mirror of
https://github.com/intel/llvm.git
synced 2026-01-27 06:06:34 +08:00
A VectorTypeCastOp can only be used to lower between statically sized contiguous memrefs of scalar and matching vector type. The sizes and strides are thus fully static and easy to determine. A relevant test is added. This is a step towards solving tensorflow/mlir#189. PiperOrigin-RevId: 275538981
297 lines
12 KiB
C++
297 lines
12 KiB
C++
//===- LowerToLLVMDialect.cpp - conversion from Linalg to LLVM dialect ----===//
|
|
//
|
|
// Copyright 2019 The MLIR Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
// =============================================================================
|
|
|
|
#include "mlir/Conversion/VectorToLLVM/VectorToLLVM.h"
|
|
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
|
|
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/Dialect/VectorOps/VectorOps.h"
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/MLIRContext.h"
|
|
#include "mlir/IR/Module.h"
|
|
#include "mlir/IR/Operation.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/IR/StandardTypes.h"
|
|
#include "mlir/IR/Types.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Pass/PassManager.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
using namespace mlir;
|
|
|
|
template <typename T>
|
|
static LLVM::LLVMType getPtrToElementType(T containerType,
|
|
LLVMTypeConverter &lowering) {
|
|
return lowering.convertType(containerType.getElementType())
|
|
.template cast<LLVM::LLVMType>()
|
|
.getPointerTo();
|
|
}
|
|
|
|
class ExtractElementOpConversion : public LLVMOpLowering {
|
|
public:
|
|
explicit ExtractElementOpConversion(MLIRContext *context,
|
|
LLVMTypeConverter &typeConverter)
|
|
: LLVMOpLowering(vector::ExtractElementOp::getOperationName(), context,
|
|
typeConverter) {}
|
|
|
|
PatternMatchResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto loc = op->getLoc();
|
|
auto adaptor = vector::ExtractElementOpOperandAdaptor(operands);
|
|
auto extractOp = cast<vector::ExtractElementOp>(op);
|
|
auto vectorType = extractOp.vector()->getType().cast<VectorType>();
|
|
auto resultType = extractOp.getResult()->getType();
|
|
auto llvmResultType = lowering.convertType(resultType);
|
|
|
|
auto positionArrayAttr = extractOp.position();
|
|
// One-shot extraction of vector from array (only requires extractvalue).
|
|
if (resultType.isa<VectorType>()) {
|
|
Value *extracted = rewriter.create<LLVM::ExtractValueOp>(
|
|
loc, llvmResultType, adaptor.vector(), positionArrayAttr);
|
|
rewriter.replaceOp(op, extracted);
|
|
return matchSuccess();
|
|
}
|
|
|
|
// Potential extraction of 1-D vector from struct.
|
|
auto *context = op->getContext();
|
|
Value *extracted = adaptor.vector();
|
|
auto positionAttrs = positionArrayAttr.getValue();
|
|
auto i32Type = rewriter.getIntegerType(32);
|
|
if (positionAttrs.size() > 1) {
|
|
auto nDVectorType = vectorType;
|
|
auto oneDVectorType = VectorType::get(nDVectorType.getShape().take_back(),
|
|
nDVectorType.getElementType());
|
|
auto nMinusOnePositionAttrs =
|
|
ArrayAttr::get(positionAttrs.drop_back(), context);
|
|
extracted = rewriter.create<LLVM::ExtractValueOp>(
|
|
loc, lowering.convertType(oneDVectorType), extracted,
|
|
nMinusOnePositionAttrs);
|
|
}
|
|
|
|
// Remaining extraction of element from 1-D LLVM vector
|
|
auto position = positionAttrs.back().cast<IntegerAttr>();
|
|
auto constant = rewriter.create<LLVM::ConstantOp>(
|
|
loc, lowering.convertType(i32Type), position);
|
|
extracted =
|
|
rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant);
|
|
rewriter.replaceOp(op, extracted);
|
|
|
|
return matchSuccess();
|
|
}
|
|
};
|
|
|
|
class OuterProductOpConversion : public LLVMOpLowering {
|
|
public:
|
|
explicit OuterProductOpConversion(MLIRContext *context,
|
|
LLVMTypeConverter &typeConverter)
|
|
: LLVMOpLowering(vector::OuterProductOp::getOperationName(), context,
|
|
typeConverter) {}
|
|
|
|
PatternMatchResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto loc = op->getLoc();
|
|
auto adaptor = vector::OuterProductOpOperandAdaptor(operands);
|
|
auto *ctx = op->getContext();
|
|
auto vLHS = adaptor.lhs()->getType().cast<LLVM::LLVMType>();
|
|
auto vRHS = adaptor.rhs()->getType().cast<LLVM::LLVMType>();
|
|
auto rankLHS = vLHS.getUnderlyingType()->getVectorNumElements();
|
|
auto rankRHS = vRHS.getUnderlyingType()->getVectorNumElements();
|
|
auto llvmArrayOfVectType = lowering.convertType(
|
|
cast<vector::OuterProductOp>(op).getResult()->getType());
|
|
Value *desc = rewriter.create<LLVM::UndefOp>(loc, llvmArrayOfVectType);
|
|
Value *a = adaptor.lhs(), *b = adaptor.rhs();
|
|
Value *acc = adaptor.acc().empty() ? nullptr : adaptor.acc().front();
|
|
SmallVector<Value *, 8> lhs, accs;
|
|
lhs.reserve(rankLHS);
|
|
accs.reserve(rankLHS);
|
|
for (unsigned d = 0, e = rankLHS; d < e; ++d) {
|
|
// shufflevector explicitly requires i32.
