv1DNcwFcwOp>,
|
|
DownscaleDepthwiseConv2DNhwcHwcOp>(patterns.getContext(),
|
|
benefit);
|
|
patterns.add<
|
|
DownscaleSizeOneWindowed2DConvolution<PoolingNhwcSumOp, PoolingNwcSumOp>,
|
|
DownscaleSizeOneWindowed2DConvolution<PoolingNchwSumOp, PoolingNcwSumOp>,
|
|
DownscaleSizeOneWindowed2DConvolution<PoolingNhwcMaxOp, PoolingNwcMaxOp>,
|
|
DownscaleSizeOneWindowed2DConvolution<PoolingNhwcMaxUnsignedOp,
|
|
PoolingNwcMaxUnsignedOp>,
|
|
DownscaleSizeOneWindowed2DConvolution<PoolingNhwcMinOp, PoolingNwcMinOp>,
|
|
DownscaleSizeOneWindowed2DConvolution<PoolingNhwcMinUnsignedOp,
|
|
PoolingNwcMinUnsignedOp>,
|
|
DownscaleSizeOneWindowed2DConvolution<PoolingNchwMaxOp, PoolingNcwMaxOp>>(
|
|
patterns.getContext(), benefit);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// pack transformation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef NDEBUG
|
|
/// Return true if `map` has 0 or 1 result function of AffineDimExpr(dim).
|
|
static bool hasAtMostOneResultFunctionOfDim(AffineMap map, int64_t dim) {
|
|
bool found = false;
|
|
for (AffineExpr e : map.getResults()) {
|
|
if (!e.isFunctionOfDim(dim))
|
|
continue;
|
|
if (found)
|
|
return false;
|
|
found = true;
|
|
}
|
|
return true;
|
|
}
|
|
#endif // NDEBUG
|
|
|
|
/// Return the index of the first result of `map` that is a function of
|
|
/// AffineDimExpr(dim), std::nullopt otherwise.
|
|
static std::optional<int64_t> getFirstResultIndexFunctionOf(AffineMap map,
|
|
int64_t dim) {
|
|
for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
|
|
AffineExpr expr = map.getResult(i);
|
|
if (!expr.isFunctionOfDim(dim))
|
|
continue;
|
|
return i;
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
/// Perform one step of packing of a LinalgOp's metadata along `dim` into the
|
|
/// `newDim` at `iteratorTypes.size()` by:
|
|
/// 1. Appending `iteratorTypes[newDim]`, equal to `iteratorTypes[dim]`.
|
|
/// 2. Appending a `newDim` to the domain of every indexing map.
|
|
/// 3. For each operand (i.e. for each map in `indexingMaps`), perform packing
|
|
/// by potentially adding a `newDim` result to `map`.
|
|
/// The preserved invariant is that `iteratorTypes.size()` is always equal to
|
|
/// `map.getNumDims()` for every map in `indexingMaps`.
|
|
///
|
|
/// Update `indexingMaps` and `iteratorTypes` inplace as one step of the update.
|
|
/// Return a vector that records the optional packing for each operand.
|
|
/// Return failure if the packed indexing cannot be represented with a LinalgOp.
|
|
///
|
|
/// Further details:
|
|
/// ================
|
|
/// The current implementation of packing (i.e. data tiling) consists of
|
|
/// rewriting a linearized strip-mined form into a higher-dimensional access.
|
|
/// e.g. consider an access `A[I][f(j, k, l)]` and packing by 4; we rewrite
|
|
/// `I` into `4 * i + ii`, where `0 <= ii < 4`.
|
|
/// The access is further rewritten as `A[i][f(j, k, l)][ii]`.
|
|
///
|
|
/// This rewrite into higher dimensional access is not possible for general
|
|
/// AffineExpr in Linalg atm, it is restricted to an AffineDimExpr:
|
|
/// e.g. consider an access `A[I + J][f(j, k, l)]` and packing by 4; we
|
|
/// rewrite `I + J` into `4 * i + ii + J`, where `0 <= ii < 4`.
