mirror of
https://github.com/intel/llvm.git
synced 2026-01-31 07:27:33 +08:00
This patch implements R_MIPS_GOT16 relocation for global symbols in order to generate some entries in GOT. Only reserved and global entries are supported for now. For the detailed description about GOT in MIPS, see "Global Offset Table" in Chapter 5 in the followin document: ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf In addition, the platform specific symbol "_gp" is added, see "Global Data Symbols" in Chapter 6 in the aforementioned document. Differential revision: http://reviews.llvm.org/D14211 llvm-svn: 252275
750 lines
26 KiB
C++
750 lines
26 KiB
C++
//===- Target.cpp ---------------------------------------------------------===//
|
|
//
|
|
// The LLVM Linker
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Machine-specific things, such as applying relocations, creation of
|
|
// GOT or PLT entries, etc., are handled in this file.
|
|
//
|
|
// Refer the ELF spec for the single letter varaibles, S, A or P, used
|
|
// in this file. SA is S+A.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Target.h"
|
|
#include "Error.h"
|
|
#include "OutputSections.h"
|
|
#include "Symbols.h"
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/Object/ELF.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/ELF.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
using namespace llvm::support::endian;
|
|
using namespace llvm::ELF;
|
|
|
|
namespace lld {
|
|
namespace elf2 {
|
|
|
|
std::unique_ptr<TargetInfo> Target;
|
|
|
|
template <bool IsLE> static uint32_t read32(const uint8_t *L);
|
|
template <> uint32_t read32<true>(const uint8_t *L) { return read32le(L); }
|
|
template <> uint32_t read32<false>(const uint8_t *L) { return read32be(L); }
|
|
|
|
template <bool IsLE> static void write32(uint8_t *L, uint32_t V);
|
|
template <> void write32<true>(uint8_t *L, uint32_t V) { write32le(L, V); }
|
|
template <> void write32<false>(uint8_t *L, uint32_t V) { write32be(L, V); }
|
|
|
|
static void add32le(uint8_t *L, int32_t V) { write32le(L, read32le(L) + V); }
|
|
static void add32be(uint8_t *L, int32_t V) { write32be(L, read32be(L) + V); }
|
|
static void or32le(uint8_t *L, int32_t V) { write32le(L, read32le(L) | V); }
|
|
|
|
template <bool IsLE> static void add32(uint8_t *L, int32_t V);
|
|
template <> void add32<true>(uint8_t *L, int32_t V) { add32le(L, V); }
|
|
template <> void add32<false>(uint8_t *L, int32_t V) { add32be(L, V); }
|
|
|
|
namespace {
|
|
class X86TargetInfo final : public TargetInfo {
|
|
public:
|
|
X86TargetInfo();
|
|
void writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const override;
|
|
void writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
uint64_t PltEntryAddr) const override;
|
|
void writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
uint64_t PltEntryAddr, int32_t Index) const override;
|
|
bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
|
|
bool relocPointsToGot(uint32_t Type) const override;
|
|
bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
|
|
void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
|
|
uint64_t SA) const override;
|
|
};
|
|
|
|
class X86_64TargetInfo final : public TargetInfo {
|
|
public:
|
|
X86_64TargetInfo();
|
|
unsigned getPLTRefReloc(unsigned Type) const override;
|
|
void writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const override;
|
|
void writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
uint64_t PltEntryAddr) const override;
|
|
void writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
uint64_t PltEntryAddr, int32_t Index) const override;
|
|
bool relocNeedsCopy(uint32_t Type, const SymbolBody &S) const override;
|
|
bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
|
|
bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
|
|
