Files
llvm/bolt/lib/Rewrite/BinaryPassManager.cpp
Amir Ayupov 52cf07116b [BOLT][NFC] Log through JournalingStreams (#81524)
Make core BOLT functionality more friendly to being used as a
library instead of in our standalone driver llvm-bolt. To
accomplish this, we augment BinaryContext with journaling streams
that are to be used by most BOLT code whenever something needs to
be logged to the screen. Users of the library can decide if logs
should be printed to a file, no file or to the screen, as
before. To illustrate this, this patch adds a new option
`--log-file` that allows the user to redirect BOLT logging to a
file on disk or completely hide it by using
`--log-file=/dev/null`. Future BOLT code should now use
`BinaryContext::outs()` for printing important messages instead of
`llvm::outs()`. A new test log.test enforces this by verifying that
no strings are print to screen once the `--log-file` option is
used.

In previous patches we also added a new BOLTError class to report
common and fatal errors, so code shouldn't call exit(1) now. To
easily handle problems as before (by quitting with exit(1)),
callers can now use
`BinaryContext::logBOLTErrorsAndQuitOnFatal(Error)` whenever code
needs to deal with BOLT errors. To test this, we have fatal.s
that checks we are correctly quitting and printing a fatal error
to the screen.

Because this is a significant change by itself, not all code was
yet ported. Code from Profiler libs (DataAggregator and friends)
still print errors directly to screen.

Co-authored-by: Rafael Auler <rafaelauler@fb.com>

Test Plan: NFC
2024-02-12 14:53:53 -08:00

532 lines
20 KiB
C++

//===- bolt/Rewrite/BinaryPassManager.cpp - Binary-level pass manager -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "bolt/Rewrite/BinaryPassManager.h"
#include "bolt/Passes/ADRRelaxationPass.h"
#include "bolt/Passes/Aligner.h"
#include "bolt/Passes/AllocCombiner.h"
#include "bolt/Passes/AsmDump.h"
#include "bolt/Passes/CMOVConversion.h"
#include "bolt/Passes/FixRISCVCallsPass.h"
#include "bolt/Passes/FixRelaxationPass.h"
#include "bolt/Passes/FrameOptimizer.h"
#include "bolt/Passes/Hugify.h"
#include "bolt/Passes/IdenticalCodeFolding.h"
#include "bolt/Passes/IndirectCallPromotion.h"
#include "bolt/Passes/Inliner.h"
#include "bolt/Passes/Instrumentation.h"
#include "bolt/Passes/JTFootprintReduction.h"
#include "bolt/Passes/LongJmp.h"
#include "bolt/Passes/LoopInversionPass.h"
#include "bolt/Passes/PLTCall.h"
#include "bolt/Passes/PatchEntries.h"
#include "bolt/Passes/RegReAssign.h"
#include "bolt/Passes/ReorderData.h"
#include "bolt/Passes/ReorderFunctions.h"
#include "bolt/Passes/RetpolineInsertion.h"
#include "bolt/Passes/SplitFunctions.h"
#include "bolt/Passes/StokeInfo.h"
#include "bolt/Passes/TailDuplication.h"
#include "bolt/Passes/ThreeWayBranch.h"
#include "bolt/Passes/ValidateInternalCalls.h"
#include "bolt/Passes/ValidateMemRefs.h"
#include "bolt/Passes/VeneerElimination.h"
#include "bolt/Utils/CommandLineOpts.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
#include <memory>
#include <numeric>
using namespace llvm;
namespace opts {
extern cl::opt<bool> PrintAll;
extern cl::opt<bool> PrintDynoStats;
extern cl::opt<bool> DumpDotAll;
extern cl::opt<std::string> AsmDump;
extern cl::opt<bolt::PLTCall::OptType> PLT;
static cl::opt<bool>
DynoStatsAll("dyno-stats-all",
cl::desc("print dyno stats after each stage"),
cl::ZeroOrMore, cl::Hidden, cl::cat(BoltCategory));
static cl::opt<bool>
EliminateUnreachable("eliminate-unreachable",
cl::desc("eliminate unreachable code"), cl::init(true),
cl::cat(BoltOptCategory));
cl::opt<bool> ICF("icf", cl::desc("fold functions with identical code"),
cl::cat(BoltOptCategory));
static cl::opt<bool> JTFootprintReductionFlag(
"jt-footprint-reduction",
cl::desc("make jump tables size smaller at the cost of using more "
"instructions at jump sites"),
cl::cat(BoltOptCategory));
static cl::opt<bool>
KeepNops("keep-nops",
cl::desc("keep no-op instructions. By default they are removed."),
cl::Hidden, cl::cat(BoltOptCategory));
cl::opt<bool> NeverPrint("never-print", cl::desc("never print"),
