mirror of
https://github.com/intel/llvm.git
synced 2026-01-26 12:26:52 +08:00
Summary: `mlir-rocm-runner` is introduced in this commit to execute GPU modules on ROCm platform. A small wrapper to encapsulate ROCm's HIP runtime API is also inside the commit. Due to behavior of ROCm, raw pointers inside memrefs passed to `gpu.launch` must be modified on the host side to properly capture the pointer values addressable on the GPU. LLVM MC is used to assemble AMD GCN ISA coming out from `ConvertGPUKernelToBlobPass` to binary form, and LLD is used to produce a shared ELF object which could be loaded by ROCm HIP runtime. gfx900 is the default target be used right now, although it could be altered via an option in `mlir-rocm-runner`. Future revisions may consider using ROCm Agent Enumerator to detect the right target on the system. Notice AMDGPU Code Object V2 is used in this revision. Future enhancements may upgrade to AMDGPU Code Object V3. Bitcode libraries in ROCm-Device-Libs, which implements math routines exposed in `rocdl` dialect are not yet linked, and is left as a TODO in the logic. Reviewers: herhut Subscribers: mgorny, tpr, dexonsmith, mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, csigg, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, jurahul, llvm-commits Tags: #mlir, #llvm Differential Revision: https://reviews.llvm.org/D80676
470 lines
20 KiB
C++
470 lines
20 KiB
C++
//===- ConvertLaunchFuncToGpuRuntimeCalls.cpp - MLIR GPU lowering passes --===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a pass to convert gpu.launch_func op into a sequence of
|
|
// GPU runtime calls. As most of GPU runtimes does not have a stable published
|
|
// ABI, this pass uses a slim runtime layer that builds on top of the public
|
|
// API from GPU runtime headers.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Conversion/GPUCommon/GPUCommonPass.h"
|
|
|
|
#include "../PassDetail.h"
|
|
#include "mlir/Dialect/GPU/GPUDialect.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/Function.h"
|
|
#include "mlir/IR/Module.h"
|
|
#include "mlir/IR/StandardTypes.h"
|
|
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
|
|
using namespace mlir;
|
|
|
|
// To avoid name mangling, these are defined in the mini-runtime file.
|
|
static constexpr const char *kGpuModuleLoadName = "mgpuModuleLoad";
|
|
static constexpr const char *kGpuModuleGetFunctionName =
|
|
"mgpuModuleGetFunction";
|
|
static constexpr const char *kGpuLaunchKernelName = "mgpuLaunchKernel";
|
|
static constexpr const char *kGpuGetStreamHelperName = "mgpuGetStreamHelper";
|
|
static constexpr const char *kGpuStreamSynchronizeName =
|
|
"mgpuStreamSynchronize";
|
|
static constexpr const char *kGpuMemHostRegisterName = "mgpuMemHostRegister";
|
|
static constexpr const char *kGpuBinaryStorageSuffix = "_gpubin_cst";
|
|
|
|
namespace {
|
|
|
|
/// A pass to convert gpu.launch_func operations into a sequence of GPU
|
|
/// runtime calls. Currently it supports CUDA and ROCm (HIP).
|
|
///
|
|
/// In essence, a gpu.launch_func operations gets compiled into the following
|
|
/// sequence of runtime calls:
|
|
///
|
|
/// * moduleLoad -- loads the module given the cubin / hsaco data
|
|
/// * moduleGetFunction -- gets a handle to the actual kernel function
|
|
/// * getStreamHelper -- initializes a new compute stream on GPU
|
|
/// * launchKernel -- launches the kernel on a stream
|
|
/// * streamSynchronize -- waits for operations on the stream to finish
|
|
///
|
|
/// Intermediate data structures are allocated on the stack.