void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
|
|
uint64_t SA) const override;
|
|
bool isRelRelative(uint32_t Type) const override;
|
|
};
|
|
|
|
class PPC64TargetInfo final : public TargetInfo {
|
|
public:
|
|
PPC64TargetInfo();
|
|
void writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const override;
|
|
void writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
uint64_t PltEntryAddr) const override;
|
|
void writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
uint64_t PltEntryAddr, int32_t Index) const override;
|
|
bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
|
|
bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
|
|
void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
|
|
uint64_t SA) const override;
|
|
bool isRelRelative(uint32_t Type) const override;
|
|
};
|
|
|
|
class AArch64TargetInfo final : public TargetInfo {
|
|
public:
|
|
AArch64TargetInfo();
|
|
void writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const override;
|
|
void writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
uint64_t PltEntryAddr) const override;
|
|
void writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
uint64_t PltEntryAddr, int32_t Index) const override;
|
|
bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
|
|
bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
|
|
void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
|
|
uint64_t SA) const override;
|
|
};
|
|
|
|
template <class ELFT> class MipsTargetInfo final : public TargetInfo {
|
|
public:
|
|
MipsTargetInfo();
|
|
void writeGotHeaderEntries(uint8_t *Buf) const override;
|
|
void writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const override;
|
|
void writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
uint64_t PltEntryAddr) const override;
|
|
void writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
uint64_t PltEntryAddr, int32_t Index) const override;
|
|
bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
|
|
bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
|
|
void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
|
|
uint64_t SA) const override;
|
|
};
|
|
} // anonymous namespace
|
|
|
|
TargetInfo *createTarget() {
|
|
switch (Config->EMachine) {
|
|
case EM_386:
|
|
return new X86TargetInfo();
|
|
case EM_AARCH64:
|
|
return new AArch64TargetInfo();
|
|
case EM_MIPS:
|
|
switch (Config->EKind) {
|
|
case ELF32LEKind:
|
|
return new MipsTargetInfo<ELF32LE>();
|
|
case ELF32BEKind:
|
|
return new MipsTargetInfo<ELF32BE>();
|
|
default:
|
|
error("Unsupported MIPS target");
|
|
}
|
|
case EM_PPC64:
|
|
return new PPC64TargetInfo();
|
|
case EM_X86_64:
|
|
return new X86_64TargetInfo();
|
|
}
|
|
error("Unknown target machine");
|
|
}
|
|
|
|
TargetInfo::~TargetInfo() {}
|
|
|
|
bool TargetInfo::relocNeedsCopy(uint32_t Type, const SymbolBody &S) const {
|
|
return false;
|
|
}
|
|
|
|
unsigned TargetInfo::getPLTRefReloc(unsigned Type) const { return PCRelReloc; }
|
|
|
|
bool TargetInfo::relocPointsToGot(uint32_t Type) const { return false; }
|
|
|
|
bool TargetInfo::isRelRelative(uint32_t Type) const { return true; }
|
|
|
|
void TargetInfo::writeGotHeaderEntries(uint8_t *Buf) const {}
|
|
|
|
X86TargetInfo::X86TargetInfo() {
|
|
PCRelReloc = R_386_PC32;
|
|
GotReloc = R_386_GLOB_DAT;
|
|
GotRefReloc = R_386_GOT32;
|
|
PltReloc = R_386_JUMP_SLOT;
|
|
}
|
|
|
|
void X86TargetInfo::writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const {}
|
|
void X86TargetInfo::writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
uint64_t PltEntryAddr) const {}
|
|
|
|
void X86TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
uint64_t PltEntryAddr, int32_t Index) const {
|
|
// jmpl *val; nop; nop
|
|
const uint8_t Inst[] = {0xff, 0x25, 0, 0, 0, 0, 0x90, 0x90};
|
|
memcpy(Buf, Inst, sizeof(Inst));
