Files
llvm/bolt/RewriteInstance.cpp
Rafael Auler 0cc2a62f6a [BOLT] Write bolt info according to ELF spec
Summary:
Follow ELF spec for NOTE sections when writing bolt info.
Since tools such as "readelf -n" will not recognize a custom code
identifying our new note section, we use GNU "gold linker version"
note, tricking readelf into printing bolt info.

(cherry picked from FBD6010153)
2017-10-06 17:54:26 -07:00

3986 lines
140 KiB
C++

//===--- RewriteInstance.cpp - Interface for machine-level function -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
#include "BinaryBasicBlock.h"
#include "BinaryContext.h"
#include "BinaryFunction.h"
#include "BinaryPassManager.h"
#include "CalcCacheMetrics.h"
#include "DataAggregator.h"
#include "DataReader.h"
#include "Exceptions.h"
#include "RewriteInstance.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugLine.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCObjectStreamer.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Object/SymbolicFile.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/ToolOutputFile.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <fstream>
#include <stack>
#include <system_error>
#undef DEBUG_TYPE
#define DEBUG_TYPE "bolt"
using namespace llvm;
using namespace object;
using namespace bolt;
namespace opts {
extern cl::OptionCategory BoltCategory;
extern cl::OptionCategory BoltOptCategory;
extern cl::OptionCategory BoltOutputCategory;
extern cl::OptionCategory AggregatorCategory;
extern cl::opt<JumpTableSupportLevel> JumpTables;
extern cl::opt<BinaryFunction::ReorderType> ReorderFunctions;
static cl::opt<bool>
CalcCacheMetrics("calc-cache-metrics",
cl::desc("calculate metrics of cache lines"),
cl::init(false),
cl::ZeroOrMore,
cl::cat(BoltOptCategory));
cl::opt<std::string>
OutputFilename("o",
cl::desc("<output file>"),
cl::Required,
cl::cat(BoltOutputCategory));
static cl::opt<unsigned>
AlignFunctions("align-functions",
cl::desc("align functions at a given value (relocation mode)"),
cl::init(64),
cl::ZeroOrMore,
cl::cat(BoltOptCategory));
static cl::opt<unsigned>
AlignFunctionsMaxBytes("align-functions-max-bytes",
cl::desc("maximum number of bytes to use to align functions"),
cl::init(7),
cl::ZeroOrMore,
cl::cat(BoltOptCategory));
cl::opt<bool>
AllowStripped("allow-stripped",
cl::desc("allow processing of stripped binaries"),
cl::Hidden,
cl::cat(BoltCategory));
cl::opt<bool>
BoostMacroops("boost-macroops",
cl::desc("try to boost macro-op fusions by avoiding the cache-line boundary"),
cl::ZeroOrMore,
cl::cat(BoltOptCategory));
static cl::list<std::string>
BreakFunctionNames("break-funcs",
cl::CommaSeparated,
cl::desc("list of functions to core dump on (debugging)"),
cl::value_desc("func1,func2,func3,..."),
cl::Hidden,
cl::cat(BoltCategory));
cl::opt<bool>
DumpDotAll("dump-dot-all",
cl::desc("dump function CFGs to graphviz format after each stage"),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<bool>
DumpEHFrame("dump-eh-frame",
cl::desc("dump parsed .eh_frame (debugging)"),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<bool>
FixDebugInfoLargeFunctions("fix-debuginfo-large-functions",
cl::init(true),
cl::desc("do another pass if we encounter large functions, to correct their "
"debug info."),
cl::ZeroOrMore,
cl::ReallyHidden,
cl::cat(BoltCategory));
static cl::list<std::string>
FunctionNames("funcs",
cl::CommaSeparated,
cl::desc("list of functions to optimize"),
cl::value_desc("func1,func2,func3,..."),
cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<std::string>
FunctionNamesFile("funcs-file",
cl::desc("file with list of functions to optimize"),
cl::Hidden,
cl::cat(BoltCategory));
static cl::list<std::string>
FunctionPadSpec("pad-funcs",
cl::CommaSeparated,
cl::desc("list of functions to pad with amount of bytes"),
cl::value_desc("func1:pad1,func2:pad2,func3:pad3,..."),
cl::Hidden,
cl::cat(BoltCategory));
cl::opt<bool>
HotText("hot-text",
cl::desc("hot text symbols support (relocation mode)"),
cl::ZeroOrMore,
cl::cat(BoltCategory));
static cl::opt<bool>
KeepTmp("keep-tmp",
cl::desc("preserve intermediate .o file"),
cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<bool>
MarkFuncs("mark-funcs",
cl::desc("mark function boundaries with break instruction to make "
"sure we accidentally don't cross them"),
cl::ReallyHidden,
cl::ZeroOrMore,
cl::cat(BoltCategory));
static cl::opt<unsigned>
MaxFunctions("max-funcs",
cl::desc("maximum number of functions to overwrite"),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltCategory));
cl::opt<bool>
PrintAll("print-all",
cl::desc("print functions after each stage"),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<bool>
PrintCFG("print-cfg",
cl::desc("print functions after CFG construction"),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<bool>
PrintDisasm("print-disasm",
cl::desc("print function after disassembly"),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<bool>
PrintLoopInfo("print-loops",
cl::desc("print loop related information"),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltCategory));
cl::opt<bool>
Relocs("relocs",
cl::desc("relocation mode - use relocations to move functions in the binary"),
cl::ZeroOrMore,
cl::cat(BoltCategory));
static cl::list<std::string>
SkipFunctionNames("skip-funcs",
cl::CommaSeparated,
cl::desc("list of functions to skip"),
cl::value_desc("func1,func2,func3,..."),
cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<std::string>
SkipFunctionNamesFile("skip-funcs-file",
cl::desc("file with list of functions to skip"),
cl::Hidden,
cl::cat(BoltCategory));
cl::opt<BinaryFunction::SplittingType>
SplitFunctions("split-functions",
cl::desc("split functions into hot and cold regions"),
cl::init(BinaryFunction::ST_NONE),
cl::values(clEnumValN(BinaryFunction::ST_NONE, "0",
"do not split any function"),
clEnumValN(BinaryFunction::ST_EH, "1",
"split all landing pads"),
clEnumValN(BinaryFunction::ST_LARGE, "2",
"also split if function too large to fit"),
clEnumValN(BinaryFunction::ST_ALL, "3",
"split all functions"),
clEnumValEnd),
cl::ZeroOrMore,
cl::cat(BoltOptCategory));
static cl::opt<unsigned>
TopCalledLimit("top-called-limit",
cl::desc("maximum number of functions to print in top called "
"functions section"),
cl::init(100),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltCategory));
cl::opt<bool>
TrapOldCode("trap-old-code",
cl::desc("insert traps in old function bodies (relocation mode)"),
cl::Hidden,
cl::cat(BoltCategory));
cl::opt<bool>
UpdateDebugSections("update-debug-sections",
cl::desc("update DWARF debug sections of the executable"),
cl::ZeroOrMore,
cl::cat(BoltCategory));
static cl::opt<bool>
UseGnuStack("use-gnu-stack",
cl::desc("use GNU_STACK program header for new segment (workaround for "
"issues with strip/objcopy)"),
cl::ZeroOrMore,
cl::cat(BoltCategory));
cl::opt<bool>
UseOldText("use-old-text",
cl::desc("re-use space in old .text if possible (relocation mode)"),
cl::cat(BoltCategory));
// The default verbosity level (0) is pretty terse, level 1 is fairly
// verbose and usually prints some informational message for every
// function processed. Level 2 is for the noisiest of messages and
// often prints a message per basic block.
// Error messages should never be suppressed by the verbosity level.
// Only warnings and info messages should be affected.
//
// The rational behind stream usage is as follows:
// outs() for info and debugging controlled by command line flags.
// errs() for errors and warnings.
// dbgs() for output within DEBUG().
cl::opt<unsigned>
Verbosity("v",
cl::desc("set verbosity level for diagnostic output"),
cl::init(0),
cl::ZeroOrMore,
cl::cat(BoltCategory));
static cl::opt<bool>
AddBoltInfo("add-bolt-info",
cl::desc("add BOLT version and command line argument information to "
"processed binaries"),
cl::init(true),
cl::cat(BoltCategory));
cl::opt<bool>
AggregateOnly("aggregate-only",
cl::desc("exit after writing aggregated data file"),
cl::Hidden,
cl::cat(AggregatorCategory));
static cl::opt<bool>
IgnoreBuildID("ignore-build-id",
cl::desc("continue even if build-ids in input binary and perf.data mismatch"),
cl::init(false),
cl::cat(AggregatorCategory));
// Check against lists of functions from options if we should
// optimize the function with a given name.
bool shouldProcess(const BinaryFunction &Function) {
if (opts::MaxFunctions && Function.getFunctionNumber() > opts::MaxFunctions)
return false;
auto populateFunctionNames = [](cl::opt<std::string> &FunctionNamesFile,
cl::list<std::string> &FunctionNames) {
assert(!FunctionNamesFile.empty() && "unexpected empty file name");
std::ifstream FuncsFile(FunctionNamesFile, std::ios::in);
std::string FuncName;
while (std::getline(FuncsFile, FuncName)) {
FunctionNames.push_back(FuncName);
}
FunctionNamesFile = "";
};
if (!FunctionNamesFile.empty())
populateFunctionNames(FunctionNamesFile, FunctionNames);
if (!SkipFunctionNamesFile.empty())
populateFunctionNames(SkipFunctionNamesFile, SkipFunctionNames);
bool IsValid = true;
if (!FunctionNames.empty()) {
IsValid = false;
for (auto &Name : FunctionNames) {
if (Function.hasName(Name)) {
IsValid = true;
break;
}
}
}
if (!IsValid)
return false;
if (!SkipFunctionNames.empty()) {
for (auto &Name : SkipFunctionNames) {
if (Function.hasName(Name)) {
IsValid = false;
break;
}
}
}
return IsValid;
}
size_t padFunction(const BinaryFunction &Function) {
static std::map<std::string, size_t> FunctionPadding;
if (FunctionPadding.empty() && !FunctionPadSpec.empty()) {
for (auto &Spec : FunctionPadSpec) {
auto N = Spec.find(':');
if (N == std::string::npos)
continue;
auto Name = Spec.substr(0, N);
auto Padding = std::stoull(Spec.substr(N+1));
FunctionPadding[Name] = Padding;
}
}
for (auto &FPI : FunctionPadding) {
auto Name = FPI.first;
auto Padding = FPI.second;
if (Function.hasName(Name)) {
return Padding;
}
}
return 0;
}
} // namespace opts
constexpr const char *RewriteInstance::SectionsToOverwrite[];
constexpr const char *RewriteInstance::SectionsToOverwriteRelocMode[];
const std::string RewriteInstance::OrgSecPrefix = ".bolt.org";
const std::string RewriteInstance::BOLTSecPrefix = ".bolt";
namespace llvm {
namespace bolt {
extern const char *BoltRevision;
}
}
static void report_error(StringRef Message, std::error_code EC) {
assert(EC);
errs() << "BOLT-ERROR: '" << Message << "': " << EC.message() << ".\n";
exit(1);
}
static void check_error(std::error_code EC, StringRef Message) {
if (!EC)
return;
report_error(Message, EC);
}
uint8_t *ExecutableFileMemoryManager::allocateSection(intptr_t Size,
unsigned Alignment,
unsigned SectionID,
StringRef SectionName,
bool IsCode,
bool IsReadOnly) {
uint8_t *ret;
if (IsCode) {
ret = SectionMemoryManager::allocateCodeSection(Size, Alignment,
SectionID, SectionName);
} else {
ret = SectionMemoryManager::allocateDataSection(Size, Alignment,
SectionID, SectionName,
IsReadOnly);
}
bool IsLocal = false;
if (SectionName.startswith(".local."))
IsLocal = true;
DEBUG(dbgs() << "BOLT: allocating " << (IsLocal ? "local " : "")
<< (IsCode ? "code" : (IsReadOnly ? "read-only data" : "data"))
<< " section : " << SectionName
<< " with size " << Size << ", alignment " << Alignment
<< " at 0x" << ret << "\n");
SectionMapInfo[SectionName] = SectionInfo(reinterpret_cast<uint64_t>(ret),
Size,
Alignment,
IsCode,
IsReadOnly,
IsLocal,
0,
0,
SectionID);
return ret;
}
/// Notifier for non-allocatable (note) section.
uint8_t *ExecutableFileMemoryManager::recordNoteSection(
const uint8_t *Data,
uintptr_t Size,
unsigned Alignment,
unsigned SectionID,
StringRef SectionName) {
DEBUG(dbgs() << "BOLT: note section "
<< SectionName
<< " with size " << Size << ", alignment " << Alignment
<< " at 0x"
<< Twine::utohexstr(reinterpret_cast<uint64_t>(Data)) << '\n');
// We need to make a copy of the section contents if we'll need it for
// a future reference. RuntimeDyld will not allocate the space forus.
uint8_t *DataCopy = new uint8_t[Size];
memcpy(DataCopy, Data, Size);
NoteSectionInfo[SectionName] =
SectionInfo(reinterpret_cast<uint64_t>(DataCopy),
Size,
Alignment,
/*IsCode=*/false,
/*IsReadOnly=*/true,
/*IsLocal=*/false,
0,
0,
SectionID);
return DataCopy;
}
bool ExecutableFileMemoryManager::finalizeMemory(std::string *ErrMsg) {
DEBUG(dbgs() << "BOLT: finalizeMemory()\n");
return SectionMemoryManager::finalizeMemory(ErrMsg);
}
ExecutableFileMemoryManager::~ExecutableFileMemoryManager() {
for (auto &SII : NoteSectionInfo) {
delete[] reinterpret_cast<uint8_t *>(SII.second.AllocAddress);
}
}
namespace {
/// Create BinaryContext for a given architecture \p ArchName and
/// triple \p TripleName.
std::unique_ptr<BinaryContext>
createBinaryContext(ELFObjectFileBase *File, DataReader &DR,
std::unique_ptr<DWARFContext> DwCtx) {
std::string ArchName;
std::string TripleName;
llvm::Triple::ArchType Arch = (llvm::Triple::ArchType)File->getArch();
if (Arch == llvm::Triple::x86_64) {
ArchName = "x86-64";
TripleName = "x86_64-unknown-linux";
} else if (Arch == llvm::Triple::aarch64) {
ArchName = "aarch64";
TripleName = "aarch64-unknown-linux";
} else {
errs() << "BOLT-ERROR: Unrecognized machine in ELF file.\n";
return nullptr;
}
std::string Error;
std::unique_ptr<Triple> TheTriple = llvm::make_unique<Triple>(TripleName);
const Target *TheTarget = TargetRegistry::lookupTarget(ArchName,
*TheTriple,
Error);
if (!TheTarget) {
errs() << "BOLT-ERROR: " << Error;
return nullptr;
}
std::unique_ptr<const MCRegisterInfo> MRI(
TheTarget->createMCRegInfo(TripleName));
if (!MRI) {
errs() << "BOLT-ERROR: no register info for target " << TripleName << "\n";
return nullptr;
}
// Set up disassembler.
std::unique_ptr<const MCAsmInfo> AsmInfo(
TheTarget->createMCAsmInfo(*MRI, TripleName));
if (!AsmInfo) {
errs() << "BOLT-ERROR: no assembly info for target " << TripleName << "\n";
return nullptr;
}
std::unique_ptr<const MCSubtargetInfo> STI(
TheTarget->createMCSubtargetInfo(TripleName, "", ""));
if (!STI) {
errs() << "BOLT-ERROR: no subtarget info for target " << TripleName << "\n";
return nullptr;
}
std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
if (!MII) {
errs() << "BOLT-ERROR: no instruction info for target " << TripleName << "\n";
return nullptr;
}
std::unique_ptr<MCObjectFileInfo> MOFI =
llvm::make_unique<MCObjectFileInfo>();
std::unique_ptr<MCContext> Ctx =
llvm::make_unique<MCContext>(AsmInfo.get(), MRI.get(), MOFI.get());
MOFI->InitMCObjectFileInfo(*TheTriple, Reloc::Default,
CodeModel::Small, *Ctx);
std::unique_ptr<MCDisassembler> DisAsm(
TheTarget->createMCDisassembler(*STI, *Ctx));
if (!DisAsm) {
errs() << "BOLT-ERROR: no disassembler for target " << TripleName << "\n";
return nullptr;
}
std::unique_ptr<const MCInstrAnalysis> MIA(
TheTarget->createMCInstrAnalysis(MII.get()));
if (!MIA) {
errs() << "BOLT-ERROR: failed to create instruction analysis for target"
<< TripleName << "\n";
return nullptr;
}
int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
std::unique_ptr<MCInstPrinter> InstructionPrinter(
TheTarget->createMCInstPrinter(Triple(TripleName), AsmPrinterVariant,
*AsmInfo, *MII, *MRI));
if (!InstructionPrinter) {
errs() << "BOLT-ERROR: no instruction printer for target " << TripleName
<< '\n';
return nullptr;
}
InstructionPrinter->setPrintImmHex(true);
std::unique_ptr<MCCodeEmitter> MCE(
TheTarget->createMCCodeEmitter(*MII, *MRI, *Ctx));
// Make sure we don't miss any output on core dumps.