|
|
/// The rewrite of the access would be a form not representable in Linalg:
|
|
/// `A[i + (ii + J) / 4][f(j, k, l)][(ii + J) % 4]`.
|
|
/// Note however that as `J` and `ii` iterate, the accesses do not have a
|
|
/// particular alignment, so packing does not achieve alignment in this case
|
|
///
|
|
/// In the future, we may want to consider a mixed-form that allows some
|
|
/// alignment in the presence of multiple accesses:
|
|
/// `A[I][f(j, k, l)]` and `B[I + J][f(j, k, l)]`
|
|
/// And would rewrite accesses as:
|
|
/// `A[i][f(j, k, l)][ii]` and `B[4 * i + ii + J][f(j, k, l)]`
|
|
static FailureOr<SmallVector<std::optional<int64_t>>>
|
|
packLinalgMetadataOnce(SmallVectorImpl<AffineMap> &indexingMaps,
|
|
SmallVectorImpl<utils::IteratorType> &iteratorTypes,
|
|
int64_t dim) {
|
|
int64_t newDim = iteratorTypes.size();
|
|
iteratorTypes.push_back(iteratorTypes[dim]);
|
|
|
|
SmallVector<std::optional<int64_t>> packedDimPerIndexingMap(
|
|
indexingMaps.size(), std::nullopt);
|
|
SmallVector<AffineMap> newMaps;
|
|
for (int64_t operandIdx = 0, e = indexingMaps.size(); operandIdx < e;
|
|
++operandIdx) {
|
|
AffineMap map = indexingMaps[operandIdx];
|
|
|
|
// Add the `newDim` to map whatever the case.
|
|
assert(map.getNumDims() == newDim && "num dims invariant violation");
|
|
map = map.shiftDims(1, newDim);
|
|
|
|
// Get the at-most-1 index of the result that is a function of `dim`.
|
|
// If we can find one, we insert `AffineDimExpr(newDim)` to the map, which
|
|
// logically chunks dimension `dim` into `K * dim + newDim`, where the
|
|
// packing factor `K` is specified separately.
|
|
assert(hasAtMostOneResultFunctionOfDim(map, dim) &&
|
|
"num results invariant violation");
|
|
auto maybeOperandDimensionToPack = getFirstResultIndexFunctionOf(map, dim);
|
|
if (!maybeOperandDimensionToPack.has_value()) {
|
|
newMaps.push_back(map);
|
|
continue;
|
|
}
|
|
|
|
// We can only pack AffineDimExpr atm.
|
|
if (!map.getResult(maybeOperandDimensionToPack.value())
|
|
.isa<AffineDimExpr>())
|
|
return failure();
|
|
|
|
// Add `newDim` to the results of the map.
|
|
map = map.insertResult(Builder(map.getContext()).getAffineDimExpr(newDim),
|
|
map.getNumResults());
|
|
newMaps.push_back(map);
|
|
|
|
// Record the that `operandIdx` is packed.
|
|
packedDimPerIndexingMap[operandIdx] = maybeOperandDimensionToPack;
|
|
}
|
|
indexingMaps = newMaps;
|
|
|
|
return packedDimPerIndexingMap;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Helper struct to encode packing along one dimension of a LinalgOp.
|
|
struct PackedOperandsDim {
|
|
OpFoldResult packedSize;
|
|
SmallVector<std::optional<int64_t>> packedDimForEachOperand;
|
|
};
|
|
|
|
/// Helper struct to encode packing along all dimensions of a LinalgOp.
|
|
struct PackedOperandsDimList {
|
|
void push_back(PackedOperandsDim &&packedOperandsDims) {
|
|
spec.emplace_back(packedOperandsDims);
|
|
}
|
|
/// Return all the dims that have been packed for operand @ `operandPos`.
|
|
SmallVector<int64_t> extractPackedDimsForOperand(int64_t operandPos);
|
|
/// Return all the pack sizes by which an operand @ `operandPos` is packed.