|
|
class GpuLaunchFuncToGpuRuntimeCallsPass
|
|
: public ConvertGpuLaunchFuncToGpuRuntimeCallsBase<
|
|
GpuLaunchFuncToGpuRuntimeCallsPass> {
|
|
private:
|
|
LLVM::LLVMDialect *getLLVMDialect() { return llvmDialect; }
|
|
|
|
llvm::LLVMContext &getLLVMContext() {
|
|
return getLLVMDialect()->getLLVMContext();
|
|
}
|
|
|
|
void initializeCachedTypes() {
|
|
const llvm::Module &module = llvmDialect->getLLVMModule();
|
|
llvmVoidType = LLVM::LLVMType::getVoidTy(llvmDialect);
|
|
llvmPointerType = LLVM::LLVMType::getInt8PtrTy(llvmDialect);
|
|
llvmPointerPointerType = llvmPointerType.getPointerTo();
|
|
llvmInt8Type = LLVM::LLVMType::getInt8Ty(llvmDialect);
|
|
llvmInt32Type = LLVM::LLVMType::getInt32Ty(llvmDialect);
|
|
llvmInt64Type = LLVM::LLVMType::getInt64Ty(llvmDialect);
|
|
llvmIntPtrType = LLVM::LLVMType::getIntNTy(
|
|
llvmDialect, module.getDataLayout().getPointerSizeInBits());
|
|
}
|
|
|
|
LLVM::LLVMType getVoidType() { return llvmVoidType; }
|
|
|
|
LLVM::LLVMType getPointerType() { return llvmPointerType; }
|
|
|
|
LLVM::LLVMType getPointerPointerType() { return llvmPointerPointerType; }
|
|
|
|
LLVM::LLVMType getInt8Type() { return llvmInt8Type; }
|
|
|
|
LLVM::LLVMType getInt32Type() { return llvmInt32Type; }
|
|
|
|
LLVM::LLVMType getInt64Type() { return llvmInt64Type; }
|
|
|
|
LLVM::LLVMType getIntPtrType() {
|
|
const llvm::Module &module = getLLVMDialect()->getLLVMModule();
|
|
return LLVM::LLVMType::getIntNTy(
|
|
getLLVMDialect(), module.getDataLayout().getPointerSizeInBits());
|
|
}
|
|
|
|
LLVM::LLVMType getGpuRuntimeResultType() {
|
|
// This is declared as an enum in both CUDA and ROCm (HIP), but helpers
|
|
// use i32.
|
|
return getInt32Type();
|
|
}
|
|
|
|
// Allocate a void pointer on the stack.
|
|
Value allocatePointer(OpBuilder &builder, Location loc) {
|
|
auto one = builder.create<LLVM::ConstantOp>(loc, getInt32Type(),
|
|
builder.getI32IntegerAttr(1));
|
|
return builder.create<LLVM::AllocaOp>(loc, getPointerPointerType(), one,
|
|
/*alignment=*/0);
|
|
}
|
|
|
|
void declareGpuRuntimeFunctions(Location loc);
|
|
void addParamToList(OpBuilder &builder, Location loc, Value param, Value list,
|
|
unsigned pos, Value one);
|
|
Value setupParamsArray(gpu::LaunchFuncOp launchOp, OpBuilder &builder);
|
|
Value generateKernelNameConstant(StringRef moduleName, StringRef name,
|
|
Location loc, OpBuilder &builder);
|
|
void translateGpuLaunchCalls(mlir::gpu::LaunchFuncOp launchOp);
|
|
|
|
public:
|
|
GpuLaunchFuncToGpuRuntimeCallsPass() = default;
|
|
GpuLaunchFuncToGpuRuntimeCallsPass(StringRef gpuBinaryAnnotation) {
|
|
this->gpuBinaryAnnotation = gpuBinaryAnnotation.str();
|
|
}
|
|
|
|
// Run the dialect converter on the module.
|
|
void runOnOperation() override {
|
|
// Cache the LLVMDialect for the current module.
|
|
llvmDialect = getContext().getRegisteredDialect<LLVM::LLVMDialect>();
|
|
// Cache the used LLVM types.
|
|
initializeCachedTypes();
|
|
|
|
getOperation().walk(
|
|
[this](mlir::gpu::LaunchFuncOp op) { translateGpuLaunchCalls(op); });
|
|
|
|
// GPU kernel modules are no longer necessary since we have a global
|
|
// constant with the CUBIN, or HSACO data.
|
|
for (auto m :
|
|
llvm::make_early_inc_range(getOperation().getOps<gpu::GPUModuleOp>()))
|
|
m.erase();
|
|
}
|
|
|
|
private:
|
|
LLVM::LLVMDialect *llvmDialect;
|
|
LLVM::LLVMType llvmVoidType;
|
|
LLVM::LLVMType llvmPointerType;
|
|
LLVM::LLVMType llvmPointerPointerType;
|
|
LLVM::LLVMType llvmInt8Type;
|
|
LLVM::LLVMType llvmInt32Type;
|
|
LLVM::LLVMType llvmInt64Type;
|
|
LLVM::LLVMType llvmIntPtrType;
|
|
};
|
|
|
|
} // anonymous namespace
|
|
|
|
// Adds declarations for the needed helper functions from the runtime wrappers.
