Files
llvm/bolt/CacheMetrics.cpp
spupyrev 48a53a7b55 a new i-cache metric
Summary:
The diff introduces two measures for i-cache performance: a TSP measure (currently used for optimization) and an "extended" TSP measure that takes into account jumps between non-consecutive basic blocks. The two measures are computed for estimated addresses/sizes of basic blocks and for the actually omitted addresses/sizes.

Intuitively, the Extended-TSP metric quantifies the expected number of i-cache misses for a given ordering of basic blocks. It has 5 parameters:
 - FallthroughWeight is the impact of fallthrough jumps on the score
 - ForwardWeight is the impact of forward (but not fallthrough) jumps
 - BackwardWeight is the impact of backward jumps
 - ForwardDistance is the max distance of a forward jump affecting the score
 - BackwardDistance is the max distance of a backward jump affecting the score
We're still learning the "best" values for the options but default values look reasonable so far.

(cherry picked from FBD6331418)
2017-11-14 16:51:24 -08:00

412 lines
15 KiB
C++

//===------ CacheMetrics.cpp - Calculate metrics for instruction cache ----===//
//
// Functions to show metrics of cache lines
//
//
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
#include "CacheMetrics.h"
using namespace llvm;
using namespace bolt;
using Traversal = std::vector<BinaryBasicBlock *>;
// The weight of fallthrough jumps for ExtTSP metric
constexpr double FallthroughWeight = 1.0;
// The weight of forward jumps for ExtTSP metric
constexpr double ForwardWeight = 1.0;
// The weight of backward jumps for ExtTSP metric
constexpr double BackwardWeight = 1.0;
// The maximum distance (in bytes) of forward jumps for ExtTSP metric
constexpr uint64_t ForwardDistance = 256;
// The maximum distance (in bytes) of backward jumps for ExtTSP metric
constexpr uint64_t BackwardDistance = 256;
// The size of the i-TLB cache page
constexpr uint64_t ITLBPageSize = 4096;
// Capacity of the i-TLB cache
constexpr uint64_t ITLBEntries = 16;
namespace {
/// Initialize and return a position map for binary basic blocks
void extractBasicBlockInfo(
const std::vector<BinaryFunction *> &BinaryFunctions,
std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) {
// Use addresses/sizes as in the output binary
for (auto BF : BinaryFunctions) {
for (auto BB : BF->layout()) {
BBAddr[BB] = BB->getOutputAddressRange().first;
BBSize[BB] = BB->getOutputSize();
}
}
}
/// Initialize and return a vector of traversals for a given entry block
std::vector<Traversal> getTraversals(BinaryBasicBlock *EntryBB) {
std::vector<Traversal> AllTraversals;
std::stack<std::pair<BinaryBasicBlock *, Traversal>> Stack;
Stack.push(std::make_pair(EntryBB, Traversal()));
std::unordered_set<BinaryBasicBlock *> BBSet;
while (!Stack.empty()) {
BinaryBasicBlock *CurrentBB = Stack.top().first;
Traversal PrevTraversal(Stack.top().second);
Stack.pop();
// Add current basic block into consideration
BBSet.insert(CurrentBB);
PrevTraversal.push_back(CurrentBB);
if (CurrentBB->succ_empty()) {
AllTraversals.push_back(PrevTraversal);
continue;
}
bool HaveSuccCount = false;
// Calculate total edges count of successors
for (auto BI = CurrentBB->branch_info_begin();
BI != CurrentBB->branch_info_end(); ++BI) {
if (BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && BI->Count > 0) {
HaveSuccCount = true;
break;
}
}
if (!HaveSuccCount) {
AllTraversals.push_back(PrevTraversal);
continue;
}
auto BI = CurrentBB->branch_info_begin();
for (auto *SuccBB : CurrentBB->successors()) {
// If we have never seen SuccBB, or SuccBB indicates the
// end of traversal, SuccBB will be added into stack for
// further exploring.
if ((BBSet.find(SuccBB) == BBSet.end() && BI->Count != 0 &&
BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) ||
SuccBB->succ_empty()) {
Stack.push(std::make_pair(SuccBB, PrevTraversal));
}
++BI;
}
}
return AllTraversals;
}
/// Given a traversal, return the sum of block distances along this traversal.
