Files
llvm/mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp
Mikhail Goncharov 0caa82e2ac Revert "[mlir][Linalg] Fuse sequence of Linalg operation (on buffers)"
This reverts commit f8284d21a8.

Revert "[mlir][Linalg] NFC: Expose some utility functions used for promotion."

This reverts commit 0c59f51592.

Revert "Remove unused isZero function"

This reverts commit 0f9f0a4046.

Change f8284d21 led to multiple failures in IREE compilation.
2020-11-20 13:12:54 +01:00

884 lines
36 KiB
C++

//===- Fusion.cpp - Implementation of linalg Fusion -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the linalg dialect Fusion pass.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Dominance.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <set>
#define DEBUG_TYPE "linalg-fusion"
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace mlir::linalg;
using llvm::dbgs;
/// Implements a simple high-level fusion pass on linalg structured operations.
///
/// In each block, linalg ops are processed in reverse textual order.
/// Given a linalg op `O`, fusion occurs by:
/// 1. inspecting the linalg ops that write into the views read by `O`. There
/// are 2 cases:
/// a) buffer case: use the SSA value of the views and a simple alias
/// analysis on subview ops to determine producer-consumer dependences;
/// b) tensor case: use SSA use-def chains on subtensor ops;
/// 2. greedily fuse the linalg ops that produce the subview/subtensor.
/// 3. inspect the fused ops and determine whether they have other remaining
/// LinalgOp uses. If not, then erase the original producing linalg op.
///
/// More advanced use cases, analyses as well as profitability heuristics are
/// left for future work.
// Fill `offset`, `sizes` and `strides` used to iterate over the shape indexed
// by `permutationMap`.
static void inferShapeComponents(AffineMap permutationMap,
ArrayRef<Range> loopRanges,
SmallVectorImpl<Value> &offsets,
SmallVectorImpl<Value> &sizes,
SmallVectorImpl<Value> &strides) {
assert(permutationMap.isProjectedPermutation() &&
"expected some subset of a permutation map");
SmallVector<Range, 4> shapeRanges(permutationMap.getNumResults());
unsigned idx = 0;
for (AffineExpr e : permutationMap.getResults()) {
// loopToOperandRangesMaps are permutations-only, just swap indices.
unsigned loopPos = e.cast<AffineDimExpr>().getPosition();
shapeRanges[idx++] = loopRanges[loopPos];
}
// Construct a new subshape for the tile.
unsigned rank = shapeRanges.size();
offsets.reserve(rank);
sizes.reserve(rank);
strides.reserve(rank);
for (auto r : shapeRanges) {
offsets.push_back(r.offset);
sizes.push_back(r.size);
strides.push_back(r.stride);
}
}
// Return a cloned version of `op` that operates on `loopRanges`, assumed to be
// a subset of the original loop ranges of `op`.
// This is achieved by applying the `loopToOperandRangesMaps` permutation maps
// to the `loopRanges` in order to obtain view ranges.
static LinalgOp cloneWithLoopRanges(OpBuilder &b, Location loc, LinalgOp op,
ArrayRef<Range> loopRanges) {
SmallVector<Value, 8> clonedShapes;
clonedShapes.reserve(op.getNumShapedOperands());
// Iterate over the shape operands in order.
// Extract the subranges from the linearized ranges.
for (auto en : llvm::enumerate(op.getShapedOperands())) {
unsigned shapedOperandIdx = en.index();
AffineMap map = op.getIndexingMap(shapedOperandIdx);
LLVM_DEBUG(llvm::dbgs() << "shapedOperandIdx: " << shapedOperandIdx
<< " with indexingMap: " << map << "\n");
SmallVector<Value, 4> offsets, sizes, strides;
inferShapeComponents(map, loopRanges, offsets, sizes, strides);
Value shape = en.value();
Value sub = shape.getType().isa<MemRefType>()
? b.create<SubViewOp>(loc, shape, offsets, sizes, strides)
.getResult()
: b.create<SubTensorOp>(loc, shape, offsets, sizes, strides)
.getResult();
clonedShapes.push_back(sub);
}
// Append the other operands.
auto operands = op.getAssumedNonShapedOperands();
clonedShapes.append(operands.begin(), operands.end());
// Iterate over the results in order.
// Extract the subtensor type from the linearized range.
// Since we do not enforce any canonicalizations on the fly, this is always
// fully dynamic at construction time.