cl::ReallyHidden, cl::cat(BoltOptCategory));
cl::opt<bool>
PrintAfterBranchFixup("print-after-branch-fixup",
cl::desc("print function after fixing local branches"),
cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<bool>
PrintAfterLowering("print-after-lowering",
cl::desc("print function after instruction lowering"),
cl::Hidden, cl::cat(BoltOptCategory));
cl::opt<bool>
PrintFinalized("print-finalized",
cl::desc("print function after CFG is finalized"),
cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<bool>
PrintFOP("print-fop",
cl::desc("print functions after frame optimizer pass"), cl::Hidden,
cl::cat(BoltOptCategory));
static cl::opt<bool>
PrintICF("print-icf", cl::desc("print functions after ICF optimization"),
cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<bool>
PrintICP("print-icp",
cl::desc("print functions after indirect call promotion"),
cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<bool>
PrintInline("print-inline",
cl::desc("print functions after inlining optimization"),
cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<bool> PrintJTFootprintReduction(
"print-after-jt-footprint-reduction",
cl::desc("print function after jt-footprint-reduction pass"), cl::Hidden,
cl::cat(BoltOptCategory));
static cl::opt<bool>
PrintLongJmp("print-longjmp",
cl::desc("print functions after longjmp pass"), cl::Hidden,
cl::cat(BoltOptCategory));
cl::opt<bool>
PrintNormalized("print-normalized",
cl::desc("print functions after CFG is normalized"),
cl::Hidden, cl::cat(BoltCategory));
static cl::opt<bool> PrintOptimizeBodyless(
"print-optimize-bodyless",
cl::desc("print functions after bodyless optimization"), cl::Hidden,
cl::cat(BoltOptCategory));
static cl::opt<bool>
PrintPeepholes("print-peepholes",
cl::desc("print functions after peephole optimization"),
cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<bool>
PrintPLT("print-plt", cl::desc("print functions after PLT optimization"),
cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<bool>
PrintProfileStats("print-profile-stats",
cl::desc("print profile quality/bias analysis"),
cl::cat(BoltCategory));
static cl::opt<bool>
PrintRegReAssign("print-regreassign",
cl::desc("print functions after regreassign pass"),
cl::Hidden, cl::cat(BoltOptCategory));
cl::opt<bool>
PrintReordered("print-reordered",
cl::desc("print functions after layout optimization"),
cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<bool>
PrintReorderedFunctions("print-reordered-functions",
cl::desc("print functions after clustering"),
cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<bool> PrintRetpolineInsertion(
"print-retpoline-insertion",
cl::desc("print functions after retpoline insertion pass"), cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<bool> PrintSCTC(
"print-sctc",
cl::desc("print functions after conditional tail call simplification"),
cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<bool> PrintSimplifyROLoads(
"print-simplify-rodata-loads",
cl::desc("print functions after simplification of RO data loads"),
cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<bool>
PrintSplit("print-split", cl::desc("print functions after code splitting"),
cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<bool>
PrintStoke("print-stoke", cl::desc("print functions after stoke analysis"),
cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<bool>
PrintFixRelaxations("print-fix-relaxations",
cl::desc("print functions after fix relaxations pass"),
cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<bool>
PrintFixRISCVCalls("print-fix-riscv-calls",
cl::desc("print functions after fix RISCV calls pass"),
cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<bool> PrintVeneerElimination(
"print-veneer-elimination",
cl::desc("print functions after veneer elimination pass"), cl::Hidden,
cl::cat(BoltOptCategory));
static cl::opt<bool>
PrintUCE("print-uce",
cl::desc("print functions after unreachable code elimination"),
cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<bool> RegReAssign(
"reg-reassign",
cl::desc(
"reassign registers so as to avoid using REX prefixes in hot code"),