|
|
auto attr = rewriter.getI32IntegerAttr(d);
|
|
SmallVector<Attribute, 4> bcastAttr(rankRHS, attr);
|
|
auto bcastArrayAttr = ArrayAttr::get(bcastAttr, ctx);
|
|
Value *aD = nullptr, *accD = nullptr;
|
|
// 1. Broadcast the element a[d] into vector aD.
|
|
aD = rewriter.create<LLVM::ShuffleVectorOp>(loc, a, a, bcastArrayAttr);
|
|
// 2. If acc is present, extract 1-d vector acc[d] into accD.
|
|
if (acc)
|
|
accD = rewriter.create<LLVM::ExtractValueOp>(
|
|
loc, vRHS, acc, rewriter.getI64ArrayAttr(d));
|
|
// 3. Compute aD outer b (plus accD, if relevant).
|
|
Value *aOuterbD =
|
|
accD ? rewriter.create<LLVM::FMulAddOp>(loc, vRHS, aD, b, accD)
|
|
.getResult()
|
|
: rewriter.create<LLVM::FMulOp>(loc, aD, b).getResult();
|
|
// 4. Insert as value `d` in the descriptor.
|
|
desc = rewriter.create<LLVM::InsertValueOp>(loc, llvmArrayOfVectType,
|
|
desc, aOuterbD,
|
|
rewriter.getI64ArrayAttr(d));
|
|
}
|
|
rewriter.replaceOp(op, desc);
|
|
return matchSuccess();
|
|
}
|
|
};
|
|
|
|
class VectorTypeCastOpConversion : public LLVMOpLowering {
|
|
public:
|
|
explicit VectorTypeCastOpConversion(MLIRContext *context,
|
|
LLVMTypeConverter &typeConverter)
|
|
: LLVMOpLowering(vector::VectorTypeCastOp::getOperationName(), context,
|
|
typeConverter) {}
|
|
|
|
PatternMatchResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto loc = op->getLoc();
|
|
vector::VectorTypeCastOp castOp = cast<vector::VectorTypeCastOp>(op);
|
|
MemRefType sourceMemRefType =
|
|
castOp.getOperand()->getType().cast<MemRefType>();
|
|
MemRefType targetMemRefType =
|
|
castOp.getResult()->getType().cast<MemRefType>();
|
|
|
|
// Only static shape casts supported atm.
|
|
if (!sourceMemRefType.hasStaticShape() ||
|
|
!targetMemRefType.hasStaticShape())
|
|
return matchFailure();
|
|
|
|
Value *sourceMemRef = operands[0];
|
|
auto llvmSourceDescriptorTy =
|
|
sourceMemRef->getType().dyn_cast<LLVM::LLVMType>();
|
|
if (!llvmSourceDescriptorTy || !llvmSourceDescriptorTy.isStructTy())
|
|
return matchFailure();
|
|
|
|
auto llvmTargetDescriptorTy = lowering.convertType(targetMemRefType)
|
|
.dyn_cast_or_null<LLVM::LLVMType>();
|
|
if (!llvmTargetDescriptorTy || !llvmTargetDescriptorTy.isStructTy())
|
|
return matchFailure();
|
|
|
|
Type llvmSourceElementTy = llvmSourceDescriptorTy.getStructElementType(
|
|
LLVMTypeConverter::kPtrPosInMemRefDescriptor);
|
|
Type llvmTargetElementTy = llvmTargetDescriptorTy.getStructElementType(
|
|
LLVMTypeConverter::kPtrPosInMemRefDescriptor);
|
|
|
|
int64_t offset;
|
|
SmallVector<int64_t, 4> strides;
|
|
auto successStrides =
|
|
getStridesAndOffset(targetMemRefType, strides, offset);
|
|
bool isContiguous = (strides.back() == 1);
|
|
if (isContiguous) {
|
|
auto sizes = targetMemRefType.getShape();
|
|
for (int index = 0, e = strides.size() - 2; index < e; ++index) {
|
|
if (strides[index] != strides[index + 1] * sizes[index + 1]) {
|
|
isContiguous = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// Only contiguous tensors supported atm.