|
|
SmallVector<OpFoldResult> extractPackSizesForOperand(int64_t operandPos);
|
|
|
|
private:
|
|
SmallVector<PackedOperandsDim> spec;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
SmallVector<int64_t>
|
|
PackedOperandsDimList::extractPackedDimsForOperand(int64_t operandPos) {
|
|
SmallVector<int64_t> res;
|
|
for (int64_t i = 0, e = spec.size(); i < e; ++i) {
|
|
if (!spec[i].packedDimForEachOperand[operandPos].has_value())
|
|
continue;
|
|
res.push_back(spec[i].packedDimForEachOperand[operandPos].value());
|
|
}
|
|
return res;
|
|
}
|
|
|
|
SmallVector<OpFoldResult>
|
|
PackedOperandsDimList::extractPackSizesForOperand(int64_t operandPos) {
|
|
SmallVector<OpFoldResult> res;
|
|
for (int64_t i = 0, e = spec.size(); i < e; ++i) {
|
|
if (!spec[i].packedDimForEachOperand[operandPos].has_value())
|
|
continue;
|
|
res.push_back(spec[i].packedSize);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/// Implement packing of a single LinalgOp by performing packing by
|
|
/// `packedSizes`. There must be one packedSizes entry per `linalgOp` iterator.
|
|
/// Return the packed Linalg op on success, failure otherwise.
|
|
FailureOr<PackResult> linalg::pack(RewriterBase &rewriter,
|
|
linalg::LinalgOp linalgOp,
|
|
ArrayRef<OpFoldResult> packedSizes) {
|
|
if (packedSizes.size() != linalgOp.getNumLoops()) {
|
|
return rewriter.notifyMatchFailure(linalgOp,
|
|
"incorrect number of pack sizes");
|
|
}
|
|
|
|
Location loc = linalgOp->getLoc();
|
|
SmallVector<AffineMap> indexingMaps = linalgOp.getIndexingMapsArray();
|
|
SmallVector<utils::IteratorType> iteratorTypes =
|
|
linalgOp.getIteratorTypesArray();
|
|
LLVM_DEBUG(DBGS() << "Start packing: " << linalgOp << "\n";
|
|
llvm::interleaveComma(indexingMaps, DBGS() << "maps: "); DBGSNL();
|
|
llvm::interleaveComma(iteratorTypes, DBGS() << "iterators: ");
|
|
DBGSNL(););
|
|
|
|
SmallVector<tensor::PackOp> packOps;
|
|
SmallVector<tensor::UnPackOp> unPackOps;
|
|
// Step 1. Pack each dim of the LinalgOp metadata by packedSizes[i].
|
|
PackedOperandsDimList listOfPackedOperandsDim;
|
|
for (int64_t i = 0, e = packedSizes.size(); i < e; ++i) {
|
|
std::optional<int64_t> maybeConstant = getConstantIntValue(packedSizes[i]);
|
|
// Skip tile sizes explicitly set to 0.
|
|
if (maybeConstant.has_value() && maybeConstant.value() == 0)
|
|
continue;
|
|
|
|
PackedOperandsDim packedOperandsDims;
|
|
packedOperandsDims.packedSize = packedSizes[i];
|
|
FailureOr<SmallVector<std::optional<int64_t>>>
|
|
maybePackedDimForEachOperand =
|
|
packLinalgMetadataOnce(indexingMaps, iteratorTypes, i);
|
|
if (failed(maybePackedDimForEachOperand))
|
|
return failure();
|
|
packedOperandsDims.packedDimForEachOperand = *maybePackedDimForEachOperand;
|
|
listOfPackedOperandsDim.push_back(std::move(packedOperandsDims));
|
|
|
|
LLVM_DEBUG(
|
|
DBGS() << "++++ After pack size #" << i << ": " << packedSizes[i]
|
|
<< "\n";
|
|
llvm::interleaveComma(indexingMaps, DBGS() << "maps: "); DBGSNL();
|
|
llvm::interleaveComma(iteratorTypes, DBGS() << "iterators: "); DBGSNL();
|
|
llvm::interleaveComma(packedOperandsDims.packedDimForEachOperand,
|
|
DBGS() << "packedDimForEachOperand: ");
|
|
DBGSNL(););
|
|
}
|
|
|
|
// Step 2. Propagate packing to all LinalgOp operands.