outs().SetUnbuffered();
errs().SetUnbuffered();
dbgs().SetUnbuffered();
auto BC =
llvm::make_unique<BinaryContext>(std::move(Ctx),
std::move(DwCtx),
std::move(TheTriple),
TheTarget,
TripleName,
std::move(MCE),
std::move(MOFI),
std::move(AsmInfo),
std::move(MII),
std::move(STI),
std::move(InstructionPrinter),
std::move(MIA),
std::move(MRI),
std::move(DisAsm),
DR);
return BC;
}
} // namespace
RewriteInstance::RewriteInstance(ELFObjectFileBase *File, DataReader &DR,
DataAggregator &DA, const int Argc,
const char *const *Argv)
: InputFile(File), Argc(Argc), Argv(Argv), DA(DA),
BC(createBinaryContext(
File, DR,
std::unique_ptr<DWARFContext>(
new DWARFContextInMemory(*InputFile, nullptr, true)))) {}
RewriteInstance::~RewriteInstance() {}
void RewriteInstance::reset() {
BinaryFunctions.clear();
FileSymRefs.clear();
auto &DR = BC->DR;
BC = createBinaryContext(
InputFile, DR,
std::unique_ptr<DWARFContext>(
new DWARFContextInMemory(*InputFile, nullptr, true)));
CFIRdWrt.reset(nullptr);
EFMM.reset(nullptr);
Out.reset(nullptr);
EHFrame = nullptr;
FailedAddresses.clear();
RangesSectionsWriter.reset();
LocationListWriter.reset();
TotalScore = 0;
}
void RewriteInstance::aggregateData() {
DA.aggregate(*BC.get(), BinaryFunctions);
if (!opts::AggregateOnly)
return;
if (std::error_code EC = DA.writeAggregatedFile()) {
check_error(EC, "cannot create output data file");
}
}
void RewriteInstance::discoverStorage() {
EFMM.reset(new ExecutableFileMemoryManager());
auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile);
if (!ELF64LEFile) {
errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n";
exit(1);
}
auto Obj = ELF64LEFile->getELFFile();
EntryPoint = Obj->getHeader()->e_entry;
// This is where the first segment and ELF header were allocated.
uint64_t FirstAllocAddress = std::numeric_limits<uint64_t>::max();
NextAvailableAddress = 0;
uint64_t NextAvailableOffset = 0;
for (const auto &Phdr : Obj->program_headers()) {
if (Phdr.p_type == ELF::PT_LOAD) {
FirstAllocAddress = std::min(FirstAllocAddress,
static_cast<uint64_t>(Phdr.p_vaddr));
NextAvailableAddress = std::max(NextAvailableAddress,
Phdr.p_vaddr + Phdr.p_memsz);
NextAvailableOffset = std::max(NextAvailableOffset,
Phdr.p_offset + Phdr.p_filesz);
EFMM->SegmentMapInfo[Phdr.p_vaddr] = SegmentInfo{Phdr.p_vaddr,
Phdr.p_memsz,
Phdr.p_offset,
Phdr.p_filesz};
}
}
for (const auto &Section : InputFile->sections()) {
StringRef SectionName;
Section.getName(SectionName);
StringRef SectionContents;
Section.getContents(SectionContents);
if (SectionName == ".text") {
OldTextSectionAddress = Section.getAddress();
OldTextSectionSize = Section.getSize();
OldTextSectionOffset =
SectionContents.data() - InputFile->getData().data();
}
if (SectionName.startswith(OrgSecPrefix) ||
SectionName.startswith(BOLTSecPrefix)) {
errs() << "BOLT-ERROR: input file was processed by BOLT. "
"Cannot re-optimize.\n";
exit(1);
}
}
assert(NextAvailableAddress && NextAvailableOffset &&
"no PT_LOAD pheader seen");
outs() << "BOLT-INFO: first alloc address is 0x"
<< Twine::utohexstr(FirstAllocAddress) << '\n';
FirstNonAllocatableOffset = NextAvailableOffset;
NextAvailableAddress = RoundUpToAlignment(NextAvailableAddress, PageAlign);
NextAvailableOffset = RoundUpToAlignment(NextAvailableOffset, PageAlign);
if (!opts::UseGnuStack) {
// This is where the black magic happens. Creating PHDR table in a segment
// other than that containing ELF header is tricky. Some loaders and/or
// parts of loaders will apply e_phoff from ELF header assuming both are in
// the same segment, while others will do the proper calculation.
// We create the new PHDR table in such a way that both of the methods
// of loading and locating the table work. There's a slight file size
// overhead because of that.
//
// NB: bfd's strip command cannot do the above and will corrupt the
// binary during the process of stripping non-allocatable sections.
if (NextAvailableOffset <= NextAvailableAddress - FirstAllocAddress) {
NextAvailableOffset = NextAvailableAddress - FirstAllocAddress;
} else {
NextAvailableAddress = NextAvailableOffset + FirstAllocAddress;
}
assert(NextAvailableOffset == NextAvailableAddress - FirstAllocAddress &&
"PHDR table address calculation error");
outs() << "BOLT-INFO: creating new program header table at address 0x"
<< Twine::utohexstr(NextAvailableAddress) << ", offset 0x"
<< Twine::utohexstr(NextAvailableOffset) << '\n';
PHDRTableAddress = NextAvailableAddress;
PHDRTableOffset = NextAvailableOffset;
// Reserve space for 3 extra pheaders.
unsigned Phnum = Obj->getHeader()->e_phnum;
Phnum += 3;
NextAvailableAddress += Phnum * sizeof(ELFFile<ELF64LE>::Elf_Phdr);
NextAvailableOffset += Phnum * sizeof(ELFFile<ELF64LE>::Elf_Phdr);
}
// Align at cache line.
NextAvailableAddress = RoundUpToAlignment(NextAvailableAddress, 64);
NextAvailableOffset = RoundUpToAlignment(NextAvailableOffset, 64);
NewTextSegmentAddress = NextAvailableAddress;
NewTextSegmentOffset = NextAvailableOffset;
}
Optional<std::string>
RewriteInstance::getBuildID() {
for (auto &Section : InputFile->sections()) {
StringRef SectionName;
Section.getName(SectionName);
if (SectionName != ".note.gnu.build-id")
continue;
StringRef SectionContents;
Section.getContents(SectionContents);
// Reading notes section (see Portable Formats Specification, Version 1.1,
// pg 2-5, section "Note Section").
DataExtractor DE = DataExtractor(SectionContents, true, 8);
uint32_t Offset = 0;
if (!DE.isValidOffset(Offset))
return NoneType();
uint32_t NameSz = DE.getU32(&Offset);
if (!DE.isValidOffset(Offset))
return NoneType();
uint32_t DescSz = DE.getU32(&Offset);
if (!DE.isValidOffset(Offset))
return NoneType();
uint32_t Type = DE.getU32(&Offset);
DEBUG(dbgs() << "NameSz = " << NameSz << "; DescSz = " << DescSz
<< "; Type = " << Type << "\n");
// Type 3 is a GNU build-id note section
if (Type != 3)
return NoneType();
StringRef Name = SectionContents.slice(Offset, Offset + NameSz);
Offset = RoundUpToAlignment(Offset + NameSz, 4);
StringRef BinaryBuildID = SectionContents.slice(Offset, Offset + DescSz);
if (Name.substr(0, 3) != "GNU")
return NoneType();
std::string Str;
raw_string_ostream OS(Str);
auto CharIter = BinaryBuildID.bytes_begin();
while (CharIter != BinaryBuildID.bytes_end()) {
if (*CharIter < 0x10)
OS << "0";
OS << Twine::utohexstr(*CharIter);
++CharIter;
}
outs() << "BOLT-INFO: Binary build-id is: " << OS.str() << "\n";
return OS.str();
}
return NoneType();
}
void RewriteInstance::checkBuildID() {
auto FileBuildID = getBuildID();
if (!FileBuildID) {
outs() << "BOLT-WARNING: Build ID will not be checked because we could not "
"read one from input binary\n";
return;
}
auto PerfBuildID = DA.getPerfBuildID();
if (!PerfBuildID) {
outs() << "BOLT-WARNING: Build ID will not be checked because we could not "
"read one from perf.data\n";
return;
}
if (*FileBuildID == *PerfBuildID)
return;
outs() << "BOLT-ERROR: Build ID mismatch! This indicates the input binary "
"supplied for data aggregation is not the same recorded by perf "
"when collecting profiling data.\n";
if (!opts::IgnoreBuildID) {
DA.abort();
exit(1);
}
}
void RewriteInstance::run() {
if (!BC) {
errs() << "BOLT-ERROR: failed to create a binary context\n";
return;
}
auto executeRewritePass = [&](const std::set<uint64_t> &NonSimpleFunctions) {
discoverStorage();
readSpecialSections();
discoverFileObjects();
readDebugInfo();
readProfileData();
disassembleFunctions();
if (DA.started()) {
aggregateData();
if (opts::AggregateOnly)
return;
}
for (uint64_t Address : NonSimpleFunctions) {
auto FI = BinaryFunctions.find(Address);
assert(FI != BinaryFunctions.end() && "bad non-simple function address");
FI->second.setSimple(false);
}
runOptimizationPasses();
emitFunctions();
};
outs() << "BOLT-INFO: Target architecture: "
<< Triple::getArchTypeName(
(llvm::Triple::ArchType)InputFile->getArch())
<< "\n";
if (DA.started())
checkBuildID();
unsigned PassNumber = 1;
executeRewritePass({});
if (opts::AggregateOnly)
return;
if (opts::SplitFunctions == BinaryFunction::ST_LARGE &&
checkLargeFunctions()) {
++PassNumber;
// Emit again because now some functions have been split
outs() << "BOLT: split-functions: starting pass " << PassNumber << "...\n";
reset();
executeRewritePass({});
}
// Emit functions again ignoring functions which still didn't fit in their
// original space, so that we don't generate incorrect debugging information
// for them (information that would reflect the optimized version).
if (opts::UpdateDebugSections && opts::FixDebugInfoLargeFunctions &&
checkLargeFunctions()) {
++PassNumber;
outs() << "BOLT: starting pass (ignoring large functions) "
<< PassNumber << "...\n";
reset();
executeRewritePass(LargeFunctions);
}
if (opts::CalcCacheMetrics) {
outs() << "\nBOLT-INFO: After Optimization CFG Graph Statistics: Jump "
"Distance \n\n";
CalcCacheMetrics::calcGraphDistance(BinaryFunctions);
}
if (opts::UpdateDebugSections)
updateDebugInfo();
addBoltInfoSection();
// Copy allocatable part of the input.
std::error_code EC;
Out = llvm::make_unique<tool_output_file>(opts::OutputFilename, EC,
sys::fs::F_None, 0777);
check_error(EC, "cannot create output executable file");
Out->os() << InputFile->getData().substr(0, FirstNonAllocatableOffset);
// Rewrite allocatable contents and copy non-allocatable parts with mods.
rewriteFile();
}
void RewriteInstance::discoverFileObjects() {
FileSymRefs.clear();
BinaryFunctions.clear();
BC->GlobalAddresses.clear();
// For local symbols we want to keep track of associated FILE symbol name for
// disambiguation by combined name.
StringRef FileSymbolName;
bool SeenFileName = false;
struct SymbolRefHash {
std::size_t operator()(SymbolRef const &S) const {
return std::hash<decltype(DataRefImpl::p)>{}(S.getRawDataRefImpl().p);
}
};
std::unordered_map<SymbolRef, StringRef, SymbolRefHash> SymbolToFileName;
for (const auto &Symbol : InputFile->symbols()) {
ErrorOr<StringRef> NameOrError = Symbol.getName();
if (NameOrError && NameOrError->startswith("__asan_init")) {
errs() << "BOLT-ERROR: input file was compiled or linked with sanitizer "
"support. Cannot optimize.\n";
exit(1);
}
if (NameOrError && NameOrError->startswith("__llvm_coverage_mapping")) {
errs() << "BOLT-ERROR: input file was compiled or linked with coverage "
"support. Cannot optimize.\n";
exit(1);
}
if (Symbol.getFlags() & SymbolRef::SF_Undefined)
continue;
if (Symbol.getType() == SymbolRef::ST_File) {
check_error(NameOrError.getError(), "cannot get symbol name for file");
// Ignore Clang LTO artificial FILE symbol as it is not always generated,
// and this uncertainty is causing havoc in function name matching.
if (*NameOrError == "ld-temp.o")
continue;
FileSymbolName = *NameOrError;
SeenFileName = true;
continue;
}
if (!FileSymbolName.empty() &&
!(Symbol.getFlags() & SymbolRef::SF_Global)) {
SymbolToFileName[Symbol] = FileSymbolName;
}
}
// Sort symbols in the file by value.
std::vector<SymbolRef> SortedFileSymbols(InputFile->symbol_begin(),
InputFile->symbol_end());
std::stable_sort(SortedFileSymbols.begin(), SortedFileSymbols.end(),
[](const SymbolRef &A, const SymbolRef &B) {
// FUNC symbols have higher precedence.
if (*(A.getAddress()) == *(B.getAddress())) {
return A.getType() == SymbolRef::ST_Function &&
B.getType() != SymbolRef::ST_Function;
}
return *(A.getAddress()) < *(B.getAddress());
});
BinaryFunction *PreviousFunction = nullptr;
for (const auto &Symbol : SortedFileSymbols) {
// Keep undefined symbols for pretty printing?
if (Symbol.getFlags() & SymbolRef::SF_Undefined)
continue;
if (Symbol.getType() == SymbolRef::ST_File)
continue;
ErrorOr<StringRef> NameOrError = Symbol.getName();
check_error(NameOrError.getError(), "cannot get symbol name");
ErrorOr<uint64_t> AddressOrErr = Symbol.getAddress();
check_error(AddressOrErr.getError(), "cannot get symbol address");
uint64_t Address = *AddressOrErr;
if (Address == 0) {
if (opts::Verbosity >= 1 && Symbol.getType() == SymbolRef::ST_Function)
errs() << "BOLT-WARNING: function with 0 address seen\n";
continue;
}
FileSymRefs[Address] = Symbol;
// There's nothing horribly wrong with anonymous symbols, but let's
// ignore them for now.
if (NameOrError->empty())
continue;
/// It is possible we are seeing a globalized local. LLVM might treat it as
/// a local if it has a "private global" prefix, e.g. ".L". Thus we have to
/// change the prefix to enforce global scope of the symbol.
std::string Name =
NameOrError->startswith(BC->AsmInfo->getPrivateGlobalPrefix())
? "PG" + std::string(*NameOrError)
: std::string(*NameOrError);
// Disambiguate all local symbols before adding to symbol table.
// Since we don't know if we will see a global with the same name,
// always modify the local name.
//
// NOTE: the naming convention for local symbols should match
// the one we use for profile data.
std::string UniqueName;
std::string AlternativeName;
if (Symbol.getFlags() & SymbolRef::SF_Global) {
assert(BC->GlobalSymbols.find(Name) == BC->GlobalSymbols.end() &&
"global name not unique");
UniqueName = Name;
} else {
// If we have a local file name, we should create 2 variants for the
// function name. The reason is that perf profile might have been
// collected on a binary that did not have the local file name (e.g. as
// a side effect of stripping debug info from the binary):
//
// primary: <function>/<id>
// alternative: <function>/<file>/<id2>
//
// The <id> field is used for disambiguation of local symbols since there
// could be identical function names coming from identical file names
// (e.g. from different directories).
std::string Prefix = Name + "/";
std::string AltPrefix;
auto SFI = SymbolToFileName.find(Symbol);
if (SFI != SymbolToFileName.end()) {
AltPrefix = Prefix + std::string(SFI->second) + "/";
}
auto uniquifyName = [&] (std::string NamePrefix) {
unsigned LocalID = 1;
while (BC->GlobalSymbols.find(NamePrefix + std::to_string(LocalID))
!= BC->GlobalSymbols.end())
++LocalID;
return NamePrefix + std::to_string(LocalID);
};
UniqueName = uniquifyName(Prefix);
if (!AltPrefix.empty())
AlternativeName = uniquifyName(AltPrefix);
}
// Register names even if it's not a function, e.g. for an entry point.
BC->registerNameAtAddress(UniqueName, Address);
if (!AlternativeName.empty())
BC->registerNameAtAddress(AlternativeName, Address);
ErrorOr<section_iterator> SectionOrErr = Symbol.getSection();
check_error(SectionOrErr.getError(), "cannot get symbol section");
section_iterator Section = *SectionOrErr;
if (Section == InputFile->section_end()) {
// Could be an absolute symbol. Could record for pretty printing.
continue;
}
DEBUG(dbgs() << "BOLT-DEBUG: considering symbol " << UniqueName
<< " for function\n");
if (!Section->isText()) {
assert(Symbol.getType() != SymbolRef::ST_Function &&
"unexpected function inside non-code section");
DEBUG(dbgs() << "BOLT-DEBUG: rejecting as symbol is not in code\n");
continue;
}
auto SymbolSize = ELFSymbolRef(Symbol).getSize();
// Assembly functions could be ST_NONE with 0 size. Check that the
// corresponding section is a code section and they are not inside any
// other known function to consider them.