|
|
assert(isUInt<32>(GotEntryAddr));
|
|
write32le(Buf + 2, GotEntryAddr);
|
|
}
|
|
|
|
bool X86TargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
|
|
return Type == R_386_GOT32 || relocNeedsPlt(Type, S);
|
|
}
|
|
|
|
bool X86TargetInfo::relocPointsToGot(uint32_t Type) const {
|
|
return Type == R_386_GOTPC;
|
|
}
|
|
|
|
bool X86TargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
|
|
return Type == R_386_PLT32 || (Type == R_386_PC32 && S.isShared());
|
|
}
|
|
|
|
void X86TargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
|
|
uint64_t P, uint64_t SA) const {
|
|
switch (Type) {
|
|
case R_386_GOT32:
|
|
add32le(Loc, SA - Out<ELF32LE>::Got->getVA());
|
|
break;
|
|
case R_386_PC32:
|
|
add32le(Loc, SA - P);
|
|
break;
|
|
case R_386_32:
|
|
add32le(Loc, SA);
|
|
break;
|
|
default:
|
|
error("unrecognized reloc " + Twine(Type));
|
|
}
|
|
}
|
|
|
|
X86_64TargetInfo::X86_64TargetInfo() {
|
|
CopyReloc = R_X86_64_COPY;
|
|
PCRelReloc = R_X86_64_PC32;
|
|
GotReloc = R_X86_64_GLOB_DAT;
|
|
GotRefReloc = R_X86_64_PC32;
|
|
PltReloc = R_X86_64_JUMP_SLOT;
|
|
RelativeReloc = R_X86_64_RELATIVE;
|
|
LazyRelocations = true;
|
|
PltEntrySize = 16;
|
|
PltZeroEntrySize = 16;
|
|
}
|
|
|
|
void X86_64TargetInfo::writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const {
|
|
// Skip 6 bytes of "jmpq *got(%rip)"
|
|
write32le(Buf, Plt + 6);
|
|
}
|
|
|
|
void X86_64TargetInfo::writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
uint64_t PltEntryAddr) const {
|
|
const uint8_t PltData[] = {
|
|
0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushq GOT+8(%rip)
|
|
0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *GOT+16(%rip)
|
|
0x0f, 0x1f, 0x40, 0x00 // nopl 0x0(rax)
|
|
};
|
|
memcpy(Buf, PltData, sizeof(PltData));
|
|
write32le(Buf + 2, GotEntryAddr - PltEntryAddr + 2); // GOT+8
|
|
write32le(Buf + 8, GotEntryAddr - PltEntryAddr + 4); // GOT+16
|
|
}
|
|
|
|
void X86_64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
uint64_t PltEntryAddr,
|
|
int32_t Index) const {
|
|
const uint8_t Inst[] = {
|
|
0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmpq *got(%rip)
|
|
0x68, 0x00, 0x00, 0x00, 0x00, // pushq <relocation index>
|
|
0xe9, 0x00, 0x00, 0x00, 0x00 // jmpq plt[0]
|
|
};
|
|
memcpy(Buf, Inst, sizeof(Inst));
|
|
|
|
write32le(Buf + 2, GotEntryAddr - PltEntryAddr - 6);
|
|
write32le(Buf + 7, Index);
|
|
write32le(Buf + 12, -Index * PltEntrySize - PltZeroEntrySize - 16);
|
|
}
|
|
|
|
bool X86_64TargetInfo::relocNeedsCopy(uint32_t Type,
|
|
const SymbolBody &S) const {
|
|
if (Type == R_X86_64_32S || Type == R_X86_64_32 || Type == R_X86_64_PC32 ||
|
|
Type == R_X86_64_64)
|
|
if (auto *SS = dyn_cast<SharedSymbol<ELF64LE>>(&S))
|
|
return SS->Sym.getType() == STT_OBJECT;
|
|
return false;
|
|
}
|
|
|
|
bool X86_64TargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
|
|
return Type == R_X86_64_GOTPCREL || relocNeedsPlt(Type, S);
|
|
}
|
|
|
|
unsigned X86_64TargetInfo::getPLTRefReloc(unsigned Type) const {
|
|
if (Type == R_X86_64_PLT32)
|
|
return R_X86_64_PC32;
|
|
return Type;
|
|
}
|
|
|
|
bool X86_64TargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
|
|
if (relocNeedsCopy(Type, S))
|
|
return false;
|
|
|
|
switch (Type) {
|
|
default:
|
|
return false;
|
|
case R_X86_64_32:
|
|
case R_X86_64_64:
|
|
case R_X86_64_PC32:
|
|
// This relocation is defined to have a value of (S + A - P).
|
|
// The problems start when a non PIC program calls a function in a shared
|
|
// library.
|
|
// In an ideal world, we could just report an error saying the relocation
|
|
// can overflow at runtime.
|
|
// In the real world with glibc, crt1.o has a R_X86_64_PC32 pointing to
|
|
// libc.so.
|
|
//
|
|
// The general idea on how to handle such cases is to create a PLT entry
|
|
// and use that as the function value.