SmallVector<Type, 4> resultTypes;
resultTypes.reserve(op.getOperation()->getNumResults());
for (RankedTensorType t : op.getOutputTensorTypes()) {
unsigned rank = t.getRank();
SmallVector<int64_t, 4> staticOffsetsVector(
rank, ShapedType::kDynamicStrideOrOffset);
SmallVector<int64_t, 4> staticSizesVector(rank, ShapedType::kDynamicSize);
SmallVector<int64_t, 4> staticStridesVector(
rank, ShapedType::kDynamicStrideOrOffset);
resultTypes.push_back(SubTensorOp::inferResultType(
t.cast<RankedTensorType>(), staticOffsetsVector, staticSizesVector,
staticStridesVector));
}
Operation *clonedOp = op.clone(b, loc, resultTypes, clonedShapes);
// When the producer is an IndexedGenericOp, we have to transform its block
// IV arguments according to the tiling of the consumer, i.e. offset them by
// the values computed in `loopRanges`.
if (auto indexedGenericOp = dyn_cast<IndexedGenericOp>(clonedOp)) {
auto &block = indexedGenericOp.region().front();
OpBuilder::InsertionGuard g(b);
b.setInsertionPointToStart(&block);
for (unsigned i = 0, e = indexedGenericOp.getNumLoops(); i < e; ++i) {
Value oldIndex = block.getArgument(i);
// TODO: replace by an affine_apply.
AddIOp newIndex = b.create<AddIOp>(indexedGenericOp.getLoc(), oldIndex,
loopRanges[i].offset);
oldIndex.replaceAllUsesExcept(newIndex,
SmallPtrSet<Operation *, 1>{newIndex});
}
}
return clonedOp;
}
struct ShapeDimension {
Value shape;
unsigned dimension;
};
// Given an `op`, returns the first (`shape`, `dimension`) pair that identifies
// the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps
// guarantees at least one such dimension is found. If multiple candidates exist
// they must agree by construction (i.e. have the same size) and we just return
// the first one.
static ShapeDimension getShapeDefiningLoopRange(LinalgOp op,
unsigned loopDepth) {
auto maps = op.indexing_maps();
// Iterate over the inputs and outputs in order.
// Extract the subranges from the linearized ranges.
SmallVector<Value, 8> ios(op.getInputsAndOutputBuffers());
for (auto en : llvm::enumerate(ios)) {
unsigned idx = en.index();
auto map = maps[idx].cast<AffineMapAttr>().getValue();
LLVM_DEBUG(llvm::dbgs()
<< "getShapeDefiningLoopRange I/O idx: " << idx << "\n");
LLVM_DEBUG(llvm::dbgs()
<< "getShapeDefiningLoopRange map: " << map << "\n");
Value shape = en.value();
SmallVector<Value, 8> shapeRanges(map.getNumResults(), nullptr);
for (auto en2 : llvm::enumerate(map.getResults())) {
if (loopDepth == en2.value().cast<AffineDimExpr>().getPosition()) {
LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange loopDepth: "
<< loopDepth << "\n");
LLVM_DEBUG(llvm::dbgs()
<< "getShapeDefiningLoopRange shape: " << shape << "\n");
return ShapeDimension{shape, static_cast<unsigned>(en2.index())};
}
}
}
llvm_unreachable("Expect to be able to extract a shape defining loop range");
}
/// Fuses the producer of `producerIdx` into the loop immediately enclosing
/// `consumer`. This is achieved by "recomputing" the `producer` at the time it
/// is needed just before the `consumer.
///
/// Depending on the type of `consumer.getShapedOperand(consumerIdx)`, there are
/// 2 cases:
/// 1. Buffer case: `producerIdx` is the index of the buffer in
/// `producer.getOutputBuffers()`.
/// 2. Tensor case: `producerIdx` is the index of the tensor in
/// `producer.getResults()`.
static LinalgOp fuse(OpBuilder &b, LinalgOp producer, unsigned producerIdx,
LinalgOp consumer, unsigned consumerIdx) {
Operation *shapeProducingOp =
consumer.getShapedOperand(consumerIdx).getDefiningOp();
assert((isa<SubViewOp>(shapeProducingOp) ||
isa<SubTensorOp>(shapeProducingOp)) &&
"SubviewOp or SubTensorOp expected");
// loopToOperandRangesMaps are permutations-only by construction:
// we can always identify a data dimension with a (at least one) loop
// dimension.