//
// Sometimes assembly functions are not marked as functions and neither are
// their local labels. The only way to tell them apart is to look at
// symbol scope - global vs local.
if (Symbol.getType() != SymbolRef::ST_Function) {
if (PreviousFunction) {
if (PreviousFunction->getSize() == 0) {
if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) {
DEBUG(dbgs() << "BOLT-DEBUG: symbol is a function local symbol\n");
continue;
}
} else if (PreviousFunction->containsAddress(Address)) {
if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) {
DEBUG(dbgs() << "BOLT-DEBUG: symbol is a function local symbol\n");
continue;
} else {
if (Address == PreviousFunction->getAddress() && SymbolSize == 0) {
DEBUG(dbgs() << "BOLT-DEBUG: ignoring symbol as a marker\n");
continue;
}
if (opts::Verbosity > 1) {
errs() << "BOLT-WARNING: symbol " << UniqueName
<< " seen in the middle of function "
<< *PreviousFunction << ". Could be a new entry.\n";
}
continue;
}
}
}
}
if (PreviousFunction &&
PreviousFunction->containsAddress(Address) &&
PreviousFunction->getAddress() != Address) {
if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) {
if (opts::Verbosity >= 1) {
outs() << "BOLT-DEBUG: possibly another entry for function "
<< *PreviousFunction << " : " << UniqueName << '\n';
}
} else {
outs() << "BOLT-INFO: using " << UniqueName << " as another entry to "
<< "function " << *PreviousFunction << '\n';
PreviousFunction->
addEntryPointAtOffset(Address - PreviousFunction->getAddress());
if (!opts::Relocs)
PreviousFunction->setSimple(false);
// Remove the symbol from FileSymRefs so that we can skip it from
// in the future.
auto SI = FileSymRefs.find(Address);
assert(SI != FileSymRefs.end() && "symbol expected to be present");
assert(SI->second == Symbol && "wrong symbol found");
FileSymRefs.erase(SI);
}
continue;
}
// Checkout for conflicts with function data from FDEs.
bool IsSimple = true;
auto FDEI = CFIRdWrt->getFDEs().lower_bound(Address);
if (FDEI != CFIRdWrt->getFDEs().end()) {
auto &FDE = *FDEI->second;
if (FDEI->first != Address) {
// There's no matching starting address in FDE. Make sure the previous
// FDE does not contain this address.
if (FDEI != CFIRdWrt->getFDEs().begin()) {
--FDEI;
auto &PrevFDE = *FDEI->second;
auto PrevStart = PrevFDE.getInitialLocation();
auto PrevLength = PrevFDE.getAddressRange();
if (Address > PrevStart && Address < PrevStart + PrevLength) {
errs() << "BOLT-ERROR: function " << UniqueName
<< " is in conflict with FDE ["
<< Twine::utohexstr(PrevStart) << ", "
<< Twine::utohexstr(PrevStart + PrevLength)
<< "). Skipping.\n";
IsSimple = false;
}
}
} else if (FDE.getAddressRange() != SymbolSize) {
if (SymbolSize) {
// Function addresses match but sizes differ.
errs() << "BOLT-WARNING: sizes differ for function " << UniqueName
<< ". FDE : " << FDE.getAddressRange()
<< "; symbol table : " << SymbolSize << ". Using max size.\n";
}
SymbolSize = std::max(SymbolSize, FDE.getAddressRange());
}
}
BinaryFunction *BF{nullptr};
auto BFI = BinaryFunctions.find(Address);
if (BFI != BinaryFunctions.end()) {
BF = &BFI->second;
// Duplicate function name. Make sure everything matches before we add
// an alternative name.
if (SymbolSize != BF->getSize()) {
if (opts::Verbosity >= 1) {
if (SymbolSize && BF->getSize()) {
errs() << "BOLT-WARNING: size mismatch for duplicate entries "
<< *BF << " and " << UniqueName << '\n';
}
outs() << "BOLT-INFO: adjusting size of function " << *BF
<< " old " << BF->getSize() << " new " << SymbolSize << "\n";
}
BF->setSize(std::max(SymbolSize, BF->getSize()));
}
BF->addAlternativeName(UniqueName);
} else {
BF = createBinaryFunction(UniqueName, *Section, Address, SymbolSize,
IsSimple);
}
if (!AlternativeName.empty())
BF->addAlternativeName(AlternativeName);
PreviousFunction = BF;
}
// Process PLT section.
disassemblePLT();
// See if we missed any functions marked by FDE.
for (const auto &FDEI : CFIRdWrt->getFDEs()) {
const auto Address = FDEI.first;
const auto *FDE = FDEI.second;
const auto *BF = getBinaryFunctionAtAddress(Address);
if (!BF) {
if (const auto *PartialBF = getBinaryFunctionContainingAddress(Address)) {
errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x"
<< Twine::utohexstr(Address + FDE->getAddressRange())
<< ") conflicts with function " << *PartialBF << '\n';
} else {
if (opts::Verbosity >= 1) {
errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address)
<< ", 0x" << Twine::utohexstr(Address + FDE->getAddressRange())
<< ") has no corresponding symbol table entry\n";
}
auto Section = BC->getSectionForAddress(Address);
assert(Section && "cannot get section for address from FDE");
std::string FunctionName =
"__BOLT_FDE_FUNCat" + Twine::utohexstr(Address).str();
createBinaryFunction(FunctionName, *Section, Address,
FDE->getAddressRange(), true);
}
}
}
if (!SeenFileName && BC->DR.hasLocalsWithFileName() && !opts::AllowStripped) {
errs() << "BOLT-ERROR: input binary does not have local file symbols "
"but profile data includes function names with embedded file "
"names. It appears that the input binary was stripped while a "
"profiled binary was not. If you know what you are doing and "
"wish to proceed, use -allow-stripped option.\n";
exit(1);
}
// Now that all the functions were created - adjust their boundaries.
adjustFunctionBoundaries();
if (!opts::Relocs)
return;
// Read all relocations now that we have binary functions mapped.
for (const auto &Section : InputFile->sections()) {
if (Section.relocation_begin() != Section.relocation_end()) {
readRelocations(Section);
}
}
}
void RewriteInstance::disassemblePLT() {
if (!PLTSection.getObject())
return;
const auto PLTAddress = PLTSection.getAddress();
StringRef PLTContents;
PLTSection.getContents(PLTContents);
ArrayRef<uint8_t> PLTData(
reinterpret_cast<const uint8_t *>(PLTContents.data()),
PLTSection.getSize());
// Pseudo function for the start of PLT. The table could have a matching
// FDE that we want to match to pseudo function.
createBinaryFunction("__BOLT_PLT_PSEUDO" , PLTSection, PLTAddress, 0, false);
for (uint64_t Offset = 0; Offset < PLTSection.getSize(); Offset += 0x10) {
uint64_t InstrSize;
MCInst Instruction;
const uint64_t InstrAddr = PLTAddress + Offset;
if (!BC->DisAsm->getInstruction(Instruction,
InstrSize,
PLTData.slice(Offset),
InstrAddr,
nulls(),
nulls())) {
errs() << "BOLT-ERROR: unable to disassemble instruction in .plt "
<< "at offset 0x" << Twine::utohexstr(Offset) << '\n';
exit(1);
}
if (!BC->MIA->isIndirectBranch(Instruction))
continue;
uint64_t TargetAddress;
if (!BC->MIA->evaluateMemOperandTarget(Instruction,
TargetAddress,
InstrAddr,
InstrSize)) {
errs() << "BOLT-ERROR: error evaluating PLT instruction at offset 0x"
<< Twine::utohexstr(InstrAddr) << '\n';
exit(1);
}
// To get the name we have to read a relocation against the address.
for (const auto &Rel : RelaPLTSection.relocations()) {
if (Rel.getType() != ELF::R_X86_64_JUMP_SLOT)
continue;
if (Rel.getOffset() == TargetAddress) {
const auto SymbolIter = Rel.getSymbol();
assert(SymbolIter != InputFile->symbol_end() &&
"non-null symbol expected");
const auto SymbolName = *(*SymbolIter).getName();
std::string Name = SymbolName.str() + "@PLT";
auto *BF = createBinaryFunction(Name,
PLTSection,
InstrAddr,
0,
/*IsSimple=*/false);
auto TargetSymbol = BC->registerNameAtAddress(SymbolName.str() + "@GOT",
TargetAddress);
BF->setPLTSymbol(TargetSymbol);
break;
}
}
}
if (PLTGOTSection.getObject()) {
// Check if we need to create a function for .plt.got. Some linkers
// (depending on the version) would mark it with FDE while others wouldn't.
if (!getBinaryFunctionAtAddress(PLTGOTSection.getAddress())) {
createBinaryFunction("__BOLT_PLT_GOT_PSEUDO" , PLTGOTSection,
PLTGOTSection.getAddress(), 0, false);
}
}
}
void RewriteInstance::adjustFunctionBoundaries() {
for (auto &BFI : BinaryFunctions) {
auto &Function = BFI.second;
// Check if there's a symbol with a larger address in the same section.
// If there is - it determines the maximum size for the current function,
// otherwise, it is the size of containing section the defines it.
//
// NOTE: ignore some symbols that could be tolerated inside the body
// of a function.
auto NextSymRefI = FileSymRefs.upper_bound(Function.getAddress());
while (NextSymRefI != FileSymRefs.end()) {
auto &Symbol = NextSymRefI->second;
auto SymbolSize = ELFSymbolRef(Symbol).getSize();
if (!Function.isSymbolValidInScope(Symbol, SymbolSize))
break;
// This is potentially another entry point into the function.
auto EntryOffset = NextSymRefI->first - Function.getAddress();
DEBUG(dbgs() << "BOLT-DEBUG: adding entry point to function "
<< Function << " at offset 0x"
<< Twine::utohexstr(EntryOffset) << '\n');
Function.addEntryPointAtOffset(EntryOffset);
// In non-relocation mode there's potentially an external undetectable
// reference to the entry point and hence we cannot move this entry point.
// Optimizing without moving could be difficult.
if (!opts::Relocs)
Function.setSimple(false);
++NextSymRefI;
}
auto NextSymRefSectionI = (NextSymRefI == FileSymRefs.end())
? InputFile->section_end()
: NextSymRefI->second.getSection();
uint64_t MaxSize;
if (NextSymRefI != FileSymRefs.end() &&
NextSymRefI->second.getSection() &&
*NextSymRefI->second.getSection() != InputFile->section_end() &&
**NextSymRefI->second.getSection() == Function.getSection()) {
MaxSize = NextSymRefI->first - Function.getAddress();
} else {
// Function runs till the end of the containing section.
uint64_t SectionEnd = Function.getSection().getAddress() +
Function.getSection().getSize();
assert((NextSymRefI == FileSymRefs.end() ||
NextSymRefI->first >= SectionEnd) &&
"different sections should not overlap");
MaxSize = SectionEnd - Function.getAddress();
}
if (MaxSize < Function.getSize()) {
errs() << "BOLT-ERROR: symbol seen in the middle of the function "
<< Function << ". Skipping.\n";
Function.setSimple(false);
Function.setMaxSize(Function.getSize());
continue;
}
Function.setMaxSize(MaxSize);
if (!Function.getSize() && Function.isSimple()) {
// Some assembly functions have their size set to 0, use the max
// size as their real size.
if (opts::Verbosity >= 1) {
outs() << "BOLT-INFO: setting size of function " << Function
<< " to " << Function.getMaxSize() << " (was 0)\n";
}
Function.setSize(Function.getMaxSize());
}
}
}
void RewriteInstance::relocateEHFrameSection() {
assert(EHFrameSection.getObject() != nullptr &&
"non-empty .eh_frame section expected");
DWARFFrame EHFrame(EHFrameSection.getAddress());
StringRef EHFrameSectionContents;
EHFrameSection.getContents(EHFrameSectionContents);
DataExtractor DE(EHFrameSectionContents,
BC->AsmInfo->isLittleEndian(),
BC->AsmInfo->getPointerSize());
auto createReloc = [&](uint64_t Value, uint64_t Offset, uint64_t DwarfType) {
if (DwarfType == dwarf::DW_EH_PE_omit)
return;
if (!(DwarfType & dwarf::DW_EH_PE_pcrel) &&
!(DwarfType & dwarf::DW_EH_PE_textrel) &&
!(DwarfType & dwarf::DW_EH_PE_funcrel) &&
!(DwarfType & dwarf::DW_EH_PE_datarel)) {
return;
}
if (!(DwarfType & dwarf::DW_EH_PE_sdata4))
return;
uint64_t RelType;
switch (DwarfType & 0x0f) {
default:
llvm_unreachable("unsupported DWARF encoding type");
case dwarf::DW_EH_PE_sdata4:
case dwarf::DW_EH_PE_udata4:
RelType = ELF::R_X86_64_PC32;
break;
case dwarf::DW_EH_PE_sdata8:
case dwarf::DW_EH_PE_udata8:
RelType = ELF::R_X86_64_PC64;
break;
}
auto *Symbol = BC->getGlobalSymbolAtAddress(Value);
if (!Symbol) {
DEBUG(dbgs() << "BOLT-DEBUG: creating symbol for DWARF reference at 0x"
<< Twine::utohexstr(Value) << '\n');
Symbol = BC->getOrCreateGlobalSymbol(Value, "FUNCat");
}
DEBUG(dbgs() << "BOLT-DEBUG: adding DWARF reference against symbol "
<< Symbol->getName() << '\n');
BC->addSectionRelocation(EHFrameSection, Offset, Symbol, RelType);
};
EHFrame.parse(DE, createReloc);
if (!EHFrame.ParseError.empty()) {
errs() << "BOLT-ERROR: EHFrame reader failed with message \""
<< EHFrame.ParseError << '\n';
exit(1);
}
}
BinaryFunction *RewriteInstance::createBinaryFunction(
const std::string &Name, SectionRef Section, uint64_t Address,
uint64_t Size, bool IsSimple) {
auto Result = BinaryFunctions.emplace(
Address, BinaryFunction(Name, Section, Address, Size, *BC, IsSimple));
assert(Result.second == true && "unexpected duplicate function");
auto *BF = &Result.first->second;
BC->registerNameAtAddress(Name, Address);
BC->SymbolToFunctionMap[BF->getSymbol()] = BF;
return BF;
}
void RewriteInstance::readSpecialSections() {
bool HasTextRelocations = false;
// Process special sections.
for (const auto &Section : InputFile->sections()) {
StringRef SectionName;
check_error(Section.getName(SectionName), "cannot get section name");
StringRef SectionContents;
check_error(Section.getContents(SectionContents),
"cannot get section contents");
ArrayRef<uint8_t> SectionData(
reinterpret_cast<const uint8_t *>(SectionContents.data()),
Section.getSize());
if (SectionName == ".gcc_except_table") {
LSDAData = SectionData;
LSDAAddress = Section.getAddress();
} else if (SectionName == ".debug_loc") {
DebugLocSize = Section.getSize();
} else if (SectionName == ".eh_frame") {
EHFrameSection = Section;
} else if (SectionName == ".rela.text") {
HasTextRelocations = true;
} else if (SectionName == ".gdb_index") {
GdbIndexSection = Section;
} else if (SectionName == ".plt") {
PLTSection = Section;
} else if (SectionName == ".got.plt") {
GOTPLTSection = Section;
} else if (SectionName == ".plt.got") {
PLTGOTSection = Section;
} else if (SectionName == ".rela.plt") {
RelaPLTSection = Section;
}
// Ignore zero-size allocatable sections as they present no interest to us.
// Note that .tbss is marked as having a positive size while in reality it
// is not taking any allocatable space.
if ((ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) &&
Section.getSize() > 0 &&
SectionName != ".tbss") {
BC->AllocatableSections.emplace(std::make_pair(Section.getAddress(),
Section));
}
}
if (opts::Relocs && !HasTextRelocations) {
errs() << "BOLT-ERROR: relocations against code are missing from the input "
"file. Cannot proceed in relocations mode (-relocs).\n";
exit(1);
}
// Process debug sections.
EHFrame = BC->DwCtx->getEHFrame();
if (opts::DumpEHFrame) {
outs() << "BOLT-INFO: Dumping original binary .eh_frame\n";
EHFrame->dump(outs());
}
CFIRdWrt.reset(new CFIReaderWriter(*EHFrame));
if (!EHFrame->ParseError.empty()) {
errs() << "BOLT-ERROR: EHFrame reader failed with message \""
<< EHFrame->ParseError << '\n';
exit(1);
}
}
namespace {
template <typename ELFT>
int64_t getRelocationAddend(const ELFObjectFile<ELFT> *Obj,
const RelocationRef &RelRef) {
int64_t Addend = 0;
const ELFFile<ELFT> &EF = *Obj->getELFFile();
DataRefImpl Rel = RelRef.getRawDataRefImpl();
const auto *RelocationSection = *(EF.getSection(Rel.d.a));
switch (RelocationSection->sh_type) {
default: llvm_unreachable("unexpected relocation section type");
case ELF::SHT_REL:
break;
case ELF::SHT_RELA: {
const auto *RelA = Obj->getRela(Rel);
Addend = RelA->r_addend;
break;
}
}
return Addend;
}
int64_t getRelocationAddend(const ELFObjectFileBase *Obj,
const RelocationRef &Rel) {
if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
return getRelocationAddend(ELF32LE, Rel);
if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
return getRelocationAddend(ELF64LE, Rel);
if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
return getRelocationAddend(ELF32BE, Rel);
auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
return getRelocationAddend(ELF64BE, Rel);
}
} // anonymous namespace
void RewriteInstance::readRelocations(const SectionRef &Section) {
StringRef SectionName;
Section.getName(SectionName);
DEBUG(dbgs() << "BOLT-DEBUG: relocations for section "
<< SectionName << ":\n");
if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
DEBUG(dbgs() << "BOLT-DEBUG: ignoring runtime relocations\n");
return;
}
auto SecIter = Section.getRelocatedSection();
assert(SecIter != InputFile->section_end() && "relocated section expected");
auto RelocatedSection = *SecIter;
StringRef RelocatedSectionName;
RelocatedSection.getName(RelocatedSectionName);
DEBUG(dbgs() << "BOLT-DEBUG: relocated section is "
<< RelocatedSectionName << '\n');
if (!(ELFSectionRef(RelocatedSection).getFlags() & ELF::SHF_ALLOC)) {
DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocations against "
<< "non-allocatable section\n");
return;
}
const bool SkipRelocs = StringSwitch<bool>(RelocatedSectionName)
.Cases(".plt", ".rela.plt", ".got.plt", ".eh_frame", true)
.Default(false);
if (SkipRelocs) {
DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocations against known section\n");
return;
}
// For value extraction.