|
|
//
|
|
// For the static linking part, we just return true and everything else
|
|
// will use the the PLT entry as the address.
|
|
//
|
|
// The remaining (unimplemented) problem is making sure pointer equality
|
|
// still works. We need the help of the dynamic linker for that. We
|
|
// let it know that we have a direct reference to a so symbol by creating
|
|
// an undefined symbol with a non zero st_value. Seeing that, the
|
|
// dynamic linker resolves the symbol to the value of the symbol we created.
|
|
// This is true even for got entries, so pointer equality is maintained.
|
|
// To avoid an infinite loop, the only entry that points to the
|
|
// real function is a dedicated got entry used by the plt. That is
|
|
// identified by special relocation types (R_X86_64_JUMP_SLOT,
|
|
// R_386_JMP_SLOT, etc).
|
|
return S.isShared();
|
|
case R_X86_64_PLT32:
|
|
return canBePreempted(&S, true);
|
|
}
|
|
}
|
|
|
|
bool X86_64TargetInfo::isRelRelative(uint32_t Type) const {
|
|
switch (Type) {
|
|
default:
|
|
return false;
|
|
case R_X86_64_PC64:
|
|
case R_X86_64_PC32:
|
|
case R_X86_64_PC16:
|
|
case R_X86_64_PC8:
|
|
case R_X86_64_PLT32:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void X86_64TargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
|
|
uint64_t P, uint64_t SA) const {
|
|
switch (Type) {
|
|
case R_X86_64_PC32:
|
|
case R_X86_64_GOTPCREL:
|
|
case R_X86_64_PLT32:
|
|
write32le(Loc, SA - P);
|
|
break;
|
|
case R_X86_64_64:
|
|
write64le(Loc, SA);
|
|
break;
|
|
case R_X86_64_32:
|
|
case R_X86_64_32S:
|
|
if (Type == R_X86_64_32 && !isUInt<32>(SA))
|
|
error("R_X86_64_32 out of range");
|
|
else if (!isInt<32>(SA))
|
|
error("R_X86_64_32S out of range");
|
|
write32le(Loc, SA);
|
|
break;
|
|
case R_X86_64_TPOFF32: {
|
|
uint64_t Val = SA - Out<ELF64LE>::TlsInitImageAlignedSize;
|
|
if (!isInt<32>(Val))
|
|
error("R_X86_64_TPOFF32 out of range");
|
|
write32le(Loc, Val);
|
|
break;
|
|
}
|
|
default:
|
|
error("unrecognized reloc " + Twine(Type));
|
|
}
|
|
}
|
|
|
|
// Relocation masks following the #lo(value), #hi(value), #ha(value),
|
|
// #higher(value), #highera(value), #highest(value), and #highesta(value)
|
|
// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
|
|
// document.
|
|
static uint16_t applyPPCLo(uint64_t V) { return V; }
|
|
static uint16_t applyPPCHi(uint64_t V) { return V >> 16; }
|
|
static uint16_t applyPPCHa(uint64_t V) { return (V + 0x8000) >> 16; }
|
|
static uint16_t applyPPCHigher(uint64_t V) { return V >> 32; }
|
|
static uint16_t applyPPCHighera(uint64_t V) { return (V + 0x8000) >> 32; }
|
|
static uint16_t applyPPCHighest(uint64_t V) { return V >> 48; }
|
|
static uint16_t applyPPCHighesta(uint64_t V) { return (V + 0x8000) >> 48; }
|
|
|
|
PPC64TargetInfo::PPC64TargetInfo() {
|
|
PCRelReloc = R_PPC64_REL24;
|
|
GotReloc = R_PPC64_GLOB_DAT;
|
|
GotRefReloc = R_PPC64_REL64;
|
|
RelativeReloc = R_PPC64_RELATIVE;
|
|
PltEntrySize = 32;
|
|
|
|
// We need 64K pages (at least under glibc/Linux, the loader won't
|
|
// set different permissions on a finer granularity than that).
|
|
PageSize = 65536;
|
|
|
|
// The PPC64 ELF ABI v1 spec, says:
|
|
//
|
|
// It is normally desirable to put segments with different characteristics
|
|
// in separate 256 Mbyte portions of the address space, to give the
|
|
// operating system full paging flexibility in the 64-bit address space.
