Files
llvm/clang/lib/Basic/FixedPoint.cpp
Chandler Carruth 2946cd7010 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

222 lines
7.1 KiB
C++

//===- FixedPoint.cpp - Fixed point constant handling -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Defines the implementation for the fixed point number interface.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/FixedPoint.h"
namespace clang {
APFixedPoint APFixedPoint::convert(const FixedPointSemantics &DstSema,
bool *Overflow) const {
llvm::APSInt NewVal = Val;
unsigned DstWidth = DstSema.getWidth();
unsigned DstScale = DstSema.getScale();
bool Upscaling = DstScale > getScale();
if (Overflow)
*Overflow = false;
if (Upscaling) {
NewVal = NewVal.extend(NewVal.getBitWidth() + DstScale - getScale());
NewVal <<= (DstScale - getScale());
} else {
NewVal >>= (getScale() - DstScale);
}
auto Mask = llvm::APInt::getBitsSetFrom(
NewVal.getBitWidth(),
std::min(DstScale + DstSema.getIntegralBits(), NewVal.getBitWidth()));
llvm::APInt Masked(NewVal & Mask);
// Change in the bits above the sign
if (!(Masked == Mask || Masked == 0)) {
// Found overflow in the bits above the sign
if (DstSema.isSaturated())
NewVal = NewVal.isNegative() ? Mask : ~Mask;
else if (Overflow)
*Overflow = true;
}
// If the dst semantics are unsigned, but our value is signed and negative, we
// clamp to zero.
if (!DstSema.isSigned() && NewVal.isSigned() && NewVal.isNegative()) {
// Found negative overflow for unsigned result
if (DstSema.isSaturated())
NewVal = 0;
else if (Overflow)
*Overflow = true;
}
NewVal = NewVal.extOrTrunc(DstWidth);
NewVal.setIsSigned(DstSema.isSigned());
return APFixedPoint(NewVal, DstSema);
}
int APFixedPoint::compare(const APFixedPoint &Other) const {
llvm::APSInt ThisVal = getValue();
llvm::APSInt OtherVal = Other.getValue();
bool ThisSigned = Val.isSigned();
bool OtherSigned = OtherVal.isSigned();
unsigned OtherScale = Other.getScale();
unsigned OtherWidth = OtherVal.getBitWidth();
unsigned CommonWidth = std::max(Val.getBitWidth(), OtherWidth);
// Prevent overflow in the event the widths are the same but the scales differ
CommonWidth += getScale() >= OtherScale ? getScale() - OtherScale
: OtherScale - getScale();
ThisVal = ThisVal.extOrTrunc(CommonWidth);
OtherVal = OtherVal.extOrTrunc(CommonWidth);
unsigned CommonScale = std::max(getScale(), OtherScale);
ThisVal = ThisVal.shl(CommonScale - getScale());
OtherVal = OtherVal.shl(CommonScale - OtherScale);
if (ThisSigned && OtherSigned) {
if (ThisVal.sgt(OtherVal))
return 1;
else if (ThisVal.slt(OtherVal))
return -1;
} else if (!ThisSigned && !OtherSigned) {
if (ThisVal.ugt(OtherVal))
return 1;
else if (ThisVal.ult(OtherVal))
return -1;
} else if (ThisSigned && !OtherSigned) {
if (ThisVal.isSignBitSet())
return -1;
else if (ThisVal.ugt(OtherVal))
return 1;
else if (ThisVal.ult(OtherVal))
return -1;
} else {
// !ThisSigned && OtherSigned
if (OtherVal.isSignBitSet())
return 1;
else if (ThisVal.ugt(OtherVal))
return 1;
else if (ThisVal.ult(OtherVal))
return -1;
}
return 0;
}
APFixedPoint APFixedPoint::getMax(const FixedPointSemantics &Sema) {
bool IsUnsigned = !Sema.isSigned();
auto Val = llvm::APSInt::getMaxValue(Sema.getWidth(), IsUnsigned);
if (IsUnsigned && Sema.hasUnsignedPadding())
Val = Val.lshr(1);
return APFixedPoint(Val, Sema);
}
APFixedPoint APFixedPoint::getMin(const FixedPointSemantics &Sema) {
auto Val = llvm::APSInt::getMinValue(Sema.getWidth(), !Sema.isSigned());
return APFixedPoint(Val, Sema);
}
FixedPointSemantics FixedPointSemantics::getCommonSemantics(
const FixedPointSemantics &Other) const {
unsigned CommonScale = std::max(getScale(), Other.getScale());
unsigned CommonWidth =
std::max(getIntegralBits(), Other.getIntegralBits()) + CommonScale;
bool ResultIsSigned = isSigned() || Other.isSigned();
bool ResultIsSaturated = isSaturated() || Other.isSaturated();
bool ResultHasUnsignedPadding = false;
if (!ResultIsSigned) {
// Both are unsigned.