|
|
SmallVector<Value> inputsAndInits, results;
|
|
for (auto operandsList :
|
|
{linalgOp.getDpsInputOperands(), linalgOp.getDpsInitOperands()}) {
|
|
for (OpOperand *opOperandPtr : operandsList) {
|
|
int64_t pos = opOperandPtr->getOperandNumber();
|
|
Value operand = opOperandPtr->get();
|
|
SmallVector<int64_t> innerPos =
|
|
listOfPackedOperandsDim.extractPackedDimsForOperand(pos);
|
|
SmallVector<OpFoldResult> innerPackSizes =
|
|
listOfPackedOperandsDim.extractPackSizesForOperand(pos);
|
|
LLVM_DEBUG(
|
|
DBGS() << "operand: " << operand << "\n";
|
|
llvm::interleaveComma(innerPos, DBGS() << "innerPos: "); DBGSNL();
|
|
llvm::interleaveComma(innerPackSizes, DBGS() << "innerPackSizes: ");
|
|
DBGSNL(););
|
|
if (innerPackSizes.empty()) {
|
|
inputsAndInits.push_back(operand);
|
|
continue;
|
|
}
|
|
Value dest = tensor::PackOp::createDestinationTensor(
|
|
rewriter, loc, operand, innerPackSizes, innerPos,
|
|
/*outerDimsPerm=*/{});
|
|
// TODO: value of the padding attribute should be determined by consumers.
|
|
Attribute zeroAttr =
|
|
rewriter.getZeroAttr(getElementTypeOrSelf(dest.getType()));
|
|
Value zero = rewriter.create<arith::ConstantOp>(loc, zeroAttr);
|
|
packOps.push_back(rewriter.create<tensor::PackOp>(
|
|
loc, operand, dest, innerPos, innerPackSizes, zero));
|
|
inputsAndInits.push_back(packOps.back());
|
|
}
|
|
}
|
|
|
|
// Step 3. Build the packed op, use the type of `inits` as result types.
|
|
ValueRange inputs =
|
|
ValueRange{inputsAndInits}.take_front(linalgOp.getNumDpsInputs());
|
|
ValueRange inits =
|
|
ValueRange{inputsAndInits}.take_back(linalgOp.getNumDpsInits());
|
|
auto packedLinalgOp = rewriter.create<linalg::GenericOp>(
|
|
linalgOp.getLoc(), inits.getTypes(), inputs, inits, indexingMaps,
|
|
iteratorTypes);
|
|
packedLinalgOp.getRegion().takeBody(linalgOp->getRegion(0));
|
|
|
|
// Step 4. Propagate packing to all the op results.
|
|
for (OpResult result : packedLinalgOp->getResults()) {
|
|
int64_t resultNum = result.getResultNumber();
|
|
tensor::PackOp maybePackedInit =
|
|
inits[resultNum].getDefiningOp<tensor::PackOp>();
|
|
if (!maybePackedInit) {
|
|
results.push_back(result);
|
|
continue;
|
|
}
|
|
// Build the symmetrical UnPackOp to the existing PackOp.
|
|
unPackOps.push_back(rewriter.create<tensor::UnPackOp>(
|
|
packedLinalgOp->getLoc(), result, maybePackedInit.getSource(),
|
|
maybePackedInit.getInnerDimsPos(), maybePackedInit.getMixedTiles()));
|
|
results.push_back(unPackOps.back());
|
|
}
|
|
|
|
// Step 5. Replace `linalgOp`.
|
|
rewriter.replaceOp(linalgOp, results);
|
|
|
|
// Return packedLinalgOp.
|
|
return PackResult{packOps,
|
|
cast<linalg::LinalgOp>(packedLinalgOp.getOperation()),
|
|
unPackOps};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// packTranspose transformation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Return a copy of `tensorType` after permutation by `permutationVector`.