cl::cat(BoltOptCategory));
static cl::opt<bool> SimplifyConditionalTailCalls(
"simplify-conditional-tail-calls",
cl::desc("simplify conditional tail calls by removing unnecessary jumps"),
cl::init(true), cl::cat(BoltOptCategory));
static cl::opt<bool> SimplifyRODataLoads(
"simplify-rodata-loads",
cl::desc("simplify loads from read-only sections by replacing the memory "
"operand with the constant found in the corresponding section"),
cl::cat(BoltOptCategory));
static cl::list<std::string>
SpecializeMemcpy1("memcpy1-spec",
cl::desc("list of functions with call sites for which to specialize memcpy() "
"for size 1"),
cl::value_desc("func1,func2:cs1:cs2,func3:cs1,..."),
cl::ZeroOrMore, cl::cat(BoltOptCategory));
static cl::opt<bool> Stoke("stoke", cl::desc("turn on the stoke analysis"),
cl::cat(BoltOptCategory));
static cl::opt<bool> StringOps(
"inline-memcpy",
cl::desc("inline memcpy using 'rep movsb' instruction (X86-only)"),
cl::cat(BoltOptCategory));
static cl::opt<bool> StripRepRet(
"strip-rep-ret",
cl::desc("strip 'repz' prefix from 'repz retq' sequence (on by default)"),
cl::init(true), cl::cat(BoltOptCategory));
static cl::opt<bool> VerifyCFG("verify-cfg",
cl::desc("verify the CFG after every pass"),
cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<bool> ThreeWayBranchFlag("three-way-branch",
cl::desc("reorder three way branches"),
cl::ReallyHidden,
cl::cat(BoltOptCategory));
static cl::opt<bool> CMOVConversionFlag("cmov-conversion",
cl::desc("fold jcc+mov into cmov"),
cl::ReallyHidden,
cl::cat(BoltOptCategory));
} // namespace opts
namespace llvm {
namespace bolt {
using namespace opts;
const char BinaryFunctionPassManager::TimerGroupName[] = "passman";
const char BinaryFunctionPassManager::TimerGroupDesc[] =
"Binary Function Pass Manager";
Error BinaryFunctionPassManager::runPasses() {
auto &BFs = BC.getBinaryFunctions();
for (size_t PassIdx = 0; PassIdx < Passes.size(); PassIdx++) {
const std::pair<const bool, std::unique_ptr<BinaryFunctionPass>>
&OptPassPair = Passes[PassIdx];
if (!OptPassPair.first)
continue;
const std::unique_ptr<BinaryFunctionPass> &Pass = OptPassPair.second;
std::string PassIdName =
formatv("{0:2}_{1}", PassIdx, Pass->getName()).str();
if (opts::Verbosity > 0)
BC.outs() << "BOLT-INFO: Starting pass: " << Pass->getName() << "\n";
NamedRegionTimer T(Pass->getName(), Pass->getName(), TimerGroupName,
TimerGroupDesc, TimeOpts);
Error E = Error::success();
callWithDynoStats(
BC.outs(),
[this, &E, &Pass] {
E = joinErrors(std::move(E), Pass->runOnFunctions(BC));
},
BFs, Pass->getName(), opts::DynoStatsAll, BC.isAArch64());
if (E)
return Error(std::move(E));
if (opts::VerifyCFG &&
!std::accumulate(
BFs.begin(), BFs.end(), true,
[](const bool Valid,
const std::pair<const uint64_t, BinaryFunction> &It) {
return Valid && It.second.validateCFG();
})) {
return createFatalBOLTError(
Twine("BOLT-ERROR: Invalid CFG detected after pass ") +
Twine(Pass->getName()) + Twine("\n"));
}
if (opts::Verbosity > 0)
BC.outs() << "BOLT-INFO: Finished pass: " << Pass->getName() << "\n";
if (!opts::PrintAll && !opts::DumpDotAll && !Pass->printPass())
continue;
const std::string Message = std::string("after ") + Pass->getName();
for (auto &It : BFs) {
BinaryFunction &Function = It.second;
if (!Pass->shouldPrint(Function))
continue;
Function.print(BC.outs(), Message);
if (opts::DumpDotAll)
Function.dumpGraphForPass(PassIdName);
}
}
return Error::success();
}
Error BinaryFunctionPassManager::runAllPasses(BinaryContext &BC) {
BinaryFunctionPassManager Manager(BC);
const DynoStats InitialDynoStats =
getDynoStats(BC.getBinaryFunctions(), BC.isAArch64());
Manager.registerPass(std::make_unique<AsmDumpPass>(),
opts::AsmDump.getNumOccurrences());
if (BC.isAArch64()) {
Manager.registerPass(std::make_unique<FixRelaxations>(PrintFixRelaxations));
Manager.registerPass(
std::make_unique<VeneerElimination>(PrintVeneerElimination));
}
if (BC.isRISCV()) {
Manager.registerPass(
std::make_unique<FixRISCVCallsPass>(PrintFixRISCVCalls));
}
// Here we manage dependencies/order manually, since passes are run in the
// order they're registered.