ResultHasUnsignedPadding = hasUnsignedPadding() &&
Other.hasUnsignedPadding() && !ResultIsSaturated;
}
// If the result is signed, add an extra bit for the sign. Otherwise, if it is
// unsigned and has unsigned padding, we only need to add the extra padding
// bit back if we are not saturating.
if (ResultIsSigned || ResultHasUnsignedPadding)
CommonWidth++;
return FixedPointSemantics(CommonWidth, CommonScale, ResultIsSigned,
ResultIsSaturated, ResultHasUnsignedPadding);
}
APFixedPoint APFixedPoint::add(const APFixedPoint &Other,
bool *Overflow) const {
auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics());
APFixedPoint ConvertedThis = convert(CommonFXSema);
APFixedPoint ConvertedOther = Other.convert(CommonFXSema);
llvm::APSInt ThisVal = ConvertedThis.getValue();
llvm::APSInt OtherVal = ConvertedOther.getValue();
bool Overflowed = false;
llvm::APSInt Result;
if (CommonFXSema.isSaturated()) {
Result = CommonFXSema.isSigned() ? ThisVal.sadd_sat(OtherVal)
: ThisVal.uadd_sat(OtherVal);
} else {
Result = ThisVal.isSigned() ? ThisVal.sadd_ov(OtherVal, Overflowed)
: ThisVal.uadd_ov(OtherVal, Overflowed);
}
if (Overflow)
*Overflow = Overflowed;
return APFixedPoint(Result, CommonFXSema);
}
void APFixedPoint::toString(llvm::SmallVectorImpl<char> &Str) const {
llvm::APSInt Val = getValue();
unsigned Scale = getScale();
if (Val.isSigned() && Val.isNegative() && Val != -Val) {
Val = -Val;
Str.push_back('-');
}
llvm::APSInt IntPart = Val >> Scale;
// Add 4 digits to hold the value after multiplying 10 (the radix)
unsigned Width = Val.getBitWidth() + 4;
llvm::APInt FractPart = Val.zextOrTrunc(Scale).zext(Width);
llvm::APInt FractPartMask = llvm::APInt::getAllOnesValue(Scale).zext(Width);
llvm::APInt RadixInt = llvm::APInt(Width, 10);
IntPart.toString(Str, /*radix=*/10);
Str.push_back('.');
do {
(FractPart * RadixInt)
.lshr(Scale)
.toString(Str, /*radix=*/10, Val.isSigned());
FractPart = (FractPart * RadixInt) & FractPartMask;
} while (FractPart != 0);
}
APFixedPoint APFixedPoint::negate(bool *Overflow) const {
if (!isSaturated()) {
if (Overflow)
*Overflow =
(!isSigned() && Val != 0) || (isSigned() && Val.isMinSignedValue());
return APFixedPoint(-Val, Sema);
}
// We never overflow for saturation
if (Overflow)
*Overflow = false;
if (isSigned())
return Val.isMinSignedValue() ? getMax(Sema) : APFixedPoint(-Val, Sema);
else
return APFixedPoint(Sema);
}
} // namespace clang