|
|
//
|
|
// And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
|
|
// use 0x10000000 as the starting address.
|
|
VAStart = 0x10000000;
|
|
}
|
|
|
|
uint64_t getPPC64TocBase() {
|
|
// The TOC consists of sections .got, .toc, .tocbss, .plt in that
|
|
// order. The TOC starts where the first of these sections starts.
|
|
|
|
// FIXME: This obviously does not do the right thing when there is no .got
|
|
// section, but there is a .toc or .tocbss section.
|
|
uint64_t TocVA = Out<ELF64BE>::Got->getVA();
|
|
if (!TocVA)
|
|
TocVA = Out<ELF64BE>::Plt->getVA();
|
|
|
|
// Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
|
|
// thus permitting a full 64 Kbytes segment. Note that the glibc startup
|
|
// code (crt1.o) assumes that you can get from the TOC base to the
|
|
// start of the .toc section with only a single (signed) 16-bit relocation.
|
|
return TocVA + 0x8000;
|
|
}
|
|
|
|
void PPC64TargetInfo::writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const {}
|
|
void PPC64TargetInfo::writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
uint64_t PltEntryAddr) const {}
|
|
void PPC64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
uint64_t PltEntryAddr, int32_t Index) const {
|
|
uint64_t Off = GotEntryAddr - getPPC64TocBase();
|
|
|
|
// FIXME: What we should do, in theory, is get the offset of the function
|
|
// descriptor in the .opd section, and use that as the offset from %r2 (the
|
|
// TOC-base pointer). Instead, we have the GOT-entry offset, and that will
|
|
// be a pointer to the function descriptor in the .opd section. Using
|
|
// this scheme is simpler, but requires an extra indirection per PLT dispatch.
|
|
|
|
write32be(Buf, 0xf8410028); // std %r2, 40(%r1)
|
|
write32be(Buf + 4, 0x3d620000 | applyPPCHa(Off)); // addis %r11, %r2, X@ha
|
|
write32be(Buf + 8, 0xe98b0000 | applyPPCLo(Off)); // ld %r12, X@l(%r11)
|
|
write32be(Buf + 12, 0xe96c0000); // ld %r11,0(%r12)
|
|
write32be(Buf + 16, 0x7d6903a6); // mtctr %r11
|
|
write32be(Buf + 20, 0xe84c0008); // ld %r2,8(%r12)
|
|
write32be(Buf + 24, 0xe96c0010); // ld %r11,16(%r12)
|
|
write32be(Buf + 28, 0x4e800420); // bctr
|
|
}
|
|
|
|
bool PPC64TargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
|
|
if (relocNeedsPlt(Type, S))
|
|
return true;
|
|
|
|
switch (Type) {
|
|
default: return false;
|
|
case R_PPC64_GOT16:
|
|
case R_PPC64_GOT16_LO:
|
|
case R_PPC64_GOT16_HI:
|
|
case R_PPC64_GOT16_HA:
|
|
case R_PPC64_GOT16_DS:
|
|
case R_PPC64_GOT16_LO_DS:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool PPC64TargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
|
|
// These are function calls that need to be redirected through a PLT stub.
|
|
return Type == R_PPC64_REL24 && canBePreempted(&S, false);
|
|
}
|
|
|
|
bool PPC64TargetInfo::isRelRelative(uint32_t Type) const {
|
|
switch (Type) {
|
|
default:
|
|
return true;
|
|
case R_PPC64_TOC:
|
|
case R_PPC64_ADDR64:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void PPC64TargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
|
|
uint64_t P, uint64_t SA) const {
|
|
uint64_t TB = getPPC64TocBase();
|
|
|
|
// For a TOC-relative relocation, adjust the addend and proceed in terms of
|
|
// the corresponding ADDR16 relocation type.