// Run this pass first to use stats for the original functions.
Manager.registerPass(std::make_unique<PrintProgramStats>(NeverPrint));
if (opts::PrintProfileStats)
Manager.registerPass(std::make_unique<PrintProfileStats>(NeverPrint));
Manager.registerPass(std::make_unique<ValidateInternalCalls>(NeverPrint));
Manager.registerPass(std::make_unique<ValidateMemRefs>(NeverPrint));
if (opts::Instrument)
Manager.registerPass(std::make_unique<Instrumentation>(NeverPrint));
else if (opts::Hugify)
Manager.registerPass(std::make_unique<HugePage>(NeverPrint));
Manager.registerPass(std::make_unique<ShortenInstructions>(NeverPrint));
Manager.registerPass(std::make_unique<RemoveNops>(NeverPrint),
!opts::KeepNops);
Manager.registerPass(std::make_unique<NormalizeCFG>(PrintNormalized));
Manager.registerPass(std::make_unique<StripRepRet>(NeverPrint),
opts::StripRepRet);
Manager.registerPass(std::make_unique<IdenticalCodeFolding>(PrintICF),
opts::ICF);
Manager.registerPass(
std::make_unique<SpecializeMemcpy1>(NeverPrint, opts::SpecializeMemcpy1),
!opts::SpecializeMemcpy1.empty());
Manager.registerPass(std::make_unique<InlineMemcpy>(NeverPrint),
opts::StringOps);
Manager.registerPass(std::make_unique<IndirectCallPromotion>(PrintICP));
Manager.registerPass(
std::make_unique<JTFootprintReduction>(PrintJTFootprintReduction),
opts::JTFootprintReductionFlag);
Manager.registerPass(
std::make_unique<SimplifyRODataLoads>(PrintSimplifyROLoads),
opts::SimplifyRODataLoads);
Manager.registerPass(std::make_unique<RegReAssign>(PrintRegReAssign),
opts::RegReAssign);
Manager.registerPass(std::make_unique<Inliner>(PrintInline));
Manager.registerPass(std::make_unique<IdenticalCodeFolding>(PrintICF),
opts::ICF);
Manager.registerPass(std::make_unique<PLTCall>(PrintPLT));
Manager.registerPass(std::make_unique<ThreeWayBranch>(),
opts::ThreeWayBranchFlag);
Manager.registerPass(std::make_unique<ReorderBasicBlocks>(PrintReordered));
Manager.registerPass(std::make_unique<EliminateUnreachableBlocks>(PrintUCE),
opts::EliminateUnreachable);
Manager.registerPass(std::make_unique<SplitFunctions>(PrintSplit));
Manager.registerPass(std::make_unique<LoopInversionPass>());
Manager.registerPass(std::make_unique<TailDuplication>());
Manager.registerPass(std::make_unique<CMOVConversion>(),
opts::CMOVConversionFlag);
// This pass syncs local branches with CFG. If any of the following
// passes breaks the sync - they either need to re-run the pass or
// fix branches consistency internally.