double getTraversalLength(
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
const Traversal &Path) {
double Length = 0;
for (size_t I = 0; I + 1 < Path.size(); I++) {
// Ignore calls between hot and cold parts
if (Path[I]->isCold() != Path[I + 1]->isCold())
continue;
double SrcAddr = BBAddr.at(Path[I]);
double DstAddr = BBAddr.at(Path[I + 1]);
Length += std::abs(SrcAddr - DstAddr);
}
return Length;
}
/// Calculate average number of call distance for every graph traversal
double calcGraphDistance(
const std::vector<BinaryFunction *> &BinaryFunctions,
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) {
double TotalTraversalLength = 0;
double NumTraversals = 0;
for (auto BF : BinaryFunctions) {
// Only consider functions which are known to be executed
if (BF->getKnownExecutionCount() == 0)
continue;
for (auto BB : BF->layout()) {
if (BB->isEntryPoint()) {
auto AllTraversals = getTraversals(BB);
for (auto const &Path : AllTraversals) {
// Ignore short traversals
if (Path.size() <= 1)
continue;
TotalTraversalLength += getTraversalLength(BBAddr, Path);
NumTraversals++;
}
}
}
}
return TotalTraversalLength / NumTraversals;
}
/// Calculate TSP metric, which quantifies the number of fallthrough jumps in
/// the ordering of basic blocks
double calcTSPScore(
const std::vector<BinaryFunction *> &BinaryFunctions,
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) {
double Score = 0;
for (auto BF : BinaryFunctions) {
for (auto SrcBB : BF->layout()) {
auto BI = SrcBB->branch_info_begin();
for (auto DstBB : SrcBB->successors()) {
if (SrcBB != DstBB && BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
BBAddr.at(SrcBB) + BBSize.at(SrcBB) == BBAddr.at(DstBB))
Score += BI->Count;
++BI;
}
}
}
return Score;
}
/// Calculate Extended-TSP metric, which quantifies the expected number of
/// i-cache misses for a given ordering of basic blocks. The parameters are:
/// - FallthroughWeight is the impact of fallthrough jumps on the score
/// - ForwardWeight is the impact of forward (but not fallthrough) jumps
/// - BackwardWeight is the impact of backward jumps
/// - ForwardDistance is the max distance of a forward jump affecting the score
/// - BackwardDistance is the max distance of a backward jump affecting the score
double calcExtTSPScore(
const std::vector<BinaryFunction *> &BinaryFunctions,
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize,
double FallthroughWeight,
double ForwardWeight,
double BackwardWeight,
uint64_t ForwardDistance,
uint64_t BackwardDistance) {
double Score = 0.0;
for (auto BF : BinaryFunctions) {
for (auto SrcBB : BF->layout()) {
auto BI = SrcBB->branch_info_begin();
for (auto DstBB : SrcBB->successors()) {
if (DstBB != SrcBB) {
double Count = BI->Count == BinaryBasicBlock::COUNT_NO_PROFILE
? 0.0
: double(BI->Count);
uint64_t SrcAddr = BBAddr.at(SrcBB);
uint64_t SrcSize = BBSize.at(SrcBB);
uint64_t DstAddr = BBAddr.at(DstBB);
if (SrcAddr <= DstAddr) {
if (SrcAddr + SrcSize == DstAddr) {
// fallthrough jump
Score += FallthroughWeight * Count;
} else {
// the distance of the forward jump
size_t Dist = DstAddr - (SrcAddr + SrcSize);
if (Dist <= ForwardDistance) {
double Prob = double(ForwardDistance - Dist) / ForwardDistance;
Score += ForwardWeight * Prob * Count;
}
}
} else {
// the distance of the backward jump
size_t Dist = SrcAddr + SrcSize - DstAddr;
if (Dist <= BackwardDistance) {
double Prob = double(BackwardDistance - Dist) / BackwardDistance;
Score += BackwardWeight * Prob * Count;
}
}
}
++BI;
}
}
}
return Score;
}
using Predecessors = std::vector<std::pair<BinaryFunction *, uint64_t>>;
/// Build a simplified version of the call graph: For every function, keep
/// its callers and the frequencies of the calls
std::unordered_map<const BinaryFunction *, Predecessors>
extractFunctionCalls(const std::vector<BinaryFunction *> &BinaryFunctions) {
std::unordered_map<const BinaryFunction *, Predecessors> Calls;
for (auto SrcFunction : BinaryFunctions) {
const auto &BC = SrcFunction->getBinaryContext();
for (auto BB : SrcFunction->layout()) {
// Find call instructions and extract target symbols from each one
for (auto &Inst : *BB) {
if (!BC.MIA->isCall(Inst))
continue;
// Call info
const MCSymbol* DstSym = BC.MIA->getTargetSymbol(Inst);
auto Count = BB->getKnownExecutionCount();
// Ignore calls w/o information
if (DstSym == nullptr || Count == 0)
continue;
auto DstFunction = BC.getFunctionForSymbol(DstSym);
// Ignore recursive calls
if (DstFunction == nullptr ||
DstFunction->layout_empty() ||
DstFunction == SrcFunction)
continue;
// Record the call
Calls[DstFunction].push_back(std::make_pair(SrcFunction, Count));
}
}
}
return Calls;
}
/// Compute expected hit ratio of the i-TLB cache (optimized by HFSortPlus alg).
/// Given an assignment of functions to the i-TLB pages), we divide all
/// functions calls into two categories:
/// - 'short' ones that have a caller-callee distance less than a page;
/// - 'long' ones where the distance exceeds a page.