StringRef RelocatedSectionContents;
RelocatedSection.getContents(RelocatedSectionContents);
DataExtractor DE(RelocatedSectionContents,
BC->AsmInfo->isLittleEndian(),
BC->AsmInfo->getPointerSize());
bool IsFromCode = RelocatedSection.isText();
for (const auto &Rel : Section.relocations()) {
SmallString<16> TypeName;
Rel.getTypeName(TypeName);
DEBUG(dbgs() << "BOLT-DEBUG: offset = 0x"
<< Twine::utohexstr(Rel.getOffset())
<< "; type name = " << TypeName
<< '\n');
if (Rel.getType() == ELF::R_X86_64_TLSGD ||
Rel.getType() == ELF::R_X86_64_TLSLD ||
Rel.getType() == ELF::R_X86_64_DTPOFF32) {
DEBUG(dbgs() << "skipping relocation\n");
continue;
}
// Extract value.
uint32_t RelocationOffset =
Rel.getOffset() - RelocatedSection.getAddress();
auto ExtractedValue = static_cast<uint64_t>(
DE.getSigned(&RelocationOffset,
Relocation::getSizeForType(Rel.getType())));
bool IsPCRelative = Relocation::isPCRelative(Rel.getType());
auto Addend = getRelocationAddend(InputFile, Rel);
uint64_t Address = 0;
uint64_t SymbolAddress = 0;
auto SymbolIter = Rel.getSymbol();
std::string SymbolName = "<no symbol>";
SymbolAddress = *SymbolIter->getAddress();
if (!SymbolAddress) {
Address = ExtractedValue;
if (IsPCRelative) {
Address += Rel.getOffset();
}
} else {
Address = SymbolAddress + Addend;
}
bool SymbolIsSection = false;
if (SymbolIter != InputFile->symbol_end()) {
SymbolName = (*(*SymbolIter).getName());
if (SymbolIter->getType() == SymbolRef::ST_Debug) {
// Weird stuff - section symbols are marked as ST_Debug.
SymbolIsSection = true;
auto SymbolSection = SymbolIter->getSection();
if (SymbolSection && *SymbolSection != InputFile->section_end()) {
StringRef SymbolSectionName;
(*SymbolSection)->getName(SymbolSectionName);
SymbolName = "section " + std::string(SymbolSectionName);
Address = Addend;
}
}
}
bool ForceRelocation = false;
if (opts::HotText &&
(SymbolName == "__hot_start" || SymbolName == "__hot_end")) {
ForceRelocation = true;
}
bool IsAbsoluteCodeRefWithAddend = false;
if (!IsPCRelative && Addend != 0 && IsFromCode && !SymbolIsSection) {
auto RefSection = BC->getSectionForAddress(SymbolAddress);
if (RefSection && RefSection->isText()) {
if (opts::Verbosity > 1) {
errs() << "BOLT-WARNING: detected absolute reference from code into "
<< "a middle of a function:\n"
<< " offset = 0x" << Twine::utohexstr(Rel.getOffset())
<< "; symbol = " << SymbolName
<< "; symbol address = 0x" << Twine::utohexstr(SymbolAddress)
<< "; addend = 0x" << Twine::utohexstr(Addend)
<< "; address = 0x" << Twine::utohexstr(Address)
<< "; type = " << Rel.getType()
<< "; type name = " << TypeName
<< '\n';
}
assert(ExtractedValue == SymbolAddress + Addend && "value mismatch");
Address = SymbolAddress;
IsAbsoluteCodeRefWithAddend = true;
}
} else if (Addend < 0 && IsPCRelative) {
Address -= Addend;
} else {
Addend = 0;
}
DEBUG(dbgs() << "BOLT-DEBUG: offset = 0x"
<< Twine::utohexstr(Rel.getOffset())
<< "; symbol = " << SymbolName
<< "; symbol address = 0x" << Twine::utohexstr(SymbolAddress)
<< "; addend = 0x" << Twine::utohexstr(Addend)
<< "; address = 0x" << Twine::utohexstr(Address)
<< "; type = " << Rel.getType()
<< "; type name = " << TypeName
<< '\n');
if (Rel.getType() != ELF::R_X86_64_TPOFF32 &&
Rel.getType() != ELF::R_X86_64_GOTTPOFF &&
Rel.getType() != ELF::R_X86_64_GOTPCREL) {
if (!IsPCRelative) {
if (!IsAbsoluteCodeRefWithAddend) {
if (opts::Verbosity > 2 &&
ExtractedValue != Address) {
errs() << "BOLT-WARNING: mismatch ExtractedValue = 0x"
<< Twine::utohexstr(ExtractedValue) << '\n';
}
Address = ExtractedValue;
}
} else {
if (opts::Verbosity > 2 &&
ExtractedValue != Address - Rel.getOffset() + Addend) {
errs() << "BOLT-WARNING: PC-relative mismatch ExtractedValue = 0x"
<< Twine::utohexstr(ExtractedValue) << '\n';
}
Address = ExtractedValue - Addend;
}
}
BinaryFunction *ContainingBF = nullptr;
if (IsFromCode) {
ContainingBF = getBinaryFunctionContainingAddress(Rel.getOffset());
assert(ContainingBF && "cannot find function for address in code");
DEBUG(dbgs() << "BOLT-DEBUG: relocation belongs to " << *ContainingBF
<< '\n');
}
// PC-relative relocations from data to code are tricky since the original
// information is typically lost after linking even with '--emit-relocs'.
// They are normally used by PIC-style jump tables and reference both
// the jump table and jump destination by computing the difference
// between the two. If we blindly apply the relocation it will appear
// that it references an arbitrary location in the code, possibly even
// in a different function from that containing the jump table.
if (IsPCRelative) {
// Just register the fact that we have PC-relative relocation at a given
// address. The actual referenced label/address cannot be determined
// from linker data alone.
if (IsFromCode) {
ContainingBF->addPCRelativeRelocationAddress(Rel.getOffset());
}
DEBUG(dbgs() << "BOLT-DEBUG: not creating PC-relative relocation\n");
continue;
}
auto RefSection = BC->getSectionForAddress(Address);
if (!RefSection && !ForceRelocation) {
DEBUG(dbgs() << "BOLT-DEBUG: cannot determine referenced section.\n");
continue;
}
bool ToCode = RefSection && RefSection->isText();
// Occasionally we may see a reference past the last byte of the function
// typically as a result of __builtin_unreachable(). Check it here.
auto *ReferencedBF =
getBinaryFunctionContainingAddress(Address, /*CheckPastEnd*/ true);
uint64_t RefFunctionOffset = 0;
MCSymbol *ReferencedSymbol = nullptr;
if (ForceRelocation) {
ReferencedSymbol = BC->registerNameAtAddress(SymbolName, 0);
Addend = Address;
DEBUG(dbgs() << "BOLT-DEBUG: creating relocations for huge pages against"
" symbol " << SymbolName << " with addend " << Addend
<< '\n');
} else if (ReferencedBF) {
RefFunctionOffset = Address - ReferencedBF->getAddress();
DEBUG(dbgs() << " referenced function " << *ReferencedBF;
if (Address != ReferencedBF->getAddress())
dbgs() << " at offset 0x"
<< Twine::utohexstr(RefFunctionOffset);
dbgs() << '\n');
if (RefFunctionOffset) {
ReferencedSymbol =
ReferencedBF->getOrCreateLocalLabel(Address, /*CreatePastEnd*/ true);
} else {
ReferencedSymbol = ReferencedBF->getSymbol();
}
} else {
if (RefSection && RefSection->isText() && SymbolAddress) {
// This can happen e.g. with PIC-style jump tables.
DEBUG(dbgs() << "BOLT-DEBUG: no corresponding function for "
"relocation against code\n");
}
ReferencedSymbol = BC->getOrCreateGlobalSymbol(Address, "SYMBOLat");
}
if (IsFromCode) {
if (ReferencedBF || ForceRelocation) {
ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol,
Rel.getType(), Addend, ExtractedValue);
} else {
DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocation from code to data\n");
}
} else if (ToCode) {
assert(Addend == 0 && "did not expect addend");
BC->addRelocation(Rel.getOffset(), ReferencedSymbol, Rel.getType());
} else {
DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocation from data to data\n");
}
}
}
void RewriteInstance::readDebugInfo() {
if (!opts::UpdateDebugSections)
return;
BC->preprocessDebugInfo(BinaryFunctions);
}
void RewriteInstance::readProfileData() {
if (BC->DR.getAllFuncsData().empty())
return;
for (auto &BFI : BinaryFunctions) {
auto &Function = BFI.second;
auto *FuncData = BC->DR.getFuncBranchData(Function.getNames());
if (!FuncData)
continue;
Function.BranchData = FuncData;
Function.ExecutionCount = FuncData->ExecutionCount;
FuncData->Used = true;
}
}
void RewriteInstance::disassembleFunctions() {
// Disassemble every function and build it's control flow graph.
TotalScore = 0;
BC->SumExecutionCount = 0;
for (auto &BFI : BinaryFunctions) {
BinaryFunction &Function = BFI.second;
// If we have to relocate the code we have to disassemble all functions.
if (!opts::Relocs && !opts::shouldProcess(Function)) {
DEBUG(dbgs() << "BOLT: skipping processing function "
<< Function << " per user request.\n");
continue;
}
SectionRef Section = Function.getSection();
assert(Section.getAddress() <= Function.getAddress() &&
Section.getAddress() + Section.getSize()
>= Function.getAddress() + Function.getSize() &&
"wrong section for function");
if (!Section.isText() || Section.isVirtual() || !Section.getSize()) {
// When could it happen?
errs() << "BOLT-ERROR: corresponding section is non-executable or "
<< "empty for function " << Function << '\n';
continue;
}
// Treat zero-sized functions as non-simple ones.
if (Function.getSize() == 0) {
Function.setSimple(false);
continue;
}
StringRef SectionContents;
check_error(Section.getContents(SectionContents),
"cannot get section contents");
assert(SectionContents.size() == Section.getSize() &&
"section size mismatch");
// Function offset from the section start.
auto FunctionOffset = Function.getAddress() - Section.getAddress();
// Offset of the function in the file.
Function.setFileOffset(
SectionContents.data() - InputFile->getData().data() + FunctionOffset);
ArrayRef<uint8_t> FunctionData(
reinterpret_cast<const uint8_t *>
(SectionContents.data()) + FunctionOffset,
Function.getSize());
Function.disassemble(FunctionData);
if (!Function.isSimple() && opts::Relocs) {
errs() << "BOLT-ERROR: function " << Function << " cannot be properly "
<< "disassembled. Unable to continue in relocation mode.\n";
abort();
}
if (opts::PrintAll || opts::PrintDisasm)
Function.print(outs(), "after disassembly", true);
// Post-process inter-procedural references ASAP as it may affect
// functions we are about to disassemble next.
for (const auto Addr : BC->InterproceduralReferences) {
auto *ContainingFunction = getBinaryFunctionContainingAddress(Addr);
if (ContainingFunction && ContainingFunction->getAddress() != Addr) {
ContainingFunction->addEntryPoint(Addr);
if (!opts::Relocs) {
if (opts::Verbosity >= 1) {
errs() << "BOLT-WARNING: Function " << *ContainingFunction
<< " has internal BBs that are target of a reference located"
<< " in another function. Skipping the function.\n";
}
ContainingFunction->setSimple(false);
}
} else if (!ContainingFunction && Addr) {
// Check if address falls in function padding space - this could be
// unmarked data in code. In this case adjust the padding space size.
auto Section = BC->getSectionForAddress(Addr);
assert(Section && "cannot get section for referenced address");
if (!Section->isText())
continue;
// PLT requires special handling and could be ignored in this context.
StringRef SectionName;
Section->getName(SectionName);
if (SectionName == ".plt" || SectionName == ".plt.got")
continue;
if (opts::Relocs) {
errs() << "BOLT-ERROR: cannot process binaries with unmarked "
<< "object in code at address 0x"
<< Twine::utohexstr(Addr) << " belonging to section "
<< SectionName << " in relocation mode.\n";
exit(1);
}
ContainingFunction =
getBinaryFunctionContainingAddress(Addr,
/*CheckPastEnd=*/false,
/*UseMaxSize=*/true);
// We are not going to overwrite non-simple functions, but for simple
// ones - adjust the padding size.
if (ContainingFunction && ContainingFunction->isSimple()) {
errs() << "BOLT-WARNING: function " << *ContainingFunction
<< " has an object detected in a padding region at address 0x"
<< Twine::utohexstr(Addr) << '\n';
ContainingFunction->setMaxSize(
Addr - ContainingFunction->getAddress());
}
}
}
BC->InterproceduralReferences.clear();
if (opts::AggregateOnly)
continue;
// Fill in CFI information for this function
if (Function.isSimple()) {
if (!CFIRdWrt->fillCFIInfoFor(Function)) {
errs() << "BOLT-ERROR: unable to fill CFI for function "
<< Function << ".\n";
if (opts::Relocs)
abort();
Function.setSimple(false);
continue;
}
}
// Parse LSDA.
if (Function.isSimple() && Function.getLSDAAddress() != 0)
Function.parseLSDA(LSDAData, LSDAAddress);
if (!Function.buildCFG())
continue;
if (opts::PrintAll || opts::PrintCFG)
Function.print(outs(), "after building cfg", true);
if (opts::DumpDotAll)
Function.dumpGraphForPass("build-cfg");
if (opts::PrintLoopInfo) {
Function.calculateLoopInfo();
Function.printLoopInfo(outs());
}
TotalScore += Function.getFunctionScore();
BC->SumExecutionCount += Function.getKnownExecutionCount();
} // Iterate over all functions
if (opts::AggregateOnly)
return;
uint64_t NumSimpleFunctions{0};
uint64_t NumStaleProfileFunctions{0};
std::vector<BinaryFunction *> ProfiledFunctions;
for (auto &BFI : BinaryFunctions) {
auto &Function = BFI.second;
if (!Function.isSimple())
continue;
++NumSimpleFunctions;
if (Function.getExecutionCount() == BinaryFunction::COUNT_NO_PROFILE)
continue;
if (Function.hasValidProfile())
ProfiledFunctions.push_back(&Function);
else
++NumStaleProfileFunctions;
}
BC->NumProfiledFuncs = ProfiledFunctions.size();
const auto NumAllProfiledFunctions =
ProfiledFunctions.size() + NumStaleProfileFunctions;
outs() << "BOLT-INFO: "
<< NumAllProfiledFunctions
<< " functions out of " << NumSimpleFunctions << " simple functions ("
<< format("%.1f", NumAllProfiledFunctions /
(float) NumSimpleFunctions * 100.0f)
<< "%) have non-empty execution profile.\n";
if (NumStaleProfileFunctions) {
outs() << "BOLT-INFO: " << NumStaleProfileFunctions
<< format(" (%.1f%% of all profiled)",
NumStaleProfileFunctions /
(float) NumAllProfiledFunctions * 100.0f)
<< " function" << (NumStaleProfileFunctions == 1 ? "" : "s")
<< " have invalid (possibly stale) profile.\n";
}
// Profile is marked as 'Used' if it either matches a function name
// exactly or if it 100% matches any of functions with matching common
// LTO names.
auto getUnusedObjects = [this]() -> Optional<std::vector<StringRef>> {
std::vector<StringRef> UnusedObjects;
for (const auto &Func : BC->DR.getAllFuncsData()) {
if (!Func.getValue().Used) {
UnusedObjects.emplace_back(Func.getKey());
}
}
if (UnusedObjects.empty())
return NoneType();
return UnusedObjects;
};
if (const auto UnusedObjects = getUnusedObjects()) {
outs() << "BOLT-INFO: profile for " << UnusedObjects->size()
<< " objects was ignored\n";
if (opts::Verbosity >= 1) {
for (auto Name : *UnusedObjects) {
outs() << " " << Name << '\n';
}
}
}
if (ProfiledFunctions.size() > 10) {
if (opts::Verbosity >= 1) {
outs() << "BOLT-INFO: top called functions are:\n";
std::sort(ProfiledFunctions.begin(), ProfiledFunctions.end(),
[](BinaryFunction *A, BinaryFunction *B) {
return B->getExecutionCount() < A->getExecutionCount();
}
);
auto SFI = ProfiledFunctions.begin();
auto SFIend = ProfiledFunctions.end();
for (auto i = 0u; i < opts::TopCalledLimit && SFI != SFIend; ++SFI, ++i) {
outs() << " " << **SFI << " : "
<< (*SFI)->getExecutionCount() << '\n';
}
}
}
if (opts::CalcCacheMetrics) {
outs() << "\nBOLT-INFO: Before Optimization CFG Graph Statistics: Jump "
"Distance \n\n";
CalcCacheMetrics::calcGraphDistance(BinaryFunctions);
}
}
void RewriteInstance::runOptimizationPasses() {
BinaryFunctionPassManager::runAllPasses(*BC, BinaryFunctions, LargeFunctions);
}
// Helper function to emit the contents of a function via a MCStreamer object.
void RewriteInstance::emitFunction(MCStreamer &Streamer, BinaryFunction &Function,
bool EmitColdPart) {
if (Function.getSize() == 0)
return;
if (Function.getState() == BinaryFunction::State::Empty)
return;
MCSection *Section;
if (opts::Relocs) {
Section = BC->MOFI->getTextSection();
} else {
// Each fuction is emmitted into its own section.