Manager.registerPass(std::make_unique<FixupBranches>(PrintAfterBranchFixup));
// This pass should come close to last since it uses the estimated hot
// size of a function to determine the order. It should definitely
// also happen after any changes to the call graph are made, e.g. inlining.
Manager.registerPass(
std::make_unique<ReorderFunctions>(PrintReorderedFunctions));
// This is the second run of the SplitFunctions pass required by certain
// splitting strategies (e.g. cdsplit). Running the SplitFunctions pass again
// after ReorderFunctions allows the finalized function order to be utilized
// to make more sophisticated splitting decisions, like hot-warm-cold
// splitting.
Manager.registerPass(std::make_unique<SplitFunctions>(PrintSplit));
// Print final dyno stats right while CFG and instruction analysis are intact.
Manager.registerPass(
std::make_unique<DynoStatsPrintPass>(
InitialDynoStats, "after all optimizations before SCTC and FOP"),
opts::PrintDynoStats || opts::DynoStatsAll);
// Add the StokeInfo pass, which extract functions for stoke optimization and
// get the liveness information for them
Manager.registerPass(std::make_unique<StokeInfo>(PrintStoke), opts::Stoke);
// This pass introduces conditional jumps into external functions.
// Between extending CFG to support this and isolating this pass we chose
// the latter. Thus this pass will do double jump removal and unreachable
// code elimination if necessary and won't rely on peepholes/UCE for these
// optimizations.
// More generally this pass should be the last optimization pass that
// modifies branches/control flow. This pass is run after function
// reordering so that it can tell whether calls are forward/backward
// accurately.
Manager.registerPass(
std::make_unique<SimplifyConditionalTailCalls>(PrintSCTC),
opts::SimplifyConditionalTailCalls);
Manager.registerPass(std::make_unique<Peepholes>(PrintPeepholes));
Manager.registerPass(std::make_unique<AlignerPass>());
// Perform reordering on data contained in one or more sections using
// memory profiling data.
Manager.registerPass(std::make_unique<ReorderData>());
if (BC.isAArch64()) {
Manager.registerPass(std::make_unique<ADRRelaxationPass>());
// Tighten branches according to offset differences between branch and
// targets. No extra instructions after this pass, otherwise we may have
// relocations out of range and crash during linking.
Manager.registerPass(std::make_unique<LongJmpPass>(PrintLongJmp));
}
// This pass should always run last.*
Manager.registerPass(std::make_unique<FinalizeFunctions>(PrintFinalized));
// FrameOptimizer has an implicit dependency on FinalizeFunctions.
// FrameOptimizer move values around and needs to update CFIs. To do this, it
// must read CFI, interpret it and rewrite it, so CFIs need to be correctly
// placed according to the final layout.
Manager.registerPass(std::make_unique<FrameOptimizerPass>(PrintFOP));
Manager.registerPass(std::make_unique<AllocCombinerPass>(PrintFOP));
Manager.registerPass(
std::make_unique<RetpolineInsertion>(PrintRetpolineInsertion));
// Assign each function an output section.
Manager.registerPass(std::make_unique<AssignSections>());
// Patch original function entries
if (BC.HasRelocations)
Manager.registerPass(std::make_unique<PatchEntries>());
// This pass turns tail calls into jumps which makes them invisible to
// function reordering. It's unsafe to use any CFG or instruction analysis
// after this point.
Manager.registerPass(
std::make_unique<InstructionLowering>(PrintAfterLowering));
// In non-relocation mode, mark functions that do not fit into their original
// space as non-simple if we have to (e.g. for correct debug info update).
// NOTE: this pass depends on finalized code.
if (!BC.HasRelocations)
Manager.registerPass(std::make_unique<CheckLargeFunctions>(NeverPrint));
Manager.registerPass(std::make_unique<LowerAnnotations>(NeverPrint));
// Check for dirty state of MCSymbols caused by running calculateEmittedSize
// in parallel and restore them
Manager.registerPass(std::make_unique<CleanMCState>(NeverPrint));
return Manager.runPasses();
}
} // namespace bolt
} // namespace llvm