// TODO: extend this with range inference.
AffineMap producerMap = producer.getOutputIndexingMap(producerIdx);
LLVM_DEBUG(llvm::dbgs() << "Producer Idx: " << producerIdx
<< ", producer map: " << producerMap << "\n");
unsigned nPar = producer.getNumParallelLoops();
unsigned nRed = producer.getNumReductionLoops();
unsigned nWin = producer.getNumWindowLoops();
SmallVector<Range, 8> loopRanges(nPar + nRed + nWin);
// Iterate over dimensions identified by the producer map for `producerIdx`.
// This defines a subset of the loop ranges that we need to complete later.
auto loc = consumer.getLoc();
for (auto en : llvm::enumerate(producerMap.getResults())) {
unsigned posInProducerLoop = en.value().cast<AffineDimExpr>().getPosition();
loopRanges[posInProducerLoop] =
isa<SubViewOp>(shapeProducingOp)
? cast<SubViewOp>(shapeProducingOp)
.getOrCreateRanges(b, loc)[en.index()]
: cast<SubTensorOp>(shapeProducingOp)
.getOrCreateRanges(b, loc)[en.index()];
}
// Iterate over all dimensions. For the dimensions not identified by the
// producer map for `producerIdx`, we need to explicitly compute the shape
// that defines the loop ranges using the `producer`.
for (unsigned i = 0, nLoops = loopRanges.size(); i < nLoops; ++i) {
if (loopRanges[i].offset)
LLVM_DEBUG(llvm::dbgs()
<< "existing LoopRange: " << loopRanges[i] << "\n");
else {
auto shapeDim = getShapeDefiningLoopRange(producer, i);
loopRanges[i] = Range{std_constant_index(0),
std_dim(shapeDim.shape, shapeDim.dimension),
std_constant_index(1)};
LLVM_DEBUG(llvm::dbgs() << "new LoopRange: " << loopRanges[i] << "\n");
}
}
return cloneWithLoopRanges(b, loc, producer, loopRanges);
}
// Encode structural fusion safety preconditions.
// Some of these will be lifted in the future with better analysis.
static bool isStructurallyFusableProducer(LinalgOp producer, Value consumedView,
LinalgOp consumer) {
assert(producer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
if (producer.getNumOutputs() != 1) {
LLVM_DEBUG(llvm::dbgs() << "\nNot structurally fusable (multi-output)");
return false;
}
// Only fuse when the producer block dominates.
DominanceInfo dom(producer.getOperation());
if (!dom.dominates(producer.getOperation()->getBlock(),
consumer.getOperation()->getBlock())) {
LLVM_DEBUG(
llvm::dbgs()
<< "\nNot structurally fusable (producer block does not dominate)");
return false;
}
return true;
}
bool mlir::linalg::isProducerLastWriteOfView(const LinalgDependenceGraph &graph,
LinalgOp consumer,
Value consumedView,
LinalgOp producer) {
assert(producer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
// Make some simple structural checks that alleviate the need for more
// complex analyses.
if (!isStructurallyFusableProducer(producer, consumedView, consumer)) {
LLVM_DEBUG(llvm::dbgs() << "\n***Not static last write due to structure:\t"
<< *producer.getOperation());
return false;
}
// Check for any interleaved write to consumedView.
if (!graph.findCoveringWrites(producer, consumer, consumedView).empty()) {
LLVM_DEBUG(llvm::dbgs() << "\n***Not fusable due to interleaved write:\t"
<< *producer.getOperation());
return false;
}
return true;
}
bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph,
LinalgOp consumer, Value consumedView,
LinalgOp producer) {
assert(producer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
if (!isProducerLastWriteOfView(graph, consumer, consumedView, producer))
return false;
// Check for any fusion-preventing dependence to any shape read/written that
// would violate dependences.
if (!graph.findCoveringDependences(producer, consumer).empty()) {
LLVM_DEBUG(llvm::dbgs()
<< "\n***Not fusable due to an interleaved dependence:\t"
<< *producer.getOperation());
return false;
}
if (auto convOp = dyn_cast<linalg::ConvOp>(producer.getOperation())) {
// TODO: add a level of indirection to linalg.generic.
if (convOp.padding())
return false;
}
if (auto convOp = dyn_cast<linalg::ConvOp>(consumer.getOperation())) {
// TODO: add a level of indirection to linalg.generic.