|
|
switch (Type) {
|
|
case R_PPC64_TOC16: Type = R_PPC64_ADDR16; SA -= TB; break;
|
|
case R_PPC64_TOC16_DS: Type = R_PPC64_ADDR16_DS; SA -= TB; break;
|
|
case R_PPC64_TOC16_LO: Type = R_PPC64_ADDR16_LO; SA -= TB; break;
|
|
case R_PPC64_TOC16_LO_DS: Type = R_PPC64_ADDR16_LO_DS; SA -= TB; break;
|
|
case R_PPC64_TOC16_HI: Type = R_PPC64_ADDR16_HI; SA -= TB; break;
|
|
case R_PPC64_TOC16_HA: Type = R_PPC64_ADDR16_HA; SA -= TB; break;
|
|
default: break;
|
|
}
|
|
|
|
switch (Type) {
|
|
case R_PPC64_ADDR16:
|
|
if (!isInt<16>(SA))
|
|
error("Relocation R_PPC64_ADDR16 overflow");
|
|
write16be(Loc, SA);
|
|
break;
|
|
case R_PPC64_ADDR16_DS:
|
|
if (!isInt<16>(SA))
|
|
error("Relocation R_PPC64_ADDR16_DS overflow");
|
|
write16be(Loc, (read16be(Loc) & 3) | (SA & ~3));
|
|
break;
|
|
case R_PPC64_ADDR16_LO:
|
|
write16be(Loc, applyPPCLo(SA));
|
|
break;
|
|
case R_PPC64_ADDR16_LO_DS:
|
|
write16be(Loc, (read16be(Loc) & 3) | (applyPPCLo(SA) & ~3));
|
|
break;
|
|
case R_PPC64_ADDR16_HI:
|
|
write16be(Loc, applyPPCHi(SA));
|
|
break;
|
|
case R_PPC64_ADDR16_HA:
|
|
write16be(Loc, applyPPCHa(SA));
|
|
break;
|
|
case R_PPC64_ADDR16_HIGHER:
|
|
write16be(Loc, applyPPCHigher(SA));
|
|
break;
|
|
case R_PPC64_ADDR16_HIGHERA:
|
|
write16be(Loc, applyPPCHighera(SA));
|
|
break;
|
|
case R_PPC64_ADDR16_HIGHEST:
|
|
write16be(Loc, applyPPCHighest(SA));
|
|
break;
|
|
case R_PPC64_ADDR16_HIGHESTA:
|
|
write16be(Loc, applyPPCHighesta(SA));
|
|
break;
|
|
case R_PPC64_ADDR14: {
|
|
if ((SA & 3) != 0)
|
|
error("Improper alignment for relocation R_PPC64_ADDR14");
|
|
|
|
// Preserve the AA/LK bits in the branch instruction
|
|
uint8_t AALK = Loc[3];
|
|
write16be(Loc + 2, (AALK & 3) | (SA & 0xfffc));
|
|
break;
|
|
}
|
|
case R_PPC64_REL16_LO:
|
|
write16be(Loc, applyPPCLo(SA - P));
|
|
break;
|
|
case R_PPC64_REL16_HI:
|
|
write16be(Loc, applyPPCHi(SA - P));
|
|
break;
|
|
case R_PPC64_REL16_HA:
|
|
write16be(Loc, applyPPCHa(SA - P));
|
|
break;
|
|
case R_PPC64_ADDR32:
|
|
if (!isInt<32>(SA))
|
|
error("Relocation R_PPC64_ADDR32 overflow");
|
|
write32be(Loc, SA);
|
|
break;
|
|
case R_PPC64_REL24: {
|
|
// If we have an undefined weak symbol, we might get here with a symbol
|
|
// address of zero. That could overflow, but the code must be unreachable,
|
|
// so don't bother doing anything at all.
|
|
if (!SA)
|
|
break;
|
|
|
|
uint64_t PltStart = Out<ELF64BE>::Plt->getVA();
|
|
uint64_t PltEnd = PltStart + Out<ELF64BE>::Plt->getSize();
|
|
bool InPlt = PltStart <= SA && SA < PltEnd;
|
|
|
|
if (!InPlt && Out<ELF64BE>::Opd) {
|
|
// If this is a local call, and we currently have the address of a
|
|
// function-descriptor, get the underlying code address instead.