|
|
// Note: Should be a new method in of MemRef/RankedTensor/VectorType::Builder
|
|
// but this would introduce a dependence on Dialect in IR.
|
|
// TODO: Restructure.
|
|
static RankedTensorType permuteShape(RankedTensorType tensorType,
|
|
ArrayRef<int64_t> permutationVector) {
|
|
SmallVector<int64_t> shape(tensorType.getShape());
|
|
applyPermutationToVector(shape, permutationVector);
|
|
return RankedTensorType::Builder(tensorType).setShape(shape);
|
|
}
|
|
|
|
/// Return a new GenericOp obtained by transposing opOperand by the permutation
|
|
/// vector:
|
|
/// - the corresponding indexing map is transposed by `permutation`
|
|
/// - the corresponding operand value is replaced by `transposedValue`
|
|
/// `linalgOp` is replaced by the return op in the process.
|
|
/// Asserts that `transposedValue` is of the proper transposed ShapedType.
|
|
static LinalgOp transposeOneLinalgOperandAndReplace(
|
|
RewriterBase &rewriter, LinalgOp linalgOp, OpOperand &opOperand,
|
|
ArrayRef<int64_t> permutation, Value transposedValue) {
|
|
// Sanity check the operand.
|
|
assert(linalgOp == opOperand.getOwner() && "linalg op must own the operand");
|
|
|
|
// Sanity check of the expected transposed tensor type.
|
|
auto tensorType = permuteShape(
|
|
opOperand.get().getType().cast<RankedTensorType>(), permutation);
|
|
(void)tensorType;
|
|
assert(tensorType == transposedValue.getType() &&
|
|
"expected tensor type mismatch");
|
|
|
|
// Compute the transposed indexing map.
|
|
// Sigh unsigned pollution.
|
|
SmallVector<unsigned> tmpTransposition = llvm::to_vector(
|
|
llvm::map_range(permutation, [](int64_t i) -> unsigned { return i; }));
|
|
AffineMap permutationMap =
|
|
AffineMap::getPermutationMap(tmpTransposition, rewriter.getContext());
|
|
AffineMap transposedMap =
|
|
permutationMap.compose(linalgOp.getMatchingIndexingMap(&opOperand));
|
|
|
|
// Set the transposed indexing map in the proper position.
|
|
SmallVector<AffineMap> indexingMaps = linalgOp.getIndexingMapsArray();
|
|
indexingMaps[linalgOp.getIndexingMapIndex(&opOperand)] = transposedMap;
|
|
// Set the transposedValue in the proper operand position.
|
|
SmallVector<Value> operands = linalgOp->getOperands();
|
|
operands[opOperand.getOperandNumber()] = transposedValue;
|
|
|
|
ValueRange operandsRef(operands);
|
|
auto transposedGenericOp = rewriter.create<linalg::GenericOp>(
|
|
/*location=*/linalgOp->getLoc(),
|
|
/*resultTensorTypes=*/
|
|
operandsRef.drop_front(linalgOp.getNumDpsInputs()).getTypes(),
|
|
/*inputs=*/operandsRef.take_front(linalgOp.getNumDpsInputs()),
|
|
/*outputs=*/operandsRef.drop_front(linalgOp.getNumDpsInputs()),
|
|
/*indexingMaps=*/indexingMaps,
|
|
/*iteratorTypes=*/linalgOp.getIteratorTypesArray());
|
|
transposedGenericOp.getRegion().takeBody(linalgOp->getRegion(0));
|
|
rewriter.replaceOp(linalgOp, transposedGenericOp->getResults());
|
|
|
|
return cast<linalg::LinalgOp>(transposedGenericOp.getOperation());
|
|
}
|
|
|
|
FailureOr<PackTransposeResult>
|
|
linalg::packTranspose(RewriterBase &rewriter, tensor::PackOp packOp,
|
|
linalg::LinalgOp linalgOp, tensor::UnPackOp maybeUnPackOp,
|
|
ArrayRef<int64_t> outerPerm,
|
|
ArrayRef<int64_t> innerPerm) {
|
|
Location loc = linalgOp.getLoc();
|
|
|
|
// Step 1. Transpose packOp.