if (convOp.padding())
return false;
}
return true;
}
static bool isSameSubView(Value a, Value b) {
if (a == b)
return true;
auto sva = a.getDefiningOp<SubViewOp>();
auto svb = b.getDefiningOp<SubViewOp>();
if (!sva || !svb)
return false;
if (!isSameSubView(sva.getViewSource(), svb.getViewSource()))
return false;
if (sva.getType() != svb.getType())
return false;
if (sva.getNumOperands() != svb.getNumOperands())
return false;
if (sva.static_offsets() != svb.static_offsets())
return false;
if (sva.static_sizes() != svb.static_sizes())
return false;
if (sva.static_strides() != svb.static_strides())
return false;
/// Skip the "source" operand.
for (unsigned idx = 1, e = sva.getNumOperands(); idx != e; ++idx)
if (sva.getOperand(idx) != svb.getOperand(idx))
return false;
return true;
}
static Optional<LinalgDependenceGraph::LinalgDependenceGraphElem>
findFusableProducer(LinalgOp consumer, unsigned consumerIdx,
const LinalgDependenceGraph &dependenceGraph) {
// Only consider RAW and WAW atm.
for (auto depType : {
LinalgDependenceGraph::DependenceType::RAW,
LinalgDependenceGraph::DependenceType::WAW,
}) {
for (auto dependence : llvm::make_filter_range(
dependenceGraph.getDependencesInto(consumer, depType),
[consumerIdx](
LinalgDependenceGraph::LinalgDependenceGraphElem elem) {
return elem.indexingOpView.operandIndex == consumerIdx;
})) {
auto producer = cast<LinalgOp>(dependence.dependentOpView.op);
// Check that the dependence is indeed on the input `consumerIdx` view.
auto consumedView =
consumer.getBuffer(dependence.indexingOpView.operandIndex);
if (!isSameSubView(consumer.getBuffer(consumerIdx), consumedView))
continue;
// Consumer consumes this view, `isStructurallyFusableProducer` also
// checks whether it is a strict subview of the producer view.
auto producedView =
producer.getBuffer(dependence.dependentOpView.operandIndex);
LLVM_DEBUG(llvm::dbgs()
<< "\n"
<< LinalgDependenceGraph::getDependenceTypeStr(depType)
<< "producer: " << *producer.getOperation()
<< " view: " << producedView << " output index: "
<< dependence.dependentOpView.operandIndex -
producer.getNumInputs()
<< "\n");
(void)producedView;
// Simple fusability checks.
if (!isFusableInto(dependenceGraph, consumer, consumedView, producer))
continue;
return dependence;
}
}
return {};
}
Optional<FusionInfo>
mlir::linalg::fuseProducerOfBuffer(OpBuilder &b, LinalgOp consumer,
unsigned consumerIdx,
const LinalgDependenceGraph &graph) {
Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> fusableDependence =
findFusableProducer(consumer, consumerIdx, graph);
if (!fusableDependence)
return {};
LinalgOp producerOp = cast<LinalgOp>(fusableDependence->dependentOpView.op);
// If producer is already in the same block as consumer, we are done.
if (consumer.getOperation()->getBlock() ==
producerOp.getOperation()->getBlock())
return {};
unsigned producerIdx = fusableDependence->dependentOpView.operandIndex -
producerOp.getNumInputs();
Value consumerView = consumer.getShapedOperand(consumerIdx);
// Must be a subview or a slice to guarantee there are loops we can fuse
// into.
auto subView = consumerView.getDefiningOp<SubViewOp>();
auto slice = consumerView.getDefiningOp<SliceOp>();
if (!subView && !slice) {
LLVM_DEBUG(llvm::dbgs() << "\nNot fusable (not a subview or slice)");
return {};
}
// Fuse `producer` just before `consumer`.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(consumer.getOperation());
ScopedContext scope(b, consumer.getLoc());
LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " << *consumer << "\n");
auto fusedProducer = fuse(b, producerOp, producerIdx, consumer, consumerIdx);
return FusionInfo{producerOp, fusedProducer};
}
/// Walk back use-def chain through scf::For yields.