|
|
uint64_t OpdStart = Out<ELF64BE>::Opd->getVA();
|
|
uint64_t OpdEnd = OpdStart + Out<ELF64BE>::Opd->getSize();
|
|
bool InOpd = OpdStart <= SA && SA < OpdEnd;
|
|
|
|
if (InOpd)
|
|
SA = read64be(&Out<ELF64BE>::OpdBuf[SA - OpdStart]);
|
|
}
|
|
|
|
uint32_t Mask = 0x03FFFFFC;
|
|
if (!isInt<24>(SA - P))
|
|
error("Relocation R_PPC64_REL24 overflow");
|
|
write32be(Loc, (read32be(Loc) & ~Mask) | ((SA - P) & Mask));
|
|
|
|
uint32_t Nop = 0x60000000;
|
|
if (InPlt && Loc + 8 <= BufEnd && read32be(Loc + 4) == Nop)
|
|
write32be(Loc + 4, 0xe8410028); // ld %r2, 40(%r1)
|
|
break;
|
|
}
|
|
case R_PPC64_REL32:
|
|
if (!isInt<32>(SA - P))
|
|
error("Relocation R_PPC64_REL32 overflow");
|
|
write32be(Loc, SA - P);
|
|
break;
|
|
case R_PPC64_REL64:
|
|
write64be(Loc, SA - P);
|
|
break;
|
|
case R_PPC64_ADDR64:
|
|
case R_PPC64_TOC:
|
|
write64be(Loc, SA);
|
|
break;
|
|
default:
|
|
error("unrecognized reloc " + Twine(Type));
|
|
}
|
|
}
|
|
|
|
AArch64TargetInfo::AArch64TargetInfo() {}
|
|
|
|
void AArch64TargetInfo::writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const {}
|
|
void AArch64TargetInfo::writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
uint64_t PltEntryAddr) const {}
|
|
void AArch64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
uint64_t PltEntryAddr, int32_t Index) const {}
|
|
bool AArch64TargetInfo::relocNeedsGot(uint32_t Type,
|
|
const SymbolBody &S) const {
|
|
return false;
|
|
}
|
|
bool AArch64TargetInfo::relocNeedsPlt(uint32_t Type,
|
|
const SymbolBody &S) const {
|
|
return false;
|
|
}
|
|
|
|
static void updateAArch64Adr(uint8_t *L, uint64_t Imm) {
|
|
uint32_t ImmLo = (Imm & 0x3) << 29;
|
|
uint32_t ImmHi = ((Imm & 0x1FFFFC) >> 2) << 5;
|
|
uint64_t Mask = (0x3 << 29) | (0x7FFFF << 5);
|
|
write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
|
|
}
|
|
|
|
// Page(Expr) is the page address of the expression Expr, defined
|
|
// as (Expr & ~0xFFF). (This applies even if the machine page size
|
|
// supported by the platform has a different value.)
|
|
static uint64_t getAArch64Page(uint64_t Expr) {
|
|
return Expr & (~static_cast<uint64_t>(0xFFF));
|
|
}
|
|
|
|
void AArch64TargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd,
|
|
uint32_t Type, uint64_t P,
|
|
uint64_t SA) const {
|
|
switch (Type) {
|
|
case R_AARCH64_ABS16:
|
|
if (!isInt<16>(SA))
|
|
error("Relocation R_AARCH64_ABS16 out of range");
|
|
write16le(Loc, SA);
|
|
break;
|
|
case R_AARCH64_ABS32:
|
|
if (!isInt<32>(SA))
|
|
error("Relocation R_AARCH64_ABS32 out of range");
|
|
write32le(Loc, SA);
|
|
break;
|
|
case R_AARCH64_ABS64:
|
|
// No overflow check needed.
|
|
write64le(Loc, SA);
|
|
break;
|
|
case R_AARCH64_ADD_ABS_LO12_NC:
|
|
// No overflow check needed.
|
|
// This relocation stores 12 bits and there's no instruction
|
|
// to do it. Instead, we do a 32 bits store of the value
|
|
// of r_addend bitwise-or'ed Loc. This assumes that the addend
|
|
// bits in Loc are zero.