|
|
// The types in comments give the actual types expected/returned but the API
|
|
// uses void pointers. This is fine as they have the same linkage in C.
|
|
void GpuLaunchFuncToGpuRuntimeCallsPass::declareGpuRuntimeFunctions(
|
|
Location loc) {
|
|
ModuleOp module = getOperation();
|
|
OpBuilder builder(module.getBody()->getTerminator());
|
|
if (!module.lookupSymbol(kGpuModuleLoadName)) {
|
|
builder.create<LLVM::LLVMFuncOp>(
|
|
loc, kGpuModuleLoadName,
|
|
LLVM::LLVMType::getFunctionTy(
|
|
getGpuRuntimeResultType(),
|
|
{
|
|
getPointerPointerType(), /* CUmodule *module */
|
|
getPointerType() /* void *cubin */
|
|
},
|
|
/*isVarArg=*/false));
|
|
}
|
|
if (!module.lookupSymbol(kGpuModuleGetFunctionName)) {
|
|
// The helper uses void* instead of CUDA's opaque CUmodule and
|
|
// CUfunction, or ROCm (HIP)'s opaque hipModule_t and hipFunction_t.
|
|
builder.create<LLVM::LLVMFuncOp>(
|
|
loc, kGpuModuleGetFunctionName,
|
|
LLVM::LLVMType::getFunctionTy(
|
|
getGpuRuntimeResultType(),
|
|
{
|
|
getPointerPointerType(), /* void **function */
|
|
getPointerType(), /* void *module */
|
|
getPointerType() /* char *name */
|
|
},
|
|
/*isVarArg=*/false));
|
|
}
|
|
if (!module.lookupSymbol(kGpuLaunchKernelName)) {
|
|
// Other than the CUDA or ROCm (HIP) api, the wrappers use uintptr_t to
|
|
// match the LLVM type if MLIR's index type, which the GPU dialect uses.
|
|
// Furthermore, they use void* instead of CUDA's opaque CUfunction and
|
|
// CUstream, or ROCm (HIP)'s opaque hipFunction_t and hipStream_t.
|
|
builder.create<LLVM::LLVMFuncOp>(
|
|
loc, kGpuLaunchKernelName,
|
|
LLVM::LLVMType::getFunctionTy(
|
|
getGpuRuntimeResultType(),
|
|
{
|
|
getPointerType(), /* void* f */
|
|
getIntPtrType(), /* intptr_t gridXDim */
|
|
getIntPtrType(), /* intptr_t gridyDim */
|
|
getIntPtrType(), /* intptr_t gridZDim */
|
|
getIntPtrType(), /* intptr_t blockXDim */
|
|
getIntPtrType(), /* intptr_t blockYDim */
|
|
getIntPtrType(), /* intptr_t blockZDim */
|
|
getInt32Type(), /* unsigned int sharedMemBytes */
|
|
getPointerType(), /* void *hstream */
|
|
getPointerPointerType(), /* void **kernelParams */
|
|
getPointerPointerType() /* void **extra */
|
|
},
|
|
/*isVarArg=*/false));
|
|
}
|
|
if (!module.lookupSymbol(kGpuGetStreamHelperName)) {
|
|
// Helper function to get the current GPU compute stream. Uses void*
|
|
// instead of CUDA's opaque CUstream, or ROCm (HIP)'s opaque hipStream_t.
|
|
builder.create<LLVM::LLVMFuncOp>(
|
|
loc, kGpuGetStreamHelperName,
|
|
LLVM::LLVMType::getFunctionTy(getPointerType(), /*isVarArg=*/false));
|
|
}
|
|
if (!module.lookupSymbol(kGpuStreamSynchronizeName)) {
|
|
builder.create<LLVM::LLVMFuncOp>(
|
|
loc, kGpuStreamSynchronizeName,
|
|
LLVM::LLVMType::getFunctionTy(getGpuRuntimeResultType(),
|
|
getPointerType() /* CUstream stream */,
|
|
/*isVarArg=*/false));
|
|
}
|
|
if (!module.lookupSymbol(kGpuMemHostRegisterName)) {
|
|
builder.create<LLVM::LLVMFuncOp>(
|
|
loc, kGpuMemHostRegisterName,
|
|
LLVM::LLVMType::getFunctionTy(getVoidType(),
|
|
{
|
|
getPointerType(), /* void *ptr */
|
|
getInt64Type() /* int64 sizeBytes*/
|
|
},
|
|
/*isVarArg=*/false));
|
|
}
|
|
}
|
|
|
|
/// Emits the IR with the following structure:
|
|
///
|
|
/// %data = llvm.alloca 1 x type-of(<param>)
|
|
/// llvm.store <param>, %data
|
|
/// %typeErased = llvm.bitcast %data to !llvm<"i8*">
|
|
/// %addr = llvm.getelementptr <list>[<pos>]
|
|
/// llvm.store %typeErased, %addr
|
|
///
|
|
/// This is necessary to construct the list of arguments passed to the kernel
|
|
/// function as accepted by cuLaunchKernel, i.e. as a void** that points to list
|
|
/// of stack-allocated type-erased pointers to the actual arguments.