/// Sets `producer` and `outputIndex` if it finds a producer LinalgOp
static void getProducerOfTensor(Value tensor, LinalgOp &producer,
unsigned &outputIndex) {
if (!tensor.getType().isa<RankedTensorType>())
return;
while (true) {
if (auto linalgOp = tensor.getDefiningOp<LinalgOp>()) {
producer = linalgOp;
outputIndex = tensor.cast<OpResult>().getResultNumber();
return;
}
if (auto subTensorOp = tensor.getDefiningOp<SubTensorOp>()) {
tensor = subTensorOp.source();
continue;
}
if (auto blockArg = tensor.dyn_cast<BlockArgument>()) {
if (auto forOp = blockArg.getDefiningOp<scf::ForOp>()) {
tensor = forOp.getResult(blockArg.getArgNumber());
continue;
}
}
return;
}
}
Optional<FusionInfo> mlir::linalg::fuseProducerOfTensor(OpBuilder &b,
LinalgOp consumer,
unsigned consumerIdx) {
Value inputTensor = consumer.getInput(consumerIdx);
LinalgOp producerOp;
unsigned producerIdx;
getProducerOfTensor(inputTensor, producerOp, producerIdx);
// Must be a subtensor to guarantee there are loops we can fuse into.
auto subTensor = inputTensor.getDefiningOp<SubTensorOp>();
if (!subTensor || !producerOp) {
LLVM_DEBUG(llvm::dbgs() << "\nNot fusable (not a subtensor)");
return {};
}
// If producer is already in the same block as consumer, we are done.
if (consumer.getOperation()->getBlock() ==
producerOp.getOperation()->getBlock())
return {};
// Insert fused `producer` just before `consumer`.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(consumer.getOperation());
ScopedContext scope(b, consumer.getLoc());
LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " << *consumer << "\n");
LinalgOp fusedProducer =
fuse(b, producerOp, producerIdx, consumer, consumerIdx);
// Replace use.
// Canonicalizations are not guaranteed to have happened before constructing
// `fusedProducer`. In the tensor case this can result in temporary type
// mismatches. Insert a `tensor_cast` op to propagate the transformation
// invariant that types are compatible.
Value def = fusedProducer.getOperation()->getResult(producerIdx);
OpOperand &use = consumer.getOperation()->getOpOperand(consumerIdx);
Type consumerType = use.get().getType();
if (consumerType != def.getType())
def = b.create<TensorCastOp>(fusedProducer.getLoc(), consumerType, def);
use.set(def);
return FusionInfo{producerOp, fusedProducer};
}
/// Prune all dimensions that are of reduction iterator type from `map`.
static AffineMap pruneReductionDimsFromMap(ArrayRef<Attribute> iteratorTypes,
AffineMap map) {
SmallVector<unsigned, 2> projectedDims;
for (auto attr : llvm::enumerate(iteratorTypes)) {
if (!isParallelIterator(attr.value()))
projectedDims.push_back(attr.index());
}
return getProjectedMap(map, projectedDims);
}
using FusableOpDependencesTy = llvm::MapVector<
Operation *,
SmallVector<LinalgDependenceGraph::LinalgDependenceGraphElem, 1>>;
/// Returns the positions of the loop in `op` that can be tiled based on the
/// operations that are to be fused with it. For example, in a
///
/// linalg.matmul ins(%a, %b : ...) outs(%c : ...)
///
/// if the producer of %a needs to be fused with this op, only the `i` loop of
/// the matmul can be tiled while fusing. If producer of %a, and %b are to be
/// fused, then no loops can be tiled while fusing. The conditions used are:
/// 1. Only parallel loops can be used for tile + fuse. Find the number of
/// common outer parallel loops between the op and its producers being fused.
/// 2. Of the parallel loops only some can be fused. Only those loops can be
/// fused such where the fusable loops iteration space only touches one tile
/// of the fused operation. This is because the producer (which is writing
/// the fused subview) has update semantics. To compute this,
/// a. Find the mapping from iterations in the consumer that write to the
/// same location as the iterations in the producer. To do so use
/// - indexing map of the fused view in the consumer : consumerIndexMap
/// - indexing map of the fused view in the producer : producerIndexMap
/// consumerLoopToProducerLoop =
/// inverse(producerIndexMap).compose(consumerIndexMap)
///
/// Since an inverse computation is needed, we need to consider the projection
/// of the producerIndexMap w.r.t the parallel loops. The actual fusable loops
/// are the dimensions of the consumerLoopToProducerLoop map that correspond to
/// parallel loops and appear in the result of the map
///
/// Example 1:
/// linalg.fill(%c, %cst)
/// linalg.matmul ins(%a, %b) outs(%c)
/// Number of parallel loops : 2
/// producerIndexMap = affine_map<(i, j) ->(i , j)>
/// consumerIndexMap = affine_map<(i, j, k) -> (i, j)>
/// consumerLoopToProducerLoop = affine_map<(i, j, k) -> (i, j)>
/// Fused dimensions : i, j
///
/// Example 2:
/// linalg.matmul ins(%a, %b) outs(%c)
/// linalg.generic {indexing_maps = [affine_map<(i, j) -> (j, i)>, ...