|
|
or32le(Loc, (SA & 0xFFF) << 10);
|
|
break;
|
|
case R_AARCH64_ADR_PREL_LO21: {
|
|
uint64_t X = SA - P;
|
|
if (!isInt<21>(X))
|
|
error("Relocation R_AARCH64_ADR_PREL_LO21 out of range");
|
|
updateAArch64Adr(Loc, X & 0x1FFFFF);
|
|
break;
|
|
}
|
|
case R_AARCH64_ADR_PREL_PG_HI21: {
|
|
uint64_t X = getAArch64Page(SA) - getAArch64Page(P);
|
|
if (!isInt<33>(X))
|
|
error("Relocation R_AARCH64_ADR_PREL_PG_HI21 out of range");
|
|
updateAArch64Adr(Loc, (X >> 12) & 0x1FFFFF); // X[32:12]
|
|
break;
|
|
}
|
|
case R_AARCH64_PREL16:
|
|
if (!isInt<16>(SA))
|
|
error("Relocation R_AARCH64_PREL16 out of range");
|
|
write16le(Loc, SA - P);
|
|
break;
|
|
case R_AARCH64_PREL32:
|
|
if (!isInt<32>(SA))
|
|
error("Relocation R_AARCH64_PREL32 out of range");
|
|
write32le(Loc, SA - P);
|
|
break;
|
|
case R_AARCH64_PREL64:
|
|
// No overflow check needed.
|
|
write64le(Loc, SA - P);
|
|
break;
|
|
default:
|
|
error("unrecognized reloc " + Twine(Type));
|
|
}
|
|
}
|
|
|
|
template <class ELFT> MipsTargetInfo<ELFT>::MipsTargetInfo() {
|
|
PageSize = 65536;
|
|
GotRefReloc = R_MIPS_GOT16;
|
|
GotHeaderEntriesNum = 2;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void MipsTargetInfo<ELFT>::writeGotHeaderEntries(uint8_t *Buf) const {
|
|
typedef typename llvm::object::ELFFile<ELFT>::Elf_Off Elf_Off;
|
|
auto *P = reinterpret_cast<Elf_Off *>(Buf);
|
|
// Module pointer
|
|
P[1] = ELFT::Is64Bits ? 0x8000000000000000 : 0x80000000;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void MipsTargetInfo<ELFT>::writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const {}
|
|
template <class ELFT>
|
|
void MipsTargetInfo<ELFT>::writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
uint64_t PltEntryAddr) const {}
|
|
template <class ELFT>
|
|
void MipsTargetInfo<ELFT>::writePltEntry(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
uint64_t PltEntryAddr, int32_t Index) const {}
|
|
|
|
template <class ELFT>
|
|
bool MipsTargetInfo<ELFT>::relocNeedsGot(uint32_t Type,
|
|
const SymbolBody &S) const {
|
|
return Type == R_MIPS_GOT16;
|
|
}
|
|
|
|
template <class ELFT>
|
|
bool MipsTargetInfo<ELFT>::relocNeedsPlt(uint32_t Type,
|
|
const SymbolBody &S) const {
|
|
return false;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void MipsTargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint8_t *BufEnd,
|
|
uint32_t Type, uint64_t P,
|
|
uint64_t SA) const {
|
|
const bool IsLE = ELFT::TargetEndianness == support::little;
|
|
switch (Type) {
|
|
case R_MIPS_32:
|
|
add32<IsLE>(Loc, SA);
|
|
break;
|
|
case R_MIPS_GOT16: {
|
|
int64_t V = SA - getMipsGpAddr<ELFT>();
|
|
if (!isInt<16>(V))
|
|
error("Relocation R_MIPS_GOT16 out of range");
|
|
write32<IsLE>(Loc, (read32<IsLE>(Loc) & 0xffff0000) | (V & 0xffff));
|
|
break;
|
|
}
|
|
default:
|
|
error("unrecognized reloc " + Twine(Type));
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
typename llvm::object::ELFFile<ELFT>::uintX_t getMipsGpAddr() {
|
|
const unsigned GPOffset = 0x7ff0;
|
|
return Out<ELFT>::Got->getVA() ? (Out<ELFT>::Got->getVA() + GPOffset) : 0;
|
|
}
|
|
|
|
template uint32_t getMipsGpAddr<ELF32LE>();
|
|
template uint32_t getMipsGpAddr<ELF32BE>();
|
|
template uint64_t getMipsGpAddr<ELF64LE>();
|
|
template uint64_t getMipsGpAddr<ELF64BE>();
|
|
}
|
|
}
|