Section =
BC->Ctx->getELFSection(EmitColdPart ? Function.getColdCodeSectionName()
: Function.getCodeSectionName(),
ELF::SHT_PROGBITS,
ELF::SHF_EXECINSTR | ELF::SHF_ALLOC);
}
Section->setHasInstructions(true);
BC->Ctx->addGenDwarfSection(Section);
Streamer.SwitchSection(Section);
if (opts::Relocs) {
Streamer.EmitCodeAlignment(BinaryFunction::MinAlign);
Streamer.EmitCodeAlignment(opts::AlignFunctions,
opts::AlignFunctionsMaxBytes);
} else {
Streamer.EmitCodeAlignment(Function.getAlignment());
Streamer.setCodeSkew(EmitColdPart ? 0 : Function.getAddress());
}
MCContext &Context = Streamer.getContext();
const MCAsmInfo *MAI = Context.getAsmInfo();
// Emit all names the function is known under.
for (const auto &Name : Function.getNames()) {
Twine EmitName = EmitColdPart ? Twine(Name).concat(".cold") : Name;
auto *EmitSymbol = BC->Ctx->getOrCreateSymbol(EmitName);
Streamer.EmitSymbolAttribute(EmitSymbol, MCSA_ELF_TypeFunction);
DEBUG(dbgs() << "emitting symbol " << EmitSymbol->getName()
<< " for function " << Function << '\n');
Streamer.EmitLabel(EmitSymbol);
}
// Emit CFI start
if (Function.hasCFI() && (opts::Relocs || Function.isSimple())) {
Streamer.EmitCFIStartProc(/*IsSimple=*/false);
if (Function.getPersonalityFunction() != nullptr) {
Streamer.EmitCFIPersonality(Function.getPersonalityFunction(),
Function.getPersonalityEncoding());
}
auto *LSDASymbol = EmitColdPart ? Function.getColdLSDASymbol()
: Function.getLSDASymbol();
if (LSDASymbol) {
Streamer.EmitCFILsda(LSDASymbol, BC->MOFI->getLSDAEncoding());
} else {
Streamer.EmitCFILsda(0, dwarf::DW_EH_PE_omit);
}
// Emit CFI instructions relative to the CIE
for (const auto &CFIInstr : Function.cie()) {
// Only write CIE CFI insns that LLVM will not already emit
const std::vector<MCCFIInstruction> &FrameInstrs =
MAI->getInitialFrameState();
if (std::find(FrameInstrs.begin(), FrameInstrs.end(), CFIInstr) ==
FrameInstrs.end())
Streamer.EmitCFIInstruction(CFIInstr);
}
}
assert((Function.empty() || !(*Function.begin()).isCold()) &&
"first basic block should never be cold");
// Emit UD2 at the beginning if requested by user.
if (!opts::BreakFunctionNames.empty()) {
for (auto &Name : opts::BreakFunctionNames) {
if (Function.hasName(Name)) {
Streamer.EmitIntValue(0x0B0F, 2); // UD2: 0F 0B
break;
}
}
}
// Emit code.
Function.emitBody(Streamer, EmitColdPart);
// Emit padding if requested.
if (auto Padding = opts::padFunction(Function)) {
DEBUG(dbgs() << "BOLT-DEBUG: padding function " << Function << " with "
<< Padding << " bytes\n");
Streamer.EmitFill(Padding, MAI->getTextAlignFillValue());
}
if (opts::MarkFuncs) {
Streamer.EmitIntValue(MAI->getTrapFillValue(), 1);
}
// Emit CFI end
if (Function.hasCFI() && (opts::Relocs || Function.isSimple()))
Streamer.EmitCFIEndProc();
Streamer.EmitLabel(EmitColdPart ? Function.getFunctionColdEndLabel()
: Function.getFunctionEndLabel());
// Exception handling info for the function.
Function.emitLSDA(&Streamer, EmitColdPart);
if (!EmitColdPart && opts::JumpTables > JTS_NONE)
Function.emitJumpTables(&Streamer);
Function.setEmitted();
}
namespace {
template <typename T>
std::vector<T> singletonSet(T t) {
std::vector<T> Vec;
Vec.push_back(std::move(t));
return Vec;
}
} // anonymous namespace
void RewriteInstance::emitFunctions() {
std::error_code EC;
// This is an object file, which we keep for debugging purposes.
// Once we decide it's useless, we should create it in memory.
std::unique_ptr<tool_output_file> TempOut =
llvm::make_unique<tool_output_file>(opts::OutputFilename + ".bolt.o",
EC, sys::fs::F_None);
check_error(EC, "cannot create output object file");
std::unique_ptr<buffer_ostream> BOS =
make_unique<buffer_ostream>(TempOut->os());
raw_pwrite_stream *OS = BOS.get();
// Implicitly MCObjectStreamer takes ownership of MCAsmBackend (MAB)
// and MCCodeEmitter (MCE). ~MCObjectStreamer() will delete these
// two instances.
auto MCE = BC->TheTarget->createMCCodeEmitter(*BC->MII, *BC->MRI, *BC->Ctx);
auto MAB = BC->TheTarget->createMCAsmBackend(*BC->MRI, BC->TripleName, "");
std::unique_ptr<MCStreamer> Streamer(
BC->TheTarget->createMCObjectStreamer(*BC->TheTriple,
*BC->Ctx,
*MAB,
*OS,
MCE,
*BC->STI,
/* RelaxAll */ false,
/* DWARFMustBeAtTheEnd */ false));
Streamer->InitSections(false);
// Mark beginning of "hot text".
if (opts::Relocs && opts::HotText)
Streamer->EmitLabel(BC->Ctx->getOrCreateSymbol("__hot_start"));
// Sort functions for the output.
std::vector<BinaryFunction *> SortedFunctions(BinaryFunctions.size());
std::transform(BinaryFunctions.begin(),
BinaryFunctions.end(),
SortedFunctions.begin(),
[](std::pair<const uint64_t, BinaryFunction> &BFI) {
return &BFI.second;
});
if (opts::ReorderFunctions != BinaryFunction::RT_NONE) {
std::stable_sort(SortedFunctions.begin(), SortedFunctions.end(),
[](const BinaryFunction *A, const BinaryFunction *B) {
if (A->hasValidIndex() && B->hasValidIndex()) {
return A->getIndex() < B->getIndex();
} else {
return A->hasValidIndex();
}
});
}
DEBUG(
if (!opts::Relocs) {
auto SortedIt = SortedFunctions.begin();
for (auto &It : BinaryFunctions) {
assert(&It.second == *SortedIt);
++SortedIt;
}
});
uint32_t LastHotIndex = -1u;
uint32_t CurrentIndex = 0;
for (auto *BF : SortedFunctions) {
if (!BF->hasValidIndex() && LastHotIndex == -1u) {
LastHotIndex = CurrentIndex;
}
assert(LastHotIndex == -1u || !BF->hasValidIndex());
assert(!BF->hasValidIndex() || CurrentIndex == BF->getIndex());
++CurrentIndex;
}
CurrentIndex = 0;
DEBUG(dbgs() << "BOLT-DEBUG: LastHotIndex = " << LastHotIndex << "\n");
bool ColdFunctionSeen = false;
// Output functions one by one.
for (auto *FunctionPtr : SortedFunctions) {
auto &Function = *FunctionPtr;
// Emit all cold function split parts at the border of hot and
// cold functions.
if (opts::Relocs && !ColdFunctionSeen && CurrentIndex >= LastHotIndex) {
// Mark the end of "hot" stuff.
if (opts::HotText) {
Streamer->SwitchSection(BC->MOFI->getTextSection());
Streamer->EmitLabel(BC->Ctx->getOrCreateSymbol("__hot_end"));
}
ColdFunctionSeen = true;
if (opts::SplitFunctions != BinaryFunction::ST_NONE) {
DEBUG(dbgs() << "BOLT-DEBUG: generating code for split functions\n");
for (auto *FPtr : SortedFunctions) {
if (!FPtr->isSplit() || !FPtr->isSimple())
continue;
emitFunction(*Streamer, *FPtr, /*EmitColdPart=*/true);
}
}
DEBUG(dbgs() << "BOLT-DEBUG: first cold function: " << Function << '\n');
}
if (!opts::Relocs &&
(!Function.isSimple() || !opts::shouldProcess(Function))) {
++CurrentIndex;
continue;
}
DEBUG(dbgs() << "BOLT: generating code for function \""
<< Function << "\" : "
<< Function.getFunctionNumber() << '\n');
emitFunction(*Streamer, Function, /*EmitColdPart=*/false);
if (!opts::Relocs && Function.isSplit())
emitFunction(*Streamer, Function, /*EmitColdPart=*/true);
++CurrentIndex;
}
if (!ColdFunctionSeen && opts::HotText) {
Streamer->SwitchSection(BC->MOFI->getTextSection());
Streamer->EmitLabel(BC->Ctx->getOrCreateSymbol("__hot_end"));
}
if (!opts::Relocs && opts::UpdateDebugSections)
updateDebugLineInfoForNonSimpleFunctions();
emitDataSections(Streamer.get());
// Relocate .eh_frame to .eh_frame_old.
if (EHFrameSection.getObject() != nullptr) {
relocateEHFrameSection();
emitDataSection(Streamer.get(), EHFrameSection, ".eh_frame_old");
}
Streamer->Finish();
//////////////////////////////////////////////////////////////////////////////
// Assign addresses to new sections.
//////////////////////////////////////////////////////////////////////////////
if (opts::UpdateDebugSections) {
// Compute offsets of tables in .debug_line for each compile unit.
updateLineTableOffsets();
}
// Get output object as ObjectFile.
std::unique_ptr<MemoryBuffer> ObjectMemBuffer =
MemoryBuffer::getMemBuffer(BOS->str(), "in-memory object file", false);
ErrorOr<std::unique_ptr<object::ObjectFile>> ObjOrErr =
object::ObjectFile::createObjectFile(ObjectMemBuffer->getMemBufferRef());
check_error(ObjOrErr.getError(), "error creating in-memory object");
auto Resolver = orc::createLambdaResolver(
[&](const std::string &Name) {
DEBUG(dbgs() << "BOLT: looking for " << Name << "\n");
auto I = BC->GlobalSymbols.find(Name);
if (I == BC->GlobalSymbols.end())
return RuntimeDyld::SymbolInfo(nullptr);
return RuntimeDyld::SymbolInfo(I->second,
JITSymbolFlags::None);
},
[](const std::string &S) {
DEBUG(dbgs() << "BOLT: resolving " << S << "\n");
return nullptr;
}
);
Resolver->setAllowsZeroSymbols(true);
auto ObjectsHandle = OLT.addObjectSet(
singletonSet(std::move(ObjOrErr.get())),
EFMM.get(),
std::move(Resolver),
/* ProcessAllSections = */true);
// Assign addresses to all sections.
mapFileSections(ObjectsHandle);
// Update output addresses based on the new section map and layout.
MCAsmLayout FinalLayout(
static_cast<MCObjectStreamer *>(Streamer.get())->getAssembler());
updateOutputValues(FinalLayout);
OLT.emitAndFinalize(ObjectsHandle);
if (opts::KeepTmp)
TempOut->keep();
}
void RewriteInstance::mapFileSections(
orc::ObjectLinkingLayer<>::ObjSetHandleT &ObjectsHandle) {
NewTextSectionStartAddress = NextAvailableAddress;
if (opts::Relocs) {
auto SMII = EFMM->SectionMapInfo.find(".text");
assert(SMII != EFMM->SectionMapInfo.end() &&
".text not found in output");
auto &SI = SMII->second;
uint64_t NewTextSectionOffset = 0;
if (opts::UseOldText && SI.Size <= OldTextSectionSize) {
outs() << "BOLT-INFO: using original .text for new code\n";
// Utilize the original .text for storage.
NewTextSectionStartAddress = OldTextSectionAddress;
NewTextSectionOffset = OldTextSectionOffset;
auto Padding = OffsetToAlignment(NewTextSectionStartAddress, PageAlign);
if (Padding + SI.Size <= OldTextSectionSize) {
outs() << "BOLT-INFO: using 0x200000 alignment\n";
NewTextSectionStartAddress += Padding;
NewTextSectionOffset += Padding;
}
} else {
if (opts::UseOldText) {
errs() << "BOLT-ERROR: original .text too small to fit the new code. "
<< SI.Size << " bytes needed, have " << OldTextSectionSize
<< " bytes available.\n";
}
auto Padding = OffsetToAlignment(NewTextSectionStartAddress, PageAlign);
NextAvailableAddress += Padding;
NewTextSectionStartAddress = NextAvailableAddress;
NewTextSectionOffset = getFileOffsetForAddress(NextAvailableAddress);
NextAvailableAddress += Padding + SI.Size;
}
SI.FileAddress = NewTextSectionStartAddress;
SI.FileOffset = NewTextSectionOffset;
DEBUG(dbgs() << "BOLT: mapping .text 0x"
<< Twine::utohexstr(SMII->second.AllocAddress)
<< " to 0x" << Twine::utohexstr(NewTextSectionStartAddress)
<< '\n');
OLT.mapSectionAddress(ObjectsHandle,
SI.SectionID,
NewTextSectionStartAddress);
} else {
for (auto &BFI : BinaryFunctions) {
auto &Function = BFI.second;
if (!Function.isSimple() || !opts::shouldProcess(Function))
continue;
auto TooLarge = false;
auto SMII = EFMM->SectionMapInfo.find(Function.getCodeSectionName());
assert(SMII != EFMM->SectionMapInfo.end() &&
"cannot find section for function");
DEBUG(dbgs() << "BOLT: mapping 0x"
<< Twine::utohexstr(SMII->second.AllocAddress)
<< " to 0x" << Twine::utohexstr(Function.getAddress())
<< '\n');
OLT.mapSectionAddress(ObjectsHandle,
SMII->second.SectionID,
Function.getAddress());
Function.setImageAddress(SMII->second.AllocAddress);
Function.setImageSize(SMII->second.Size);
if (Function.getImageSize() > Function.getMaxSize()) {
TooLarge = true;
FailedAddresses.emplace_back(Function.getAddress());
}
// Map jump tables if updating in-place.
if (opts::JumpTables == JTS_BASIC) {
for (auto &JTI : Function.JumpTables) {
auto &JT = JTI.second;
auto SMII = EFMM->SectionMapInfo.find(JT.SectionName);
assert(SMII != EFMM->SectionMapInfo.end() &&
"cannot find section for jump table");
JT.SecInfo = &SMII->second;
JT.SecInfo->FileAddress = JT.Address;
DEBUG(dbgs() << "BOLT-DEBUG: mapping " << JT.SectionName << " to 0x"
<< Twine::utohexstr(JT.Address) << '\n');
OLT.mapSectionAddress(ObjectsHandle,
JT.SecInfo->SectionID,
JT.Address);
}
}
if (!Function.isSplit())
continue;
SMII = EFMM->SectionMapInfo.find(Function.getColdCodeSectionName());
assert(SMII != EFMM->SectionMapInfo.end() &&
"cannot find section for cold part");
// Cold fragments are aligned at 16 bytes.
NextAvailableAddress = RoundUpToAlignment(NextAvailableAddress, 16);
auto &ColdPart = Function.cold();
if (TooLarge) {
// The corresponding FDE will refer to address 0.
ColdPart.setAddress(0);
ColdPart.setImageAddress(0);
ColdPart.setImageSize(0);
ColdPart.setFileOffset(0);
} else {
ColdPart.setAddress(NextAvailableAddress);
ColdPart.setImageAddress(SMII->second.AllocAddress);
ColdPart.setImageSize(SMII->second.Size);
ColdPart.setFileOffset(getFileOffsetForAddress(NextAvailableAddress));
}
DEBUG(dbgs() << "BOLT: mapping cold fragment 0x"
<< Twine::utohexstr(ColdPart.getImageAddress())
<< " to 0x"
<< Twine::utohexstr(ColdPart.getAddress())
<< " with size "
<< Twine::utohexstr(ColdPart.getImageSize()) << '\n');
OLT.mapSectionAddress(ObjectsHandle,
SMII->second.SectionID,
ColdPart.getAddress());
NextAvailableAddress += ColdPart.getImageSize();
}
// Add the new text section aggregating all existing code sections.
// This is pseudo-section that serves a purpose of creating a corresponding
// entry in section header table.
auto NewTextSectionSize = NextAvailableAddress - NewTextSectionStartAddress;
if (NewTextSectionSize) {
EFMM->SectionMapInfo[BOLTSecPrefix + ".text"] =
SectionInfo(0,
NewTextSectionSize,
16,
true /*IsCode*/,
true /*IsReadOnly*/,
true /*IsLocal*/,
NewTextSectionStartAddress,
getFileOffsetForAddress(NewTextSectionStartAddress));
}
}
// Map special sections to their addresses in the output image.
// These are the sections that we generate via MCStreamer.