/// iterator_types = ["parallel", "parallel"]}
/// ins(%c) ...
///
/// Number of parallel loops = 2:
/// producerIndexMap (projected to parallel loops) =
/// affine_map<(i, j) -> (i, j)>
/// consumerLoopToProducerLoop2 = affine_map<(i, j) -> (j, i)>
/// Fused dimensions : i, j
///
/// Example 3:
/// linalg.copy(%s, %b)
/// linalg.matmul ins(%a, %b) outs(%c)
///
/// Number of parallel loops = 2
/// produceIndexMap : affine_map<(i, j) -> (i, j)>
/// consumerLoopToProduceLoops = affine_map<(i, j, k) -> (k, j)>
/// submap with only parallel loops = affine_map<(i, j) -> (j)>
/// Fused dimensions : j
static std::set<unsigned>
collectTileAndFuseLoops(LinalgOp op,
const FusableOpDependencesTy &fusableDependences) {
auto getNumOuterParallelLoops = [](LinalgOp linalgOp) {
return linalgOp.iterator_types()
.getValue()
.take_while([](Attribute attr) -> bool {
return attr.cast<StringAttr>().getValue() ==
getParallelIteratorTypeName();
})
.size();
};
LLVM_DEBUG({
llvm::dbgs() << "Op : ";
op.getOperation()->print(llvm::dbgs(), OpPrintingFlags().useLocalScope());
llvm::dbgs() << "\n";
});
size_t numOuterParallelLoops = getNumOuterParallelLoops(op);
for (auto dependence : fusableDependences) {
linalg::LinalgOp producer = cast<linalg::LinalgOp>(dependence.first);
numOuterParallelLoops =
std::min(numOuterParallelLoops, getNumOuterParallelLoops(producer));
}
std::set<unsigned> fusableLoops;
auto range = llvm::seq<unsigned>(0, numOuterParallelLoops);
fusableLoops.insert(range.begin(), range.end());
for (auto dependence : fusableDependences) {
LLVM_DEBUG({
llvm::dbgs() << "\t fusable :";
for (unsigned i : fusableLoops)
llvm::dbgs() << " " << i;
llvm::dbgs() << "\n";
});
linalg::LinalgOp producer = cast<linalg::LinalgOp>(dependence.first);
assert(!dependence.second.empty() &&
"unexpected producer but not dependences");
AffineMap producerIndexingMap = producer.getIndexingMap(
dependence.second.front().dependentOpView.operandIndex);
AffineMap prunedProducerIndexingMap = pruneReductionDimsFromMap(
producer.iterator_types().getValue(), producerIndexingMap);
if (!prunedProducerIndexingMap.isPermutation())
return {};
AffineMap consumerIndexingMap = op.getIndexingMap(
dependence.second.front().indexingOpView.operandIndex);
if (consumerIndexingMap.getNumResults() !=
prunedProducerIndexingMap.getNumResults())
return {};
LLVM_DEBUG({
llvm::dbgs() << "\t producerMap : ";
producerIndexingMap.print(llvm::dbgs());
llvm::dbgs() << " pruned : ";
prunedProducerIndexingMap.print(llvm::dbgs());
llvm::dbgs() << "\n";
llvm::dbgs() << "\t consumerMap : ";
consumerIndexingMap.print(llvm::dbgs());
llvm::dbgs() << "\n";
});
AffineMap invProducerIndexMap =
inversePermutation(prunedProducerIndexingMap);
if (!invProducerIndexMap)
return {};
AffineMap consumerLoopToProducerLoop =
invProducerIndexMap.compose(consumerIndexingMap);
LLVM_DEBUG({
llvm::dbgs() << "\t consumerLoopToProducerLoop : ";
consumerLoopToProducerLoop.print(llvm::dbgs());
});
std::set<unsigned> candidates;
for (AffineExpr expr : consumerLoopToProducerLoop.getResults()) {
AffineDimExpr dimExpr = expr.dyn_cast<AffineDimExpr>();
if (!dimExpr)
continue;
unsigned position = dimExpr.getPosition();
if (fusableLoops.count(position))
candidates.insert(position);
}
LLVM_DEBUG({
llvm::dbgs() << "\t candidates :";
for (unsigned i : candidates)
llvm::dbgs() << " " << i;
llvm::dbgs() << "\n";
});
if (candidates.empty())
return {};
std::swap(candidates, fusableLoops);
}
return fusableLoops;
}
/// Find all dependences that are to be fusable.