|
|
void GpuLaunchFuncToGpuRuntimeCallsPass::addParamToList(OpBuilder &builder,
|
|
Location loc,
|
|
Value param, Value list,
|
|
unsigned pos,
|
|
Value one) {
|
|
auto memLocation = builder.create<LLVM::AllocaOp>(
|
|
loc, param.getType().cast<LLVM::LLVMType>().getPointerTo(), one,
|
|
/*alignment=*/1);
|
|
builder.create<LLVM::StoreOp>(loc, param, memLocation);
|
|
auto casted =
|
|
builder.create<LLVM::BitcastOp>(loc, getPointerType(), memLocation);
|
|
|
|
auto index = builder.create<LLVM::ConstantOp>(loc, getInt32Type(),
|
|
builder.getI32IntegerAttr(pos));
|
|
auto gep = builder.create<LLVM::GEPOp>(loc, getPointerPointerType(), list,
|
|
ArrayRef<Value>{index});
|
|
builder.create<LLVM::StoreOp>(loc, casted, gep);
|
|
}
|
|
|
|
// Generates a parameters array to be used with a CUDA / ROCm (HIP) kernel
|
|
// launch call. The arguments are extracted from the launchOp.
|
|
// The generated code is essentially as follows:
|
|
//
|
|
// %array = alloca(numparams * sizeof(void *))
|
|
// for (i : [0, NumKernelOperands))
|
|
// %array[i] = cast<void*>(KernelOperand[i])
|
|
// return %array
|
|
Value GpuLaunchFuncToGpuRuntimeCallsPass::setupParamsArray(
|
|
gpu::LaunchFuncOp launchOp, OpBuilder &builder) {
|
|
|
|
// Get the launch target.
|
|
auto gpuFunc = SymbolTable::lookupNearestSymbolFrom<LLVM::LLVMFuncOp>(
|
|
launchOp, launchOp.kernel());
|
|
if (!gpuFunc)
|
|
return {};
|
|
|
|
unsigned numArgs = gpuFunc.getNumArguments();
|
|
|
|
auto numKernelOperands = launchOp.getNumKernelOperands();
|
|
Location loc = launchOp.getLoc();
|
|
auto one = builder.create<LLVM::ConstantOp>(loc, getInt32Type(),
|
|
builder.getI32IntegerAttr(1));
|
|
auto arraySize = builder.create<LLVM::ConstantOp>(
|
|
loc, getInt32Type(), builder.getI32IntegerAttr(numArgs));
|
|
auto array = builder.create<LLVM::AllocaOp>(loc, getPointerPointerType(),
|
|
arraySize, /*alignment=*/0);
|
|
|
|
unsigned pos = 0;
|
|
for (unsigned idx = 0; idx < numKernelOperands; ++idx) {
|
|
auto operand = launchOp.getKernelOperand(idx);
|
|
auto llvmType = operand.getType().cast<LLVM::LLVMType>();
|
|
|
|
// Assume all struct arguments come from MemRef. If this assumption does not
|
|
// hold anymore then we `launchOp` to lower from MemRefType and not after
|
|
// LLVMConversion has taken place and the MemRef information is lost.
|
|
if (!llvmType.isStructTy()) {
|
|
addParamToList(builder, loc, operand, array, pos++, one);
|
|
continue;
|
|
}
|
|
|
|
// Put individual components of a memref descriptor into the flat argument
|
|
// list. We cannot use unpackMemref from LLVM lowering here because we have
|
|
// no access to MemRefType that had been lowered away.