|
|
rewriter.setInsertionPoint(packOp);
|
|
tensor::PackOp transposedPackOp =
|
|
packOp.createTransposedClone(rewriter, loc, innerPerm, outerPerm);
|
|
|
|
if (!packOp.getResult().hasOneUse())
|
|
return rewriter.notifyMatchFailure(linalgOp, "expect single pack use");
|
|
|
|
OpOperand &packUse = *packOp->getUses().begin();
|
|
if (packUse.getOwner() != linalgOp) {
|
|
return rewriter.notifyMatchFailure(
|
|
linalgOp, "not a single use by the LinalgOp target");
|
|
}
|
|
if (maybeUnPackOp &&
|
|
(!linalgOp.isDpsInit(&packUse) ||
|
|
maybeUnPackOp.getSource() != linalgOp.getTiedOpResult(&packUse))) {
|
|
return rewriter.notifyMatchFailure(linalgOp,
|
|
"not produced by the LinalgOp target");
|
|
}
|
|
|
|
// Step 2. Transpose linalgOp.
|
|
// transposedPackOp.getOuterDimsPerm() may be empty, in which case it is the
|
|
// identity. Don't rely on it.
|
|
int64_t numLeadingDims = packOp.getSourceRank();
|
|
int64_t numTrailingDims = packOp.getInnerDimsPos().size();
|
|
// Step 2.a. Compute the permutation on the whole operand.
|
|
// Leading part just reuse the outerPerm.
|
|
SmallVector<int64_t> permutation(outerPerm);
|
|
if (permutation.empty())
|
|
llvm::append_range(permutation, llvm::seq<int64_t>(0, numLeadingDims));
|
|
// Trailing part needs to reindex positions by `numLeadingDims`.
|
|
if (innerPerm.empty()) {
|
|
llvm::append_range(
|
|
permutation,
|
|
llvm::seq<int64_t>(numLeadingDims, numLeadingDims + numTrailingDims));
|
|
} else {
|
|
llvm::append_range(permutation,
|
|
llvm::map_range(innerPerm, [&](int64_t pos) {
|
|
return numLeadingDims + pos;
|
|
}));
|
|
}
|
|
if (!isPermutationVector(permutation))
|
|
return rewriter.notifyMatchFailure(linalgOp, "invalid permutation");
|
|
|
|
// Step 2.b. Save the transposedPackUse operand number in case we need to
|
|
// get the tied OpResult after `linalgOp` has been replaced.
|
|
int64_t packUseOperandNumber = packUse.getOperandNumber();
|
|
// Step 2.c. Actually perform the transposition.
|
|
rewriter.setInsertionPoint(linalgOp);
|
|
linalg::LinalgOp transposedLinalgOp = transposeOneLinalgOperandAndReplace(
|
|
rewriter, linalgOp, packUse, permutation, transposedPackOp.getResult());
|
|
|
|
// Step 3. Maybe transpose unPackOp.
|
|
tensor::UnPackOp transposedUnPackOp;
|
|
if (maybeUnPackOp) {
|
|
OpOperand &opOperand =
|
|
transposedLinalgOp->getOpOperand(packUseOperandNumber);
|
|
OpResult transposedResult = transposedLinalgOp.getTiedOpResult(&opOperand);
|
|
rewriter.setInsertionPoint(maybeUnPackOp);
|
|
transposedUnPackOp = maybeUnPackOp.createTransposedClone(
|
|
rewriter, loc, transposedResult, innerPerm, outerPerm);
|
|
|
|
rewriter.replaceOp(maybeUnPackOp, transposedUnPackOp->getResults());
|
|
}
|
|
|
|
// Step 4. Finally, replace packOp now that we don't need it anymore.
|
|
rewriter.replaceOp(packOp, transposedPackOp->getResults());
|
|
|
|
return PackTransposeResult{transposedPackOp, transposedLinalgOp,
|
|
transposedUnPackOp};
|
|
}
|