static FusableOpDependencesTy
findAllFusableDependences(LinalgOp op,
const LinalgDependenceGraph &dependenceGraph,
const LinalgFusionOptions &fusionOptions) {
FusableOpDependencesTy fusableDependences;
// TODO: Currently fusion would not be legal if the fusable dependence is to
// the same producer but different indexing map in the consumer. Fix this, but
// in the meanwhile disallow such a fusion.
DenseMap<Operation *, AffineMap> fusedProducerIndexingMap;
for (auto operandIndex : fusionOptions.indicesToFuse) {
auto fusableDependence =
findFusableProducer(op, operandIndex, dependenceGraph);
if (!fusableDependence)
return FusableOpDependencesTy{};
LinalgOp producerOp = cast<LinalgOp>(fusableDependence->dependentOpView.op);
// Do not fuse dependences that are to operations not in the same basic
// block. This avoid moving fused operations across loops that might
// themselves carry dependency making the fusion illegal.
if (producerOp.getOperation()->getBlock() !=
op.getOperation()->getBlock()) {
op.emitRemark("unhandled fusion of ops in different basic blocks");
return FusableOpDependencesTy{};
}
// Make sure that the indexing map of the view used for fusion in the
// producer is a projected permutation.
unsigned producerIdx = fusableDependence->dependentOpView.operandIndex;
AffineMap producerMap = producerOp.getIndexingMap(producerIdx);
if (!producerMap.isProjectedPermutation()) {
op.emitRemark("unhandled non permutation indexing map for fused view in "
"producer for operand at index ")
<< operandIndex;
return FusableOpDependencesTy{};
}
unsigned consumerIdx = fusableDependence->indexingOpView.operandIndex;
AffineMap consumerMap = op.getIndexingMap(consumerIdx);
if (!consumerMap.isProjectedPermutation()) {
op.emitRemark(
"unhandled case where indexing map for fused view in the consumer is "
"not a projected permutation while fusing at index ")
<< operandIndex;
return FusableOpDependencesTy{};
}
// Check if the producer is already a fusion candidate. Cannot fuse this
// dependence if it has a different indexing map when used in the consumer.
if (fusedProducerIndexingMap.count(producerOp.getOperation()) &&
fusedProducerIndexingMap[producerOp.getOperation()] != consumerMap) {
op.emitRemark("unhandled fusion to the same producer but with different "
"indexing maps");
return FusableOpDependencesTy{};
}
fusedProducerIndexingMap[producerOp.getOperation()] = consumerMap;
fusableDependences[producerOp.getOperation()].push_back(*fusableDependence);
}
return fusableDependences;
}
static bool isZero(Value v) {
if (auto cst = v.getDefiningOp<ConstantIndexOp>())
return cst.getValue() == 0;
return false;
}
template <typename LoopType>
static Optional<TiledAndFusedLinalgOps>
tileAndFuseLinalgOpsImpl(PatternRewriter &rewriter, LinalgOp op,
const LinalgDependenceGraph &dependenceGraph,
const LinalgTilingOptions &tilingOptions,
const LinalgFusionOptions &fusionOptions) {
assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
// Some of the tiling options might not be supportable with tile and fuse.
// TODO: Support interchange with tile + fuse.
if (!tilingOptions.interchangeVector.empty()) {
op.emitError("unable to handle tile and fuse with interchange");
return llvm::None;
}
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(op);
ScopedContext scope(rewriter, op.getLoc());
// Find all the producers.