// The order is important.
std::vector<std::string> Sections = { ".eh_frame", ".eh_frame_old",
".gcc_except_table",
".rodata", ".rodata.cold" };
for (auto &SectionName : Sections) {
auto SMII = EFMM->SectionMapInfo.find(SectionName);
if (SMII == EFMM->SectionMapInfo.end())
continue;
SectionInfo &SI = SMII->second;
NextAvailableAddress = RoundUpToAlignment(NextAvailableAddress,
SI.Alignment);
DEBUG(dbgs() << "BOLT: mapping section " << SectionName << " (0x"
<< Twine::utohexstr(SI.AllocAddress)
<< ") to 0x" << Twine::utohexstr(NextAvailableAddress)
<< '\n');
OLT.mapSectionAddress(ObjectsHandle,
SI.SectionID,
NextAvailableAddress);
SI.FileAddress = NextAvailableAddress;
SI.FileOffset = getFileOffsetForAddress(NextAvailableAddress);
NextAvailableAddress += SI.Size;
}
// Handling for sections with relocations.
for (auto &SRI : BC->SectionRelocations) {
auto &Section = SRI.first;
StringRef SectionName;
Section.getName(SectionName);
auto SMII = EFMM->SectionMapInfo.find(OrgSecPrefix +
std::string(SectionName));
if (SMII == EFMM->SectionMapInfo.end())
continue;
SectionInfo &SI = SMII->second;
if (SI.FileAddress) {
DEBUG(dbgs() << "BOLT-DEBUG: section " << SectionName
<< " is already mapped at 0x"
<< Twine::utohexstr(SI.FileAddress) << '\n');
continue;
}
DEBUG(dbgs() << "BOLT: mapping original section " << SectionName << " (0x"
<< Twine::utohexstr(SI.AllocAddress)
<< ") to 0x" << Twine::utohexstr(Section.getAddress())
<< '\n');
OLT.mapSectionAddress(ObjectsHandle,
SI.SectionID,
Section.getAddress());
SI.FileAddress = Section.getAddress();
StringRef SectionContents;
Section.getContents(SectionContents);
SI.FileOffset = SectionContents.data() - InputFile->getData().data();
}
}
void RewriteInstance::updateOutputValues(const MCAsmLayout &Layout) {
for (auto &BFI : BinaryFunctions) {
auto &Function = BFI.second;
if (!Function.isEmitted()) {
Function.setOutputAddress(Function.getAddress());
Function.setOutputSize(Function.getSize());
continue;
}
if (opts::Relocs) {
const auto BaseAddress = NewTextSectionStartAddress;
const auto StartOffset = Layout.getSymbolOffset(*Function.getSymbol());
const auto EndOffset =
Layout.getSymbolOffset(*Function.getFunctionEndLabel());
Function.setOutputAddress(BaseAddress + StartOffset);
Function.setOutputSize(EndOffset - StartOffset);
if (Function.isSplit()) {
const auto *ColdStartSymbol = Function.getColdSymbol();
assert(ColdStartSymbol && ColdStartSymbol->isDefined(false) &&
"split function should have defined cold symbol");
const auto *ColdEndSymbol = Function.getFunctionColdEndLabel();
assert(ColdEndSymbol && ColdEndSymbol->isDefined(false) &&
"split function should have defined cold end symbol");
const auto ColdStartOffset = Layout.getSymbolOffset(*ColdStartSymbol);
const auto ColdEndOffset = Layout.getSymbolOffset(*ColdEndSymbol);
Function.cold().setAddress(BaseAddress + ColdStartOffset);
Function.cold().setImageSize(ColdEndOffset - ColdStartOffset);
}
} else {
Function.setOutputAddress(Function.getAddress());
Function.setOutputSize(
Layout.getSymbolOffset(*Function.getFunctionEndLabel()));
}
// Update basic block output ranges only for the debug info.
if (!opts::UpdateDebugSections)
continue;
// Output ranges should match the input if the body hasn't changed.
if (!Function.isSimple() && !opts::Relocs)
continue;
BinaryBasicBlock *PrevBB = nullptr;
for (auto BBI = Function.layout_begin(), BBE = Function.layout_end();
BBI != BBE; ++BBI) {
auto *BB = *BBI;
assert(BB->getLabel()->isDefined(false) && "symbol should be defined");
uint64_t BaseAddress;
if (opts::Relocs) {
BaseAddress = NewTextSectionStartAddress;
} else {
BaseAddress = BB->isCold() ? Function.cold().getAddress()
: Function.getOutputAddress();
}
uint64_t Address = BaseAddress + Layout.getSymbolOffset(*BB->getLabel());
BB->setOutputStartAddress(Address);
if (PrevBB) {
auto PrevBBEndAddress = Address;
if (BB->isCold() != PrevBB->isCold()) {
PrevBBEndAddress =
Function.getOutputAddress() + Function.getOutputSize();
}
PrevBB->setOutputEndAddress(PrevBBEndAddress);
}
PrevBB = BB;
}
PrevBB->setOutputEndAddress(PrevBB->isCold() ?
Function.cold().getAddress() + Function.cold().getImageSize() :
Function.getOutputAddress() + Function.getOutputSize());
}
}
void RewriteInstance::emitDataSection(MCStreamer *Streamer, SectionRef Section,
std::string Name) {
StringRef SectionName;
if (!Name.empty())
SectionName = Name;
else
Section.getName(SectionName);
const auto SectionFlags = ELFSectionRef(Section).getFlags();
const auto SectionType = ELFSectionRef(Section).getType();
auto *ELFSection = BC->Ctx->getELFSection(SectionName,
SectionType,
SectionFlags);
StringRef SectionContents;
Section.getContents(SectionContents);
Streamer->SwitchSection(ELFSection);
Streamer->EmitValueToAlignment(Section.getAlignment());
DEBUG(dbgs() << "BOLT-DEBUG: emitting "
<< (SectionFlags & ELF::SHF_ALLOC ? "" : "non-")
<< "allocatable data section " << SectionName << '\n');
auto SRI = BC->SectionRelocations.find(Section);
if (SRI == BC->SectionRelocations.end()) {
Streamer->EmitBytes(SectionContents);
return;
}
auto &Relocations = SRI->second;
uint64_t SectionOffset = 0;
for (auto &Relocation : Relocations) {
assert(Relocation.Offset < Section.getSize() && "overflow detected");
if (SectionOffset < Relocation.Offset) {
Streamer->EmitBytes(
SectionContents.substr(SectionOffset,
Relocation.Offset - SectionOffset));
SectionOffset = Relocation.Offset;
}
DEBUG(dbgs() << "BOLT-DEBUG: emitting relocation for symbol "
<< Relocation.Symbol->getName() << " at offset 0x"
<< Twine::utohexstr(Relocation.Offset)
<< " with size "
<< Relocation::getSizeForType(Relocation.Type) << '\n');
auto RelocationSize = Relocation.emit(Streamer);
SectionOffset += RelocationSize;
}
assert(SectionOffset <= SectionContents.size() && "overflow error");
if (SectionOffset < SectionContents.size()) {
Streamer->EmitBytes(SectionContents.substr(SectionOffset));
}
}
void RewriteInstance::emitDataSections(MCStreamer *Streamer) {
for (auto &SRI : BC->SectionRelocations) {
auto &Section = SRI.first;
StringRef SectionName;
Section.getName(SectionName);
assert(SectionName != ".eh_frame" && "should not emit .eh_frame as data");
auto EmitName = OrgSecPrefix + std::string(SectionName);
emitDataSection(Streamer, Section, EmitName);
}
}
bool RewriteInstance::checkLargeFunctions() {
if (opts::Relocs)
return false;
LargeFunctions.clear();
for (auto &BFI : BinaryFunctions) {
auto &Function = BFI.second;
// Ignore this function if we failed to map it to the output binary
if (Function.getImageAddress() == 0 || Function.getImageSize() == 0)
continue;
if (Function.getImageSize() <= Function.getMaxSize())
continue;
LargeFunctions.insert(BFI.first);
}
return !LargeFunctions.empty();
}
void RewriteInstance::patchELFPHDRTable() {
auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile);
if (!ELF64LEFile) {
errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n";
exit(1);
}
auto Obj = ELF64LEFile->getELFFile();
auto &OS = Out->os();
// Write/re-write program headers.
Phnum = Obj->getHeader()->e_phnum;
if (PHDRTableOffset) {
// Writing new pheader table.
Phnum += 1; // only adding one new segment
// Segment size includes the size of the PHDR area.
NewTextSegmentSize = NextAvailableAddress - PHDRTableAddress;
} else {
assert(!PHDRTableAddress && "unexpected address for program header table");
// Update existing table.
PHDRTableOffset = Obj->getHeader()->e_phoff;
NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress;
}
OS.seek(PHDRTableOffset);
bool ModdedGnuStack = false;
(void)ModdedGnuStack;
bool AddedSegment = false;
(void)AddedSegment;
// Copy existing program headers with modifications.
for (auto &Phdr : Obj->program_headers()) {
auto NewPhdr = Phdr;
if (PHDRTableAddress && Phdr.p_type == ELF::PT_PHDR) {
NewPhdr.p_offset = PHDRTableOffset;
NewPhdr.p_vaddr = PHDRTableAddress;
NewPhdr.p_paddr = PHDRTableAddress;
NewPhdr.p_filesz = sizeof(NewPhdr) * Phnum;
NewPhdr.p_memsz = sizeof(NewPhdr) * Phnum;
} else if (Phdr.p_type == ELF::PT_GNU_EH_FRAME) {
auto SMII = EFMM->SectionMapInfo.find(".eh_frame_hdr");
if (SMII != EFMM->SectionMapInfo.end()) {
auto &EHFrameHdrSecInfo = SMII->second;
NewPhdr.p_offset = EHFrameHdrSecInfo.FileOffset;
NewPhdr.p_vaddr = EHFrameHdrSecInfo.FileAddress;
NewPhdr.p_paddr = EHFrameHdrSecInfo.FileAddress;
NewPhdr.p_filesz = EHFrameHdrSecInfo.Size;
NewPhdr.p_memsz = EHFrameHdrSecInfo.Size;
}
} else if (opts::UseGnuStack && Phdr.p_type == ELF::PT_GNU_STACK) {
NewPhdr.p_type = ELF::PT_LOAD;
NewPhdr.p_offset = NewTextSegmentOffset;
NewPhdr.p_vaddr = NewTextSegmentAddress;
NewPhdr.p_paddr = NewTextSegmentAddress;
NewPhdr.p_filesz = NewTextSegmentSize;
NewPhdr.p_memsz = NewTextSegmentSize;
NewPhdr.p_flags = ELF::PF_X | ELF::PF_R;
NewPhdr.p_align = PageAlign;
ModdedGnuStack = true;
} else if (!opts::UseGnuStack && Phdr.p_type == ELF::PT_DYNAMIC) {
// Insert new pheader
ELFFile<ELF64LE>::Elf_Phdr NewTextPhdr;
NewTextPhdr.p_type = ELF::PT_LOAD;
NewTextPhdr.p_offset = PHDRTableOffset;
NewTextPhdr.p_vaddr = PHDRTableAddress;
NewTextPhdr.p_paddr = PHDRTableAddress;
NewTextPhdr.p_filesz = NewTextSegmentSize;
NewTextPhdr.p_memsz = NewTextSegmentSize;
NewTextPhdr.p_flags = ELF::PF_X | ELF::PF_R;
NewTextPhdr.p_align = PageAlign;
OS.write(reinterpret_cast<const char *>(&NewTextPhdr),
sizeof(NewTextPhdr));
AddedSegment = true;
}
OS.write(reinterpret_cast<const char *>(&NewPhdr), sizeof(NewPhdr));
}
assert((!opts::UseGnuStack || ModdedGnuStack) &&
"could not find GNU_STACK program header to modify");
assert((opts::UseGnuStack || AddedSegment) &&
"could not add program header for the new segment");
}
namespace {
/// Write padding to \p OS such that its current \p Offset becomes aligned
/// at \p Alignment. Return new (aligned) offset.
uint64_t appendPadding(raw_pwrite_stream &OS,
uint64_t Offset,
uint64_t Alignment) {
if (!Alignment)
return Offset;
const auto PaddingSize = OffsetToAlignment(Offset, Alignment);
for (unsigned I = 0; I < PaddingSize; ++I)
OS.write((unsigned char)0);
return Offset + PaddingSize;
}
}
void RewriteInstance::rewriteNoteSections() {
auto ELF64LEFile = dyn_cast<ELF64LEObjectFile>(InputFile);
if (!ELF64LEFile) {
errs() << "BOLT-ERROR: only 64-bit LE ELF binaries are supported\n";
exit(1);
}
auto Obj = ELF64LEFile->getELFFile();
auto &OS = Out->os();
uint64_t NextAvailableOffset = getFileOffsetForAddress(NextAvailableAddress);
assert(NextAvailableOffset >= FirstNonAllocatableOffset &&
"next available offset calculation failure");
OS.seek(NextAvailableOffset);
// Copy over non-allocatable section contents and update file offsets.
for (auto &Section : Obj->sections()) {
if (Section.sh_type == ELF::SHT_NULL)
continue;
if (Section.sh_flags & ELF::SHF_ALLOC)
continue;
if (Section.sh_type == ELF::SHT_RELA)
continue;
// Insert padding as needed.
NextAvailableOffset =
appendPadding(OS, NextAvailableOffset, Section.sh_addralign);
ErrorOr<StringRef> SectionName = Obj->getSectionName(&Section);
check_error(SectionName.getError(), "cannot get section name");
// New section size.
uint64_t Size = 0;
// Copy over section contents unless it's one of the sections we overwrite.
if (!willOverwriteSection(*SectionName)) {
Size = Section.sh_size;
std::string Data = InputFile->getData().substr(Section.sh_offset, Size);
auto SectionPatchersIt = SectionPatchers.find(*SectionName);
if (SectionPatchersIt != SectionPatchers.end()) {
(*SectionPatchersIt->second).patchBinary(Data);
}
OS << Data;
// Add padding as the section extension might rely on the alignment.
Size = appendPadding(OS, Size, Section.sh_addralign);
}
// Address of extension to the section.
uint64_t Address{0};
// Perform section post-processing.
auto SII = EFMM->NoteSectionInfo.find(*SectionName);
if (SII != EFMM->NoteSectionInfo.end()) {
auto &SI = SII->second;
assert(SI.Alignment <= Section.sh_addralign &&
"alignment exceeds value in file");
// Write section extension.
Address = SI.AllocAddress;
if (Address) {
DEBUG(dbgs() << "BOLT-DEBUG: " << (Size ? "appending" : "writing")
<< " contents to section "
<< *SectionName << '\n');
OS.write(reinterpret_cast<const char *>(Address), SI.Size);
Size += SI.Size;
}
if (!SI.PendingRelocs.empty()) {
DEBUG(dbgs() << "BOLT-DEBUG: processing relocs for section "
<< *SectionName << '\n');
for (auto &Reloc : SI.PendingRelocs) {
DEBUG(dbgs() << "BOLT-DEBUG: writing value "
<< Twine::utohexstr(Reloc.Value)
<< " of size " << (unsigned)Reloc.Size
<< " at offset "
<< Twine::utohexstr(Reloc.Offset) << '\n');
assert(Reloc.Size == 4 &&
"only relocations of size 4 are supported at the moment");
OS.pwrite(reinterpret_cast<const char*>(&Reloc.Value),
Reloc.Size,
NextAvailableOffset + Reloc.Offset);
}
}
}
// Set/modify section info.
EFMM->NoteSectionInfo[*SectionName] =
SectionInfo(Address,
Size,
Section.sh_addralign,
/*IsCode=*/false,
/*IsReadOnly=*/false,
/*IsLocal=*/false,
/*FileAddress=*/0,
NextAvailableOffset);
NextAvailableOffset += Size;
}
// Write new note sections.
for (auto &SII : EFMM->NoteSectionInfo) {
auto &SI = SII.second;
if (SI.FileOffset || !SI.AllocAddress)
continue;
assert(SI.PendingRelocs.empty() && "cannot have pending relocs");
NextAvailableOffset = appendPadding(OS, NextAvailableOffset, SI.Alignment);
SI.FileOffset = NextAvailableOffset;
DEBUG(dbgs() << "BOLT-DEBUG: writing out new section " << SII.first
<< " of size " << SI.Size << " at offset 0x"
<< Twine::utohexstr(SI.FileOffset) << '\n');
OS.write(reinterpret_cast<const char *>(SI.AllocAddress), SI.Size);
NextAvailableOffset += SI.Size;
}
}
template <typename ELFT>
void RewriteInstance::finalizeSectionStringTable(ELFObjectFile<ELFT> *File) {
auto *Obj = File->getELFFile();
// Pre-populate section header string table.
for (auto &Section : Obj->sections()) {
ErrorOr<StringRef> SectionName = Obj->getSectionName(&Section);
check_error(SectionName.getError(), "cannot get section name");
SHStrTab.add(*SectionName);
if (willOverwriteSection(*SectionName))
SHStrTab.add(OrgSecPrefix + SectionName->str());
}
for (auto &SMII : EFMM->SectionMapInfo) {
SHStrTab.add(SMII.first);
}
for (auto &SMII : EFMM->NoteSectionInfo) {
SHStrTab.add(SMII.first);
}
SHStrTab.finalize(StringTableBuilder::ELF);
const auto SHStrTabSize = SHStrTab.data().size();
uint8_t *DataCopy = new uint8_t[SHStrTabSize];
memcpy(DataCopy, SHStrTab.data().data(), SHStrTabSize);
EFMM->NoteSectionInfo[".shstrtab"] =
SectionInfo(reinterpret_cast<uint64_t>(DataCopy),
SHStrTabSize,
/*Alignment*/1,
/*IsCode=*/false,
/*IsReadOnly=*/false,
/*IsLocal=*/false);
EFMM->NoteSectionInfo[".shstrtab"].IsStrTab = true;
}
void RewriteInstance::addBoltInfoSection() {
if (opts::AddBoltInfo) {
std::string DescStr;
raw_string_ostream DescOS(DescStr);
DescOS << "BOLT revision: " << BoltRevision << ", " << "command line:";
for (auto I = 0; I < Argc; ++I) {
DescOS << " " << Argv[I];
}
DescOS.flush();
std::string Str;
raw_string_ostream OS(Str);
std::string NameStr = "GNU";
const uint32_t NameSz = NameStr.size() + 1;
const uint32_t DescSz = DescStr.size() + 1;
const uint32_t Type = 4; // NT_GNU_GOLD_VERSION (gold version)
OS.write(reinterpret_cast<const char*>(&(NameSz)), 4);
OS.write(reinterpret_cast<const char*>(&(DescSz)), 4);
OS.write(reinterpret_cast<const char*>(&(Type)), 4);
OS << NameStr << '\0';
for (uint64_t I = NameStr.size() + 1;
I < RoundUpToAlignment(NameStr.size() + 1, 4); ++I) {
OS << '\0';
}
OS << DescStr << '\0';
const auto BoltInfo = OS.str();
const auto SectionSize = BoltInfo.size();
uint8_t *SectionData = new uint8_t[SectionSize];
memcpy(SectionData, BoltInfo.data(), SectionSize);
EFMM->NoteSectionInfo[".note.bolt_info"] =
SectionInfo(reinterpret_cast<uint64_t>(SectionData), SectionSize,
/*Alignment=*/1,
/*IsCode=*/false,
/*IsReadOnly=*/true,
/*IsLocal=*/false, 0, 0, 0,
/*IsELFNote=*/true);
}
}
// Provide a mapping of the existing input binary sections to the output binary
// section header table.