|
|
for (int32_t j = 0, ej = llvmType.getStructNumElements(); j < ej; ++j) {
|
|
auto elemType = llvmType.getStructElementType(j);
|
|
if (elemType.isArrayTy()) {
|
|
for (int32_t k = 0, ek = elemType.getArrayNumElements(); k < ek; ++k) {
|
|
Value elem = builder.create<LLVM::ExtractValueOp>(
|
|
loc, elemType.getArrayElementType(), operand,
|
|
builder.getI32ArrayAttr({j, k}));
|
|
addParamToList(builder, loc, elem, array, pos++, one);
|
|
}
|
|
} else {
|
|
assert((elemType.isIntegerTy() || elemType.isFloatTy() ||
|
|
elemType.isDoubleTy() || elemType.isPointerTy()) &&
|
|
"expected scalar type");
|
|
Value strct = builder.create<LLVM::ExtractValueOp>(
|
|
loc, elemType, operand, builder.getI32ArrayAttr(j));
|
|
addParamToList(builder, loc, strct, array, pos++, one);
|
|
}
|
|
}
|
|
}
|
|
|
|
return array;
|
|
}
|
|
|
|
// Generates an LLVM IR dialect global that contains the name of the given
|
|
// kernel function as a C string, and returns a pointer to its beginning.
|
|
// The code is essentially:
|
|
//
|
|
// llvm.global constant @kernel_name("function_name\00")
|
|
// func(...) {
|
|
// %0 = llvm.addressof @kernel_name
|
|
// %1 = llvm.constant (0 : index)
|
|
// %2 = llvm.getelementptr %0[%1, %1] : !llvm<"i8*">
|
|
// }
|
|
Value GpuLaunchFuncToGpuRuntimeCallsPass::generateKernelNameConstant(
|
|
StringRef moduleName, StringRef name, Location loc, OpBuilder &builder) {
|
|
// Make sure the trailing zero is included in the constant.
|
|
std::vector<char> kernelName(name.begin(), name.end());
|
|
kernelName.push_back('\0');
|
|
|
|
std::string globalName =
|
|
std::string(llvm::formatv("{0}_{1}_kernel_name", moduleName, name));
|
|
return LLVM::createGlobalString(
|
|
loc, builder, globalName, StringRef(kernelName.data(), kernelName.size()),
|
|
LLVM::Linkage::Internal, llvmDialect);
|
|
}
|
|
|
|
// Emits LLVM IR to launch a kernel function. Expects the module that contains
|
|
// the compiled kernel function as a cubin in the 'nvvm.cubin' attribute, or a
|
|
// hsaco in the 'rocdl.hsaco' attribute of the kernel function in the IR.
|
|
//
|
|
// %0 = call %binarygetter
|
|
// %1 = alloca sizeof(void*)
|
|
// call %moduleLoad(%2, %1)
|
|
// %2 = alloca sizeof(void*)
|
|
// %3 = load %1
|
|
// %4 = <see generateKernelNameConstant>
|
|
// call %moduleGetFunction(%2, %3, %4)
|
|
// %5 = call %getStreamHelper()
|
|
// %6 = load %2
|
|
// %7 = <see setupParamsArray>
|
|
// call %launchKernel(%6, <launchOp operands 0..5>, 0, %5, %7, nullptr)
|
|
// call %streamSynchronize(%5)
|
|
void GpuLaunchFuncToGpuRuntimeCallsPass::translateGpuLaunchCalls(
|
|
mlir::gpu::LaunchFuncOp launchOp) {
|
|
OpBuilder builder(launchOp);
|
|
Location loc = launchOp.getLoc();
|
|
declareGpuRuntimeFunctions(loc);
|
|
|
|
auto zero = builder.create<LLVM::ConstantOp>(loc, getInt32Type(),
|
|
builder.getI32IntegerAttr(0));
|
|
// Create an LLVM global with CUBIN extracted from the kernel annotation and
|
|
// obtain a pointer to the first byte in it.
|
|
auto kernelModule = getOperation().lookupSymbol<gpu::GPUModuleOp>(
|
|
launchOp.getKernelModuleName());
|
|
assert(kernelModule && "expected a kernel module");
|
|
|
|
auto binaryAttr = kernelModule.getAttrOfType<StringAttr>(gpuBinaryAnnotation);
|
|
if (!binaryAttr) {
|
|
kernelModule.emitOpError()
|
|
<< "missing " << gpuBinaryAnnotation << " attribute";
|
|
return signalPassFailure();
|
|
}
|
|
|
|
SmallString<128> nameBuffer(kernelModule.getName());
|
|
nameBuffer.append(kGpuBinaryStorageSuffix);
|
|
Value data = LLVM::createGlobalString(
|
|
loc, builder, nameBuffer.str(), binaryAttr.getValue(),
|
|
LLVM::Linkage::Internal, getLLVMDialect());
|
|
|
|
// Emit the load module call to load the module data. Error checking is done
|
|
// in the called helper function.