FusableOpDependencesTy fusableDependences =
findAllFusableDependences(op, dependenceGraph, fusionOptions);
if (fusableDependences.empty())
return llvm::None;
// Enforce the convention that "tiling by zero" skips tiling a particular
// dimension. This convention is significantly simpler to handle instead of
// adjusting affine maps to account for missing dimensions.
auto nLoops = op.getNumLoops();
SmallVector<Value, 4> tileSizeVector =
tilingOptions.tileSizeComputationFunction(rewriter, op);
if (tileSizeVector.size() < nLoops) {
auto zero = std_constant_index(0);
tileSizeVector.append(nLoops - tileSizeVector.size(), zero);
}
TiledAndFusedLinalgOps ret;
// Find the loops that can be tiled and fused.
std::set<unsigned> tileFuseLoops =
collectTileAndFuseLoops(op, fusableDependences);
// If there are no fusable dependences or there are no tile+fusable loops,
// just return.
if (tileFuseLoops.empty()) {
return llvm::None;
}
// Get the tile sizes for the first and second tiling steps. For the first
// step the tile size are set to zero for the loops that arent
// fused. Similarly for the second step, the tile sizes are set to zero for
// the loops that are fused. For example, if for the following input
//
// ```
// linalg.add ins(%a, %b) outs(%c)
// linalg.matmul ins(%d, %c) outs(%e)
// ```
//
// if the tile sizes of the `{i, j, k}` loops where given as `{ti, tj, tk}`
// respectively, and since only `j` can be tiled and fused. The tile sizes
// would be `{0, t_j, 0}` for the first tiling that tiles just the fusable
// loops. The second tiling would be use tile sizes of `{t_i, 0, t_k}` to tile
// the tiled matmul generated by the first tiling step.
SmallVector<Value, 4> tileAndFuseSizes, tileSizes;
for (auto tileSize : enumerate(tileSizeVector)) {
auto zero = std_constant_index(0);
if (tileFuseLoops.count(tileSize.index())) {
tileAndFuseSizes.push_back(tileSize.value());
tileSizes.push_back(zero);
} else {
tileSizes.push_back(tileSize.value());
tileAndFuseSizes.push_back(zero);
}
}
// Tile for the loops that can be fused.
LinalgTilingOptions firstTilingOptions = tilingOptions;
firstTilingOptions.setTileSizes(tileAndFuseSizes);
Optional<TiledLinalgOp> firstTiledOp =
tileLinalgOp(rewriter, op, firstTilingOptions);
if (!firstTiledOp)
return llvm::None;
ret.op = firstTiledOp->op;
ret.fusedLoops.assign(firstTiledOp->loops.begin(), firstTiledOp->loops.end());
rewriter.setInsertionPoint(ret.op);
// Fuse the operands.
for (auto dependence : fusableDependences) {
LinalgOp producerOp = cast<LinalgOp>(dependence.first);
unsigned producerIdx =
dependence.second.front().dependentOpView.operandIndex;
unsigned consumerIdx =
dependence.second.front().indexingOpView.operandIndex;
LinalgOp fusedOp = fuse(rewriter, producerOp,
producerOp.getOutputIndex(producerIdx).getValue(),
ret.op, consumerIdx);
ret.fusedProducers.push_back(fusedOp);
ret.originalProducers.push_back(producerOp);
}
if (!llvm::all_of(tileSizes, isZero)) {
// Tile the remaining loops of the root operation.
LinalgTilingOptions secondTilingOptions = tilingOptions;
// The distribution is done only for the tile+fused loops.
secondTilingOptions.distribution = llvm::None;
secondTilingOptions.setTileSizes(tileSizes);
Optional<TiledLinalgOp> secondTiledOp =
tileLinalgOp(rewriter, ret.op, secondTilingOptions);
if (!secondTiledOp)
return llvm::None;
ret.unfusedLoops.assign(secondTiledOp->loops.begin(),
secondTiledOp->loops.end());
rewriter.eraseOp(ret.op);
ret.op = secondTiledOp->op;
}
return ret;
}
Optional<TiledAndFusedLinalgOps>
mlir::linalg::tileAndFuseLinalgOps(PatternRewriter &rewriter, LinalgOp op,
const LinalgDependenceGraph &dependenceGraph,
const LinalgTilingOptions &tilingOptions,
const LinalgFusionOptions &fusionOptions) {
switch (tilingOptions.loopType) {
case LinalgTilingLoopType::Loops:
return tileAndFuseLinalgOpsImpl<scf::ForOp>(rewriter, op, dependenceGraph,
tilingOptions, fusionOptions);
case LinalgTilingLoopType::ParallelLoops:
return tileAndFuseLinalgOpsImpl<scf::ParallelOp>(
rewriter, op, dependenceGraph, tilingOptions, fusionOptions);
default:;
}
return llvm::None;
}