/// The short calls are likely to result in a i-TLB cache hit. For the long ones,
/// the hit/miss result depends on the 'hotness' of the page (i.e., how often
/// the page is accessed). Assuming that functions are sent to the i-TLB cache
/// in a random order, the probability that a page is present in the cache is
/// proportional to the number of samples corresponding to the functions on the
/// page. The following procedure detects short and long calls, and estimates
/// the expected number of cache misses for the long ones.
double expectedCacheHitRatio(
const std::vector<BinaryFunction *> &BinaryFunctions,
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize,
double PageSize,
uint64_t CacheEntries) {
auto Calls = extractFunctionCalls(BinaryFunctions);
// Compute 'hotness' of the functions
double TotalSamples = 0;
std::unordered_map<BinaryFunction *, double> FunctionSamples;
for (auto BF : BinaryFunctions) {
double Samples = 0;
for (auto Pair : Calls[BF]) {
Samples += Pair.second;
}
Samples = std::max(Samples, (double)BF->getKnownExecutionCount());
FunctionSamples[BF] = Samples;
TotalSamples += Samples;
}
// Compute 'hotness' of the pages
std::unordered_map<uint64_t, double> PageSamples;
for (auto BF : BinaryFunctions) {
if (BF->layout_empty())
continue;
auto Page = BBAddr.at(BF->layout_front()) / PageSize;
PageSamples[Page] += FunctionSamples.at(BF);
}
// Computing the expected number of misses for every function
double Misses = 0;
for (auto BF : BinaryFunctions) {
// Skip the function if it has no samples
if (BF->layout_empty() || FunctionSamples.at(BF) == 0.0)
continue;
double Samples = FunctionSamples.at(BF);
auto Page = BBAddr.at(BF->layout_front()) / PageSize;
// The probability that the page is not present in the cache
double MissProb = pow(1.0 - PageSamples[Page] / TotalSamples, CacheEntries);
// Processing all callers of the function
for (auto Pair : Calls[BF]) {
auto SrcFunction = Pair.first;
auto SrcPage = BBAddr.at(SrcFunction->layout_front()) / PageSize;
// Is this a 'long' or a 'short' call?
if (Page != SrcPage) {
// This is a miss
Misses += MissProb * Pair.second;
}
Samples -= Pair.second;
}
assert(Samples >= 0.0 && "Function samples computed incorrectly");
// The remaining samples likely come from the jitted code
Misses += Samples * MissProb;
}
return 100.0 * (1.0 - Misses / TotalSamples);
}
}
void CacheMetrics::printAll(
const std::vector<BinaryFunction *> &BinaryFunctions) {
size_t NumFunctions = 0;
size_t NumHotFunctions = 0;
size_t NumBlocks = 0;
size_t NumHotBlocks = 0;
for (auto BF : BinaryFunctions) {
NumFunctions++;
if (BF->getKnownExecutionCount() > 0)
NumHotFunctions++;
for (auto BB : BF->layout()) {
NumBlocks++;
if (BB->getKnownExecutionCount() > 0)
NumHotBlocks++;
}
}
outs() << format(" There are %zu functions;", NumFunctions)
<< format(" %zu (%.2lf%%) have non-empty execution count\n",
NumHotFunctions, 100.0 * NumHotFunctions / NumFunctions);
outs() << format(" There are %zu basic blocks;", NumBlocks)
<< format(" %zu (%.2lf%%) have non-empty execution count\n",
NumHotBlocks, 100.0 * NumHotBlocks / NumBlocks);
std::unordered_map<BinaryBasicBlock *, uint64_t> BBAddr;
std::unordered_map<BinaryBasicBlock *, uint64_t> BBSize;
extractBasicBlockInfo(BinaryFunctions, BBAddr, BBSize);
size_t TotalCodeSize = 0;
size_t HotCodeSize = 0;
for (auto Pair : BBSize) {
TotalCodeSize += Pair.second;
auto BB = Pair.first;
if (!BB->isCold() && BB->getFunction()->hasValidIndex())
HotCodeSize += Pair.second;
}
outs() << format(" Hot code takes %.2lf%% of binary (%zu bytes out of %zu)\n",
100.0 * HotCodeSize / TotalCodeSize, HotCodeSize, TotalCodeSize);
outs() << " An average length of graph traversal: "
<< format("%.0lf\n", calcGraphDistance(BinaryFunctions,
BBAddr,
BBSize));
outs() << " Expected i-TLB cache hit ratio "
<< format("(%zu, %zu): ", ITLBPageSize, ITLBEntries)
<< format("%.2lf%%\n", expectedCacheHitRatio(BinaryFunctions,
BBAddr,
BBSize,
ITLBPageSize,
ITLBEntries));
outs() << " TSP score: "
<< format("%.0lf\n", calcTSPScore(BinaryFunctions, BBAddr, BBSize));
outs() << " ExtTSP score "
<< format("(%.2lf, %.2lf, %.2lf, %zu, %zu): ", FallthroughWeight,
ForwardWeight,
BackwardWeight,
ForwardDistance,
BackwardDistance)
<< format("%.0lf\n", calcExtTSPScore(BinaryFunctions,
BBAddr,
BBSize,
FallthroughWeight,
ForwardWeight,
BackwardWeight,
ForwardDistance,
BackwardDistance));
}