|
|
auto gpuModule = allocatePointer(builder, loc);
|
|
auto gpuModuleLoad =
|
|
getOperation().lookupSymbol<LLVM::LLVMFuncOp>(kGpuModuleLoadName);
|
|
builder.create<LLVM::CallOp>(loc, ArrayRef<Type>{getGpuRuntimeResultType()},
|
|
builder.getSymbolRefAttr(gpuModuleLoad),
|
|
ArrayRef<Value>{gpuModule, data});
|
|
// Get the function from the module. The name corresponds to the name of
|
|
// the kernel function.
|
|
auto gpuOwningModuleRef =
|
|
builder.create<LLVM::LoadOp>(loc, getPointerType(), gpuModule);
|
|
auto kernelName = generateKernelNameConstant(
|
|
launchOp.getKernelModuleName(), launchOp.getKernelName(), loc, builder);
|
|
auto gpuFunction = allocatePointer(builder, loc);
|
|
auto gpuModuleGetFunction =
|
|
getOperation().lookupSymbol<LLVM::LLVMFuncOp>(kGpuModuleGetFunctionName);
|
|
builder.create<LLVM::CallOp>(
|
|
loc, ArrayRef<Type>{getGpuRuntimeResultType()},
|
|
builder.getSymbolRefAttr(gpuModuleGetFunction),
|
|
ArrayRef<Value>{gpuFunction, gpuOwningModuleRef, kernelName});
|
|
// Grab the global stream needed for execution.
|
|
auto gpuGetStreamHelper =
|
|
getOperation().lookupSymbol<LLVM::LLVMFuncOp>(kGpuGetStreamHelperName);
|
|
auto gpuStream = builder.create<LLVM::CallOp>(
|
|
loc, ArrayRef<Type>{getPointerType()},
|
|
builder.getSymbolRefAttr(gpuGetStreamHelper), ArrayRef<Value>{});
|
|
// Invoke the function with required arguments.
|
|
auto gpuLaunchKernel =
|
|
getOperation().lookupSymbol<LLVM::LLVMFuncOp>(kGpuLaunchKernelName);
|
|
auto gpuFunctionRef =
|
|
builder.create<LLVM::LoadOp>(loc, getPointerType(), gpuFunction);
|
|
auto paramsArray = setupParamsArray(launchOp, builder);
|
|
if (!paramsArray) {
|
|
launchOp.emitOpError() << "cannot pass given parameters to the kernel";
|
|
return signalPassFailure();
|
|
}
|
|
auto nullpointer =
|
|
builder.create<LLVM::IntToPtrOp>(loc, getPointerPointerType(), zero);
|
|
builder.create<LLVM::CallOp>(
|
|
loc, ArrayRef<Type>{getGpuRuntimeResultType()},
|
|
builder.getSymbolRefAttr(gpuLaunchKernel),
|
|
ArrayRef<Value>{gpuFunctionRef, launchOp.getOperand(0),
|
|
launchOp.getOperand(1), launchOp.getOperand(2),
|
|
launchOp.getOperand(3), launchOp.getOperand(4),
|
|
launchOp.getOperand(5), zero, /* sharedMemBytes */
|
|
gpuStream.getResult(0), /* stream */
|
|
paramsArray, /* kernel params */
|
|
nullpointer /* extra */});
|
|
// Sync on the stream to make it synchronous.
|
|
auto gpuStreamSync =
|
|
getOperation().lookupSymbol<LLVM::LLVMFuncOp>(kGpuStreamSynchronizeName);
|
|
builder.create<LLVM::CallOp>(loc, ArrayRef<Type>{getGpuRuntimeResultType()},
|
|
builder.getSymbolRefAttr(gpuStreamSync),
|
|
ArrayRef<Value>(gpuStream.getResult(0)));
|
|
launchOp.erase();
|
|
}
|
|
|
|
std::unique_ptr<mlir::OperationPass<mlir::ModuleOp>>
|
|
mlir::createConvertGpuLaunchFuncToGpuRuntimeCallsPass(
|
|
StringRef gpuBinaryAnnotation) {
|
|
return std::make_unique<GpuLaunchFuncToGpuRuntimeCallsPass>(
|
|
gpuBinaryAnnotation);
|
|
}
|