|
|
if (failed(successStrides) || !isContiguous)
|
|
return matchFailure();
|
|
|
|
auto int64Ty = LLVM::LLVMType::getInt64Ty(lowering.getDialect());
|
|
|
|
// Create descriptor.
|
|
Value *desc = rewriter.create<LLVM::UndefOp>(loc, llvmTargetDescriptorTy);
|
|
// Set ptr.
|
|
Value *ptr = rewriter.create<LLVM::ExtractValueOp>(
|
|
loc, llvmSourceElementTy, sourceMemRef,
|
|
rewriter.getIndexArrayAttr(
|
|
LLVMTypeConverter::kPtrPosInMemRefDescriptor));
|
|
ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr);
|
|
desc = rewriter.create<LLVM::InsertValueOp>(
|
|
op->getLoc(), llvmTargetDescriptorTy, desc, ptr,
|
|
rewriter.getIndexArrayAttr(
|
|
LLVMTypeConverter::kPtrPosInMemRefDescriptor));
|
|
// Fill offset 0.
|
|
auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0);
|
|
auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr);
|
|
desc = rewriter.create<LLVM::InsertValueOp>(
|
|
op->getLoc(), llvmTargetDescriptorTy, desc, zero,
|
|
rewriter.getIndexArrayAttr(
|
|
LLVMTypeConverter::kOffsetPosInMemRefDescriptor));
|
|
// Fill size and stride descriptors in memref.
|
|
for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) {
|
|
int64_t index = indexedSize.index();
|
|
auto sizeAttr =
|
|
rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value());
|
|
auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr);
|
|
desc = rewriter.create<LLVM::InsertValueOp>(
|
|
op->getLoc(), llvmTargetDescriptorTy, desc, size,
|
|
rewriter.getI64ArrayAttr(
|
|
{LLVMTypeConverter::kSizePosInMemRefDescriptor, index}));
|
|
auto strideAttr =
|
|
rewriter.getIntegerAttr(rewriter.getIndexType(), strides[index]);
|
|
auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr);
|
|
desc = rewriter.create<LLVM::InsertValueOp>(
|
|
op->getLoc(), llvmTargetDescriptorTy, desc, stride,
|
|
rewriter.getI64ArrayAttr(
|
|
{LLVMTypeConverter::kStridePosInMemRefDescriptor, index}));
|
|
}
|
|
|
|
rewriter.replaceOp(op, desc);
|
|
return matchSuccess();
|
|
}
|
|
};
|
|
|
|
/// Populate the given list with patterns that convert from Vector to LLVM.
|
|
void mlir::populateVectorToLLVMConversionPatterns(
|
|
LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
|
|
patterns.insert<ExtractElementOpConversion, OuterProductOpConversion,
|
|
VectorTypeCastOpConversion>(
|
|
converter.getDialect()->getContext(), converter);
|
|
}
|
|
|
|
namespace {
|
|
struct LowerVectorToLLVMPass : public ModulePass<LowerVectorToLLVMPass> {
|
|
void runOnModule() override;
|
|
};
|
|
} // namespace
|
|
|
|
void LowerVectorToLLVMPass::runOnModule() {
|
|
// Convert to the LLVM IR dialect using the converter defined above.
|
|
OwningRewritePatternList patterns;
|
|
LLVMTypeConverter converter(&getContext());
|
|
populateVectorToLLVMConversionPatterns(converter, patterns);
|
|
populateStdToLLVMConversionPatterns(converter, patterns);
|
|
|
|
ConversionTarget target(getContext());
|
|
target.addLegalDialect<LLVM::LLVMDialect>();
|
|
target.addDynamicallyLegalOp<FuncOp>(
|
|
[&](FuncOp op) { return converter.isSignatureLegal(op.getType()); });
|
|
if (failed(
|
|
applyPartialConversion(getModule(), target, patterns, &converter))) {
|
|
signalPassFailure();
|
|
}
|
|
}
|
|
|
|
OpPassBase<ModuleOp> *mlir::createLowerVectorToLLVMPass() {
|
|
return new LowerVectorToLLVMPass();
|
|
}
|
|
|
|
static PassRegistration<LowerVectorToLLVMPass>
|
|
pass("convert-vector-to-llvm",
|
|
"Lower the operations from the vector dialect into the LLVM dialect");
|