// Return the map from the section header old index to its new index. Optionally
// return in OutputSections an ordered list of the output sections. This is
// optional because for reference updating in the symbol table we only need the
// map of input to output indices, not the real output section list.
template <typename ELFT, typename ELFShdrTy>
std::vector<uint32_t>
RewriteInstance::getOutputSections(ELFObjectFile<ELFT> *File,
std::vector<ELFShdrTy> *OutputSections) {
auto *Obj = File->getELFFile();
std::vector<uint32_t> NewSectionIndex(Obj->getNumSections(), 0);
NewTextSectionIndex = 0;
uint32_t CurIndex{0};
// Copy over entries for original allocatable sections with minor
// modifications (e.g. name).
for (auto &Section : Obj->sections()) {
// Always ignore this section.
if (Section.sh_type == ELF::SHT_NULL) {
NewSectionIndex[0] = CurIndex++;
if (OutputSections)
OutputSections->emplace_back(Section);
continue;
}
// Is this our new text? Then update our pointer indicating the new output
// text section
if (opts::UseOldText && Section.sh_flags & ELF::SHF_ALLOC &&
Section.sh_addr <= NewTextSectionStartAddress &&
Section.sh_addr + Section.sh_size > NewTextSectionStartAddress) {
NewTextSectionIndex = CurIndex;
}
// Skip non-allocatable sections.
if (!(Section.sh_flags & ELF::SHF_ALLOC))
continue;
NewSectionIndex[std::distance(Obj->section_begin(), &Section)] =
CurIndex++;
// If only computing the map, we're done with this iteration
if (!OutputSections)
continue;
ErrorOr<StringRef> SectionName = Obj->getSectionName(&Section);
check_error(SectionName.getError(), "cannot get section name");
auto NewSection = Section;
if (*SectionName == ".bss") {
// .bss section offset matches that of the next section.
NewSection.sh_offset = NewTextSegmentOffset;
}
if (willOverwriteSection(*SectionName)) {
NewSection.sh_name = SHStrTab.getOffset(OrgSecPrefix +
SectionName->str());
} else {
NewSection.sh_name = SHStrTab.getOffset(*SectionName);
}
OutputSections->emplace_back(NewSection);
}
// If we are creating our own .text section, it should be the first section
// we created in EFMM->SectionMapInfo, so this is the correct index.
if (!opts::UseOldText) {
NewTextSectionIndex = CurIndex;
}
// Process entries for all new allocatable sections.
for (auto &SMII : EFMM->SectionMapInfo) {
const auto &SectionName = SMII.first;
const auto &SI = SMII.second;
// Ignore function sections.
if (SI.FileAddress < NewTextSegmentAddress) {
if (opts::Verbosity)
outs() << "BOLT-INFO: not writing section header for existing section "
<< SMII.first << '\n';
continue;
}
++CurIndex;
// If only computing the map, we're done with this iteration
if (!OutputSections)
continue;
if (opts::Verbosity >= 1)
outs() << "BOLT-INFO: writing section header for " << SectionName << '\n';
ELFShdrTy NewSection;
NewSection.sh_name = SHStrTab.getOffset(SectionName);
NewSection.sh_type = ELF::SHT_PROGBITS;
NewSection.sh_addr = SI.FileAddress;
NewSection.sh_offset = SI.FileOffset;
NewSection.sh_size = SI.Size;
NewSection.sh_entsize = 0;
NewSection.sh_flags = ELF::SHF_ALLOC | ELF::SHF_EXECINSTR;
NewSection.sh_link = 0;
NewSection.sh_info = 0;
NewSection.sh_addralign = SI.Alignment;
OutputSections->emplace_back(NewSection);
}
uint64_t LastFileOffset = 0;
// Copy over entries for non-allocatable sections performing necessary
// adjustments.
for (auto &Section : Obj->sections()) {
if (Section.sh_type == ELF::SHT_NULL)
continue;
if (Section.sh_flags & ELF::SHF_ALLOC)
continue;
// Strip non-allocatable relocation sections.
if (Section.sh_type == ELF::SHT_RELA)
continue;
NewSectionIndex[std::distance(Obj->section_begin(), &Section)] =
CurIndex++;
// If only computing the map, we're done with this iteration
if (!OutputSections)
continue;
ErrorOr<StringRef> SectionName = Obj->getSectionName(&Section);
check_error(SectionName.getError(), "cannot get section name");
auto SII = EFMM->NoteSectionInfo.find(*SectionName);
assert(SII != EFMM->NoteSectionInfo.end() &&
"missing section info for non-allocatable section");
const auto &SI = SII->second;
auto NewSection = Section;
NewSection.sh_offset = SI.FileOffset;
NewSection.sh_size = SI.Size;
NewSection.sh_name = SHStrTab.getOffset(*SectionName);
OutputSections->emplace_back(NewSection);
LastFileOffset = SI.FileOffset;
}
// Map input -> output is ready. Early return if that's all we need.
if (!OutputSections)
return NewSectionIndex;
// Create entries for new non-allocatable sections.
for (auto &SII : EFMM->NoteSectionInfo) {
const auto &SectionName = SII.first;
const auto &SI = SII.second;
if (SI.FileOffset <= LastFileOffset)
continue;
if (opts::Verbosity >= 1)
outs() << "BOLT-INFO: writing section header for " << SectionName << '\n';
ELFShdrTy NewSection;
NewSection.sh_name = SHStrTab.getOffset(SectionName);
NewSection.sh_type =
(SI.IsStrTab ? ELF::SHT_STRTAB
: SI.IsELFNote ? ELF::SHT_NOTE : ELF::SHT_PROGBITS);
NewSection.sh_addr = 0;
NewSection.sh_offset = SI.FileOffset;
NewSection.sh_size = SI.Size;
NewSection.sh_entsize = 0;
NewSection.sh_flags = 0;
NewSection.sh_link = 0;
NewSection.sh_info = 0;
NewSection.sh_addralign = SI.Alignment ? SI.Alignment : 1;
OutputSections->emplace_back(NewSection);
}
return NewSectionIndex;
}
// Rewrite section header table inserting new entries as needed. The sections
// header table size itself may affect the offsets of other sections,
// so we are placing it at the end of the binary.
//
// As we rewrite entries we need to track how many sections were inserted
// as it changes the sh_link value. We map old indices to new ones for
// existing sections.
//
// The following are assumptions about file modifications:
// * There are no modifications done to address and/or size of existing
// allocatable sections.
// * All new allocatable sections are written immediately after existing
// allocatable sections.
// * There could be modifications done to non-allocatable sections, e.g.
// size could be increased.
// * New non-allocatable sections are added to the end of the file.
template <typename ELFT>
void RewriteInstance::patchELFSectionHeaderTable(ELFObjectFile<ELFT> *File) {
using Elf_Shdr = typename ELFObjectFile<ELFT>::Elf_Shdr;
std::vector<Elf_Shdr> OutputSections;
auto &OS = Out->os();
auto *Obj = File->getELFFile();
auto NewSectionIndex = getOutputSections(File, &OutputSections);
// Sort sections by their offset prior to writing. Only newly created sections
// were unsorted, hence this wouldn't ruin indices in NewSectionIndex.
std::stable_sort(OutputSections.begin(), OutputSections.end(),
[] (Elf_Shdr A, Elf_Shdr B) {
return A.sh_offset < B.sh_offset;
});
DEBUG(
dbgs() << "BOLT-DEBUG: old to new section index mapping:\n";
for (uint64_t I = 0; I < NewSectionIndex.size(); ++I) {
dbgs() << " " << I << " -> " << NewSectionIndex[I] << '\n';
}
);
// Align starting address for section header table.
auto SHTOffset = OS.tell();
SHTOffset = appendPadding(OS, SHTOffset, sizeof(Elf_Shdr));
// Write all section header entries while patching section references.
for (uint64_t Index = 0; Index < OutputSections.size(); ++Index) {
auto &Section = OutputSections[Index];
Section.sh_link = NewSectionIndex[Section.sh_link];
if (Section.sh_type == ELF::SHT_REL || Section.sh_type == ELF::SHT_RELA) {
if (Section.sh_info)
Section.sh_info = NewSectionIndex[Section.sh_info];
}
OS.write(reinterpret_cast<const char *>(&Section), sizeof(Section));
}
// Fix ELF header.
auto NewEhdr = *Obj->getHeader();
if (opts::Relocs) {
NewEhdr.e_entry = getNewFunctionAddress(NewEhdr.e_entry);
assert(NewEhdr.e_entry && "cannot find new address for entry point");
}
NewEhdr.e_phoff = PHDRTableOffset;
NewEhdr.e_phnum = Phnum;
NewEhdr.e_shoff = SHTOffset;
NewEhdr.e_shnum = OutputSections.size();
NewEhdr.e_shstrndx = NewSectionIndex[NewEhdr.e_shstrndx];
OS.pwrite(reinterpret_cast<const char *>(&NewEhdr), sizeof(NewEhdr), 0);
}
template <typename ELFT>
void RewriteInstance::patchELFSymTabs(ELFObjectFile<ELFT> *File) {
if (!opts::Relocs)
return;
auto *Obj = File->getELFFile();
// Set pointer at the end of the output file, so we can pwrite old symbol
// tables if we need to.
uint64_t NextAvailableOffset = getFileOffsetForAddress(NextAvailableAddress);
assert(NextAvailableOffset >= FirstNonAllocatableOffset &&
"next available offset calculation failure");
Out->os().seek(NextAvailableOffset);
using Elf_Shdr = typename ELFObjectFile<ELFT>::Elf_Shdr;
using Elf_Sym = typename ELFObjectFile<ELFT>::Elf_Sym;
// Compute a preview of how section indices will change after rewriting, so
// we can properly update the symbol table.
auto NewSectionIndex =
getOutputSections(File, (std::vector<Elf_Shdr> *)nullptr);
auto updateSymbolTable = [&](bool PatchExisting, const Elf_Shdr *Section,
std::function<void(size_t, const char *, size_t)>
Write,
std::function<size_t(StringRef)> AddToStrTab) {
auto StringSection = *Obj->getStringTableForSymtab(*Section);
for (const Elf_Sym &Symbol : Obj->symbols(Section)) {
auto NewSymbol = Symbol;
const auto *Function = getBinaryFunctionAtAddress(Symbol.st_value);
// Some section symbols may be mistakenly associated with the first
// function emitted in the section. Dismiss if it is a section symbol.
if (Function &&
!Function->getPLTSymbol() &&
NewSymbol.getType() != ELF::STT_SECTION) {
NewSymbol.st_value = Function->getOutputAddress();
NewSymbol.st_size = Function->getOutputSize();
NewSymbol.st_shndx = NewTextSectionIndex;
if (!PatchExisting && Function->isSplit()) {
auto NewColdSym = NewSymbol;
SmallVector<char, 256> Buf;
NewColdSym.st_name = AddToStrTab(Twine(*Symbol.getName(StringSection))
.concat(".cold.0")
.toStringRef(Buf));
NewColdSym.st_value = Function->cold().getAddress();
NewColdSym.st_size = Function->cold().getImageSize();
Write(0, reinterpret_cast<const char *>(&NewColdSym),
sizeof(NewColdSym));
}
} else {
if (NewSymbol.st_shndx < ELF::SHN_LORESERVE) {
NewSymbol.st_shndx = NewSectionIndex[NewSymbol.st_shndx];
}
// Detect local syms in the text section that we didn't update
// and were preserved by the linker to support relocations against
// .text (t15274167). Remove then from the symtab.
if (opts::Relocs && NewSymbol.getType() == ELF::STT_NOTYPE &&
NewSymbol.getBinding() == ELF::STB_LOCAL &&
NewSymbol.st_size == 0) {
if (auto SecOrErr =
File->getELFFile()->getSection(NewSymbol.st_shndx)) {
auto Section = *SecOrErr;
if (Section->sh_type == ELF::SHT_PROGBITS &&
Section->sh_flags & ELF::SHF_ALLOC &&
Section->sh_flags & ELF::SHF_EXECINSTR) {
// This will cause the symbol to not be emitted if we are
// creating a new symtab from scratch instead of patching one.
if (!PatchExisting)
continue;
// If patching an existing symtab, patch this value to zero.
NewSymbol.st_value = 0;
}
}
}
}
if (opts::HotText) {
auto updateSymbolValue = [&](const StringRef Name) {
NewSymbol.st_value = getNewValueForSymbol(Name);
NewSymbol.st_shndx = ELF::SHN_ABS;
outs() << "BOLT-INFO: setting " << Name << " to 0x"
<< Twine::utohexstr(NewSymbol.st_value) << '\n';
return true;
};
auto SymbolName = Symbol.getName(StringSection);
assert(SymbolName && "cannot get symbol name");
if (*SymbolName == "__hot_start" || *SymbolName == "__hot_end")
updateSymbolValue(*SymbolName);
}
Write((&Symbol - Obj->symbol_begin(Section)) * sizeof(Elf_Sym),
reinterpret_cast<const char *>(&NewSymbol), sizeof(NewSymbol));
}
};
// Update dynamic symbol table.
const Elf_Shdr *DynSymSection = nullptr;
for (const Elf_Shdr &Section : Obj->sections()) {
if (Section.sh_type == ELF::SHT_DYNSYM) {
DynSymSection = &Section;
break;
}
}
assert(DynSymSection && "no dynamic symbol table found");
updateSymbolTable(/*patch existing table?*/ true, DynSymSection,
[&](size_t Offset, const char *Buf, size_t Size) {
Out->os().pwrite(Buf, Size,
DynSymSection->sh_offset + Offset);
},
[](StringRef) -> size_t { return 0; });
// (re)create regular symbol table.
const Elf_Shdr *SymTabSection = nullptr;
for (const auto &Section : Obj->sections()) {
if (Section.sh_type == ELF::SHT_SYMTAB) {
SymTabSection = &Section;
break;
}
}
if (!SymTabSection) {
errs() << "BOLT-WARNING: no symbol table found\n";
return;
}
const Elf_Shdr *StrTabSection = *Obj->getSection(SymTabSection->sh_link);
std::string NewContents;
std::string NewStrTab =
File->getData().substr(StrTabSection->sh_offset, StrTabSection->sh_size);
auto SecName = *Obj->getSectionName(SymTabSection);
auto StrSecName = *Obj->getSectionName(StrTabSection);
updateSymbolTable(/*patch existing table?*/false, SymTabSection,
[&](size_t Offset, const char *Buf, size_t Size) {
NewContents.append(Buf, Size);
}, [&](StringRef Str) {
size_t Idx = NewStrTab.size();
NewStrTab.append(Str.data(), Str.size());
NewStrTab.append(1, '\0');
return Idx;
});
uint8_t *DataCopy = new uint8_t[NewContents.size()];
memcpy(DataCopy, NewContents.data(), NewContents.size());
EFMM->NoteSectionInfo[SecName] =
SectionInfo(reinterpret_cast<uint64_t>(DataCopy), NewContents.size(),
/*Alignment*/ 1,
/*IsCode=*/false,
/*IsReadOnly=*/false,
/*IsLocal=*/false);
DataCopy = new uint8_t[NewStrTab.size()];
memcpy(DataCopy, NewStrTab.data(), NewStrTab.size());
EFMM->NoteSectionInfo[StrSecName] =
SectionInfo(reinterpret_cast<uint64_t>(DataCopy), NewStrTab.size(),
/*Alignment*/ 1,
/*IsCode=*/false,
/*IsReadOnly=*/false,
/*IsLocal=*/false);
EFMM->NoteSectionInfo[StrSecName].IsStrTab = true;
}
template <typename ELFT>
void RewriteInstance::patchELFRelaPLT(ELFObjectFile<ELFT> *File) {
auto &OS = Out->os();
if (!RelaPLTSection.getObject()) {
errs() << "BOLT-INFO: no .rela.plt section found\n";
return;
}
for (const auto &Rel : RelaPLTSection.relocations()) {
if (Rel.getType() == ELF::R_X86_64_IRELATIVE) {
DataRefImpl DRI = Rel.getRawDataRefImpl();
const auto *RelA = File->getRela(DRI);
auto Address = RelA->r_addend;
auto NewAddress = getNewFunctionAddress(Address);
DEBUG(dbgs() << "BOLT-DEBUG: patching IRELATIVE .rela.plt entry 0x"
<< Twine::utohexstr(Address) << " with 0x"
<< Twine::utohexstr(NewAddress) << '\n');
auto NewRelA = *RelA;
NewRelA.r_addend = NewAddress;
OS.pwrite(reinterpret_cast<const char *>(&NewRelA), sizeof(NewRelA),
reinterpret_cast<const char *>(RelA) - File->getData().data());
}
}
}
template <typename ELFT>
void RewriteInstance::patchELFGOT(ELFObjectFile<ELFT> *File) {
auto &OS = Out->os();
SectionRef GOTSection;
for (const auto &Section : File->sections()) {
StringRef SectionName;
Section.getName(SectionName);
if (SectionName == ".got") {
GOTSection = Section;
break;
}
}
if (!GOTSection.getObject()) {
errs() << "BOLT-INFO: no .got section found\n";
return;
}
StringRef GOTContents;
GOTSection.getContents(GOTContents);
for (const uint64_t *GOTEntry =
reinterpret_cast<const uint64_t *>(GOTContents.data());
GOTEntry < reinterpret_cast<const uint64_t *>(GOTContents.data() +
GOTContents.size());
++GOTEntry) {
if (auto NewAddress = getNewFunctionAddress(*GOTEntry)) {
DEBUG(dbgs() << "BOLT-DEBUG: patching GOT entry 0x"
<< Twine::utohexstr(*GOTEntry) << " with 0x"
<< Twine::utohexstr(NewAddress) << '\n');
OS.pwrite(reinterpret_cast<const char *>(&NewAddress), sizeof(NewAddress),
reinterpret_cast<const char *>(GOTEntry) - File->getData().data());
}
}
}
template <typename ELFT>
void RewriteInstance::patchELFDynamic(ELFObjectFile<ELFT> *File) {
auto *Obj = File->getELFFile();
auto &OS = Out->os();
using Elf_Phdr = typename ELFFile<ELFT>::Elf_Phdr;
using Elf_Dyn = typename ELFFile<ELFT>::Elf_Dyn;
// Locate DYNAMIC by looking through program headers.
uint64_t DynamicOffset = 0;
const Elf_Phdr *DynamicPhdr = 0;
for (auto &Phdr : Obj->program_headers()) {
if (Phdr.p_type == ELF::PT_DYNAMIC) {
DynamicOffset = Phdr.p_offset;
DynamicPhdr = &Phdr;
assert(Phdr.p_memsz == Phdr.p_filesz && "dynamic sizes should match");
break;
}
}
assert(DynamicPhdr && "missing dynamic in ELF binary");
bool ZNowSet = false;
// Go through all dynamic entries and patch functions addresses with
// new ones.
ErrorOr<const Elf_Dyn *> DTB = Obj->dynamic_table_begin(DynamicPhdr);
ErrorOr<const Elf_Dyn *> DTE = Obj->dynamic_table_end(DynamicPhdr);
assert(DTB && DTE && "error accessing dynamic table");
for (auto *DE = *DTB; DE != *DTE; ++DE) {
auto NewDE = *DE;
bool ShouldPatch = true;
switch (DE->getTag()) {
default:
ShouldPatch = false;
break;
case ELF::DT_INIT:
case ELF::DT_FINI:
if (opts::Relocs) {
if (auto NewAddress = getNewFunctionAddress(DE->getPtr())) {
DEBUG(dbgs() << "BOLT-DEBUG: patching dynamic entry of type "
<< DE->getTag() << '\n');
NewDE.d_un.d_ptr = NewAddress;
}
}
break;
case ELF::DT_FLAGS:
if (BC->RequiresZNow) {
NewDE.d_un.d_val |= ELF::DF_BIND_NOW;
ZNowSet = true;
}
break;
case ELF::DT_FLAGS_1:
if (BC->RequiresZNow) {
NewDE.d_un.d_val |= ELF::DF_1_NOW;
ZNowSet = true;
}
break;
}
if (ShouldPatch) {
OS.pwrite(reinterpret_cast<const char *>(&NewDE), sizeof(NewDE),
DynamicOffset + (DE - *DTB) * sizeof(*DE));
}
}
if (BC->RequiresZNow && !ZNowSet) {
errs() << "BOLT-ERROR: output binary requires immediate relocation "
"processing which depends on DT_FLAGS or DT_FLAGS_1 presence in "
".dynamic. Please re-link the binary with -znow.\n";
exit(1);
}
}
uint64_t RewriteInstance::getNewFunctionAddress(uint64_t OldAddress) {
const auto *Function = getBinaryFunctionAtAddress(OldAddress);
if (!Function)
return 0;
return Function->getOutputAddress();
}
void RewriteInstance::rewriteFile() {
auto &OS = Out->os();
// We obtain an asm-specific writer so that we can emit nops in an
// architecture-specific way at the end of the function.
auto MCE = BC->TheTarget->createMCCodeEmitter(*BC->MII, *BC->MRI, *BC->Ctx);
auto MAB = BC->TheTarget->createMCAsmBackend(*BC->MRI, BC->TripleName, "");
std::unique_ptr<MCStreamer> Streamer(
BC->TheTarget->createMCObjectStreamer(*BC->TheTriple,
*BC->Ctx,
*MAB,
OS,
MCE,
*BC->STI,
/* RelaxAll */ false,
/* DWARFMustBeAtTheEnd */ false));
auto &Writer = static_cast<MCObjectStreamer *>(Streamer.get())
->getAssembler()
.getWriter();
// Make sure output stream has enough reserved space, otherwise
// pwrite() will fail.
auto Offset = OS.seek(getFileOffsetForAddress(NextAvailableAddress));
(void)Offset;
assert(Offset == getFileOffsetForAddress(NextAvailableAddress) &&
"error resizing output file");
if (!opts::Relocs) {
// Overwrite functions in the output file.
uint64_t CountOverwrittenFunctions = 0;
uint64_t OverwrittenScore = 0;
for (auto &BFI : BinaryFunctions) {
auto &Function = BFI.second;
if (Function.getImageAddress() == 0 || Function.getImageSize() == 0)
continue;
if (Function.getImageSize() > Function.getMaxSize()) {
if (opts::Verbosity >= 1) {
errs() << "BOLT-WARNING: new function size (0x"
<< Twine::utohexstr(Function.getImageSize())
<< ") is larger than maximum allowed size (0x"
<< Twine::utohexstr(Function.getMaxSize())
<< ") for function " << Function << '\n';
}
FailedAddresses.emplace_back(Function.getAddress());
continue;
}
if (Function.isSplit() && (Function.cold().getImageAddress() == 0 ||
Function.cold().getImageSize() == 0))
continue;
OverwrittenScore += Function.getFunctionScore();
// Overwrite function in the output file.
if (opts::Verbosity >= 2) {
outs() << "BOLT: rewriting function \"" << Function << "\"\n";
}
OS.pwrite(reinterpret_cast<char *>(Function.getImageAddress()),
Function.getImageSize(),
Function.getFileOffset());
// Write nops at the end of the function.
auto Pos = OS.tell();
OS.seek(Function.getFileOffset() + Function.getImageSize());
MAB->writeNopData(Function.getMaxSize() - Function.getImageSize(),
&Writer);
OS.seek(Pos);
// Write jump tables if updating in-place.
if (opts::JumpTables == JTS_BASIC) {
for (auto &JTI : Function.JumpTables) {
auto &JT = JTI.second;
assert(JT.SecInfo && "section info for jump table expected");
JT.SecInfo->FileOffset =
getFileOffsetForAddress(JT.Address);
assert(JT.SecInfo->FileOffset && "no matching offset in file");
Out->os().pwrite(reinterpret_cast<char *>(JT.SecInfo->AllocAddress),
JT.SecInfo->Size,
JT.SecInfo->FileOffset);
}
}
if (!Function.isSplit()) {
++CountOverwrittenFunctions;
if (opts::MaxFunctions &&
CountOverwrittenFunctions == opts::MaxFunctions) {
outs() << "BOLT: maximum number of functions reached\n";
break;
}
continue;
}
// Write cold part
if (opts::Verbosity >= 2) {
outs() << "BOLT: rewriting function \"" << Function
<< "\" (cold part)\n";
}
OS.pwrite(reinterpret_cast<char*>(Function.cold().getImageAddress()),
Function.cold().getImageSize(),
Function.cold().getFileOffset());
// FIXME: write nops after cold part too.
++CountOverwrittenFunctions;
if (opts::MaxFunctions &&
CountOverwrittenFunctions == opts::MaxFunctions) {
outs() << "BOLT: maximum number of functions reached\n";
break;
}
}
// Print function statistics.
outs() << "BOLT: " << CountOverwrittenFunctions
<< " out of " << BinaryFunctions.size()
<< " functions were overwritten.\n";
if (TotalScore != 0) {
double Coverage = OverwrittenScore / (double)TotalScore * 100.0;
outs() << format("BOLT: Rewritten functions cover %.2lf", Coverage)
<< "% of the execution count of simple functions of "
"this binary.\n";
}
}
if (opts::Relocs && opts::TrapOldCode) {
auto SavedPos = OS.tell();
// Overwrite function body to make sure we never execute these instructions.
for (auto &BFI : BinaryFunctions) {
auto &BF = BFI.second;
if (!BF.getFileOffset())
continue;
OS.seek(BF.getFileOffset());
for (unsigned I = 0; I < BF.getMaxSize(); ++I)
OS.write((unsigned char)
Streamer->getContext().getAsmInfo()->getTrapFillValue());
}
OS.seek(SavedPos);
}
// Write all non-local sections, i.e. those not emitted with the function.
for (auto &SMII : EFMM->SectionMapInfo) {
SectionInfo &SI = SMII.second;
if (SI.IsLocal)
continue;
if (opts::Verbosity >= 1) {
outs() << "BOLT: writing new section " << SMII.first << '\n';
outs() << " data at 0x" << Twine::utohexstr(SI.AllocAddress) << '\n';
outs() << " of size " << SI.Size << '\n';
outs() << " at offset " << SI.FileOffset << '\n';
}
OS.pwrite(reinterpret_cast<const char *>(SI.AllocAddress),
SI.Size,
SI.FileOffset);
}
// If .eh_frame is present create .eh_frame_hdr.
auto SMII = EFMM->SectionMapInfo.find(".eh_frame");
if (SMII != EFMM->SectionMapInfo.end()) {
writeEHFrameHeader(SMII->second);
}
// Patch program header table.
patchELFPHDRTable();
// Finalize memory image of section string table.
finalizeSectionStringTable();
if (opts::Relocs) {
// Update symbol tables.
patchELFSymTabs();
}
// Copy non-allocatable sections once allocatable part is finished.
rewriteNoteSections();
// Patch dynamic section/segment.
patchELFDynamic();
if (opts::Relocs) {
patchELFRelaPLT();
patchELFGOT();
}
// Update ELF book-keeping info.
patchELFSectionHeaderTable();
Out->keep();
// If requested, open again the binary we just wrote to dump its EH Frame
if (opts::DumpEHFrame) {
ErrorOr<OwningBinary<Binary>> BinaryOrErr =
createBinary(opts::OutputFilename);
if (std::error_code EC = BinaryOrErr.getError())
report_error(opts::OutputFilename, EC);
Binary &Binary = *BinaryOrErr.get().getBinary();
if (auto *E = dyn_cast<ELFObjectFileBase>(&Binary)) {
DWARFContextInMemory DwCtx(*E, nullptr, true);
const auto &EHFrame = DwCtx.getEHFrame();
outs() << "BOLT-INFO: Dumping rewritten .eh_frame\n";
EHFrame->dump(outs());
}
}
}
void RewriteInstance::writeEHFrameHeader(SectionInfo &EHFrameSecInfo) {
DWARFFrame NewEHFrame(EHFrameSecInfo.FileAddress);
NewEHFrame.parse(
DataExtractor(StringRef(reinterpret_cast<const char *>(
EHFrameSecInfo.AllocAddress),
EHFrameSecInfo.Size),
BC->AsmInfo->isLittleEndian(),
BC->AsmInfo->getPointerSize()));
if (!NewEHFrame.ParseError.empty()) {
errs() << "BOLT-ERROR: EHFrame reader failed with message \""
<< NewEHFrame.ParseError << '\n';
exit(1);
}
auto OldSMII = EFMM->SectionMapInfo.find(".eh_frame_old");
assert(OldSMII != EFMM->SectionMapInfo.end() &&
"expected .eh_frame_old to be present");
auto &OldEHFrameSecInfo = OldSMII->second;
DWARFFrame OldEHFrame(OldEHFrameSecInfo.FileAddress);
OldEHFrame.parse(
DataExtractor(StringRef(reinterpret_cast<const char *>(
OldEHFrameSecInfo.AllocAddress),
OldEHFrameSecInfo.Size),
BC->AsmInfo->isLittleEndian(),
BC->AsmInfo->getPointerSize()));
if (!OldEHFrame.ParseError.empty()) {
errs() << "BOLT-ERROR: EHFrame reader failed with message \""
<< OldEHFrame.ParseError << '\n';
exit(1);
}
DEBUG(dbgs() << "BOLT: writing a new .eh_frame_hdr\n");
NextAvailableAddress =
appendPadding(Out->os(), NextAvailableAddress, EHFrameHdrAlign);
SectionInfo EHFrameHdrSecInfo;
EHFrameHdrSecInfo.FileAddress = NextAvailableAddress;
EHFrameHdrSecInfo.FileOffset = getFileOffsetForAddress(NextAvailableAddress);
auto NewEHFrameHdr =
CFIRdWrt->generateEHFrameHeader(OldEHFrame,
NewEHFrame,
EHFrameHdrSecInfo.FileAddress,
FailedAddresses);
EHFrameHdrSecInfo.Size = NewEHFrameHdr.size();
assert(Out->os().tell() == EHFrameHdrSecInfo.FileOffset &&
"offset mismatch");
Out->os().write(NewEHFrameHdr.data(), EHFrameHdrSecInfo.Size);
EFMM->SectionMapInfo[".eh_frame_hdr"] = EHFrameHdrSecInfo;
NextAvailableAddress += EHFrameHdrSecInfo.Size;
// Merge .eh_frame and .eh_frame_old so that gdb can locate all FDEs.
EHFrameSecInfo.Size = OldEHFrameSecInfo.FileAddress + OldEHFrameSecInfo.Size
- EHFrameSecInfo.FileAddress;
EFMM->SectionMapInfo.erase(OldSMII);
DEBUG(dbgs() << "BOLT-DEBUG: size of .eh_frame after merge is "
<< EHFrameSecInfo.Size << '\n');
}
uint64_t RewriteInstance::getFileOffsetForAddress(uint64_t Address) const {
// Check if it's possibly part of the new segment.
if (Address >= NewTextSegmentAddress) {
return Address - NewTextSegmentAddress + NewTextSegmentOffset;
}
// Find an existing segment that matches the address.
const auto SegmentInfoI = EFMM->SegmentMapInfo.upper_bound(Address);
if (SegmentInfoI == EFMM->SegmentMapInfo.begin())
return 0;
const auto &SegmentInfo = std::prev(SegmentInfoI)->second;
if (Address < SegmentInfo.Address ||
Address >= SegmentInfo.Address + SegmentInfo.FileSize)
return 0;
return SegmentInfo.FileOffset + Address - SegmentInfo.Address;
}
bool RewriteInstance::willOverwriteSection(StringRef SectionName) {
if (opts::Relocs) {
for (auto &OverwriteName : SectionsToOverwriteRelocMode) {
if (SectionName == OverwriteName)
return true;
}
} else {
for (auto &OverwriteName : SectionsToOverwrite) {
if (SectionName == OverwriteName)
return true;
}
}
auto SMII = EFMM->SectionMapInfo.find(SectionName);
if (SMII != EFMM->SectionMapInfo.end())
return true;
return false;
}
BinaryFunction *
RewriteInstance::getBinaryFunctionContainingAddress(uint64_t Address,
bool CheckPastEnd,
bool UseMaxSize) {
auto FI = BinaryFunctions.upper_bound(Address);
if (FI == BinaryFunctions.begin())
return nullptr;
--FI;
const auto UsedSize = UseMaxSize ? FI->second.getMaxSize()
: FI->second.getSize();
if (Address >= FI->first + UsedSize + (CheckPastEnd ? 1 : 0))
return nullptr;
return &FI->second;
}
const BinaryFunction *
RewriteInstance::getBinaryFunctionAtAddress(uint64_t Address) const {
const auto *Symbol = BC->getGlobalSymbolAtAddress(Address);
if (!Symbol)
return nullptr;
return BC->getFunctionForSymbol(Symbol);
}
DWARFAddressRangesVector RewriteInstance::translateModuleAddressRanges(
const DWARFAddressRangesVector &InputRanges) const {
DWARFAddressRangesVector OutputRanges;
for (const auto Range : InputRanges) {
auto BFI = BinaryFunctions.lower_bound(Range.first);
while (BFI != BinaryFunctions.end()) {
const auto &Function = BFI->second;
if (Function.getAddress() >= Range.second)
break;
const auto FunctionRanges = Function.getOutputAddressRanges();
std::move(std::begin(FunctionRanges),
std::end(FunctionRanges),
std::back_inserter(OutputRanges));
std::advance(BFI, 1);
}
}
return OutputRanges;
}