Files
llvm/mlir/lib/Analysis/LoopAnalysis.cpp
Mehdi Amini 308571074c Mass update the MLIR license header to mention "Part of the LLVM project"
This is an artifact from merging MLIR into LLVM, the file headers are
now aligned with the rest of the project.
2020-01-26 03:58:30 +00:00

389 lines
15 KiB
C++

//===- LoopAnalysis.cpp - Misc loop analysis routines //-------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements miscellaneous loop analysis routines.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/NestedMatcher.h"
#include "mlir/Dialect/AffineOps/AffineOps.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallString.h"
#include <type_traits>
using namespace mlir;
/// Returns the trip count of the loop as an affine expression if the latter is
/// expressible as an affine expression, and nullptr otherwise. The trip count
/// expression is simplified before returning. This method only utilizes map
/// composition to construct lower and upper bounds before computing the trip
/// count expressions.
// TODO(mlir-team): this should be moved into 'Transforms/' and be replaced by a
// pure analysis method relying on FlatAffineConstraints; the latter will also
// be more powerful (since both inequalities and equalities will be considered).
void mlir::buildTripCountMapAndOperands(
AffineForOp forOp, AffineMap *tripCountMap,
SmallVectorImpl<Value> *tripCountOperands) {
int64_t loopSpan;
int64_t step = forOp.getStep();
OpBuilder b(forOp.getOperation());
if (forOp.hasConstantBounds()) {
int64_t lb = forOp.getConstantLowerBound();
int64_t ub = forOp.getConstantUpperBound();
loopSpan = ub - lb;
if (loopSpan < 0)
loopSpan = 0;
*tripCountMap = b.getConstantAffineMap(ceilDiv(loopSpan, step));
tripCountOperands->clear();
return;
}
auto lbMap = forOp.getLowerBoundMap();
auto ubMap = forOp.getUpperBoundMap();
if (lbMap.getNumResults() != 1) {
*tripCountMap = AffineMap();
return;
}
SmallVector<Value, 4> lbOperands(forOp.getLowerBoundOperands());
SmallVector<Value, 4> ubOperands(forOp.getUpperBoundOperands());
// Difference of each upper bound expression from the single lower bound
// expression (divided by the step) provides the expressions for the trip
// count map.
AffineValueMap ubValueMap(ubMap, ubOperands);
SmallVector<AffineExpr, 4> lbSplatExpr(ubValueMap.getNumResults(),
lbMap.getResult(0));
auto lbMapSplat =
AffineMap::get(lbMap.getNumDims(), lbMap.getNumSymbols(), lbSplatExpr);
AffineValueMap lbSplatValueMap(lbMapSplat, lbOperands);
AffineValueMap tripCountValueMap;
AffineValueMap::difference(ubValueMap, lbSplatValueMap, &tripCountValueMap);
for (unsigned i = 0, e = tripCountValueMap.getNumResults(); i < e; ++i)
tripCountValueMap.setResult(i,
tripCountValueMap.getResult(i).ceilDiv(step));
*tripCountMap = tripCountValueMap.getAffineMap();
tripCountOperands->assign(tripCountValueMap.getOperands().begin(),
tripCountValueMap.getOperands().end());
}
/// Returns the trip count of the loop if it's a constant, None otherwise. This
/// method uses affine expression analysis (in turn using getTripCount) and is
/// able to determine constant trip count in non-trivial cases.
// FIXME(mlir-team): this is really relying on buildTripCountMapAndOperands;
// being an analysis utility, it shouldn't. Replace with a version that just
// works with analysis structures (FlatAffineConstraints) and thus doesn't
// update the IR.
Optional<uint64_t> mlir::getConstantTripCount(AffineForOp forOp) {
SmallVector<Value, 4> operands;
AffineMap map;
buildTripCountMapAndOperands(forOp, &map, &operands);
if (!map)
return None;
// Take the min if all trip counts are constant.
Optional<uint64_t> tripCount;
for (auto resultExpr : map.getResults()) {
if (auto constExpr = resultExpr.dyn_cast<AffineConstantExpr>()) {
if (tripCount.hasValue())
tripCount = std::min(tripCount.getValue(),
static_cast<uint64_t>(constExpr.getValue()));
else
tripCount = constExpr.getValue();
} else
return None;
}
return tripCount;
}
/// Returns the greatest known integral divisor of the trip count. Affine
/// expression analysis is used (indirectly through getTripCount), and
/// this method is thus able to determine non-trivial divisors.
uint64_t mlir::getLargestDivisorOfTripCount(AffineForOp forOp) {
SmallVector<Value, 4> operands;
AffineMap map;
buildTripCountMapAndOperands(forOp, &map, &operands);
if (!map)
return 1;
// The largest divisor of the trip count is the GCD of the individual largest
// divisors.
assert(map.getNumResults() >= 1 && "expected one or more results");
Optional<uint64_t> gcd;
for (auto resultExpr : map.getResults()) {
uint64_t thisGcd;
if (auto constExpr = resultExpr.dyn_cast<AffineConstantExpr>()) {
uint64_t tripCount = constExpr.getValue();
// 0 iteration loops (greatest divisor is 2^64 - 1).
if (tripCount == 0)
thisGcd = std::numeric_limits<uint64_t>::max();
else
// The greatest divisor is the trip count.
thisGcd = tripCount;
} else {
// Trip count is not a known constant; return its largest known divisor.
thisGcd = resultExpr.getLargestKnownDivisor();
}
if (gcd.hasValue())
gcd = llvm::GreatestCommonDivisor64(gcd.getValue(), thisGcd);
else
gcd = thisGcd;
}
assert(gcd.hasValue() && "value expected per above logic");
return gcd.getValue();
}
/// Given an induction variable `iv` of type AffineForOp and an access `index`
/// of type index, returns `true` if `index` is independent of `iv` and
/// false otherwise. The determination supports composition with at most one
/// AffineApplyOp. The 'at most one AffineApplyOp' comes from the fact that
/// the composition of AffineApplyOp needs to be canonicalized by construction
/// to avoid writing code that composes arbitrary numbers of AffineApplyOps
/// everywhere. To achieve this, at the very least, the compose-affine-apply
/// pass must have been run.
///
/// Prerequisites:
/// 1. `iv` and `index` of the proper type;
/// 2. at most one reachable AffineApplyOp from index;
///
/// Returns false in cases with more than one AffineApplyOp, this is
/// conservative.
static bool isAccessIndexInvariant(Value iv, Value index) {
assert(isForInductionVar(iv) && "iv must be a AffineForOp");
assert(index.getType().isa<IndexType>() && "index must be of IndexType");
SmallVector<Operation *, 4> affineApplyOps;
getReachableAffineApplyOps({index}, affineApplyOps);
if (affineApplyOps.empty()) {
// Pointer equality test because of Value pointer semantics.
return index != iv;
}
if (affineApplyOps.size() > 1) {
affineApplyOps[0]->emitRemark(
"CompositionAffineMapsPass must have been run: there should be at most "
"one AffineApplyOp, returning false conservatively.");
return false;
}
auto composeOp = cast<AffineApplyOp>(affineApplyOps[0]);
// We need yet another level of indirection because the `dim` index of the
// access may not correspond to the `dim` index of composeOp.
return !(AffineValueMap(composeOp).isFunctionOf(0, iv));
}
DenseSet<Value> mlir::getInvariantAccesses(Value iv, ArrayRef<Value> indices) {
DenseSet<Value> res;
for (unsigned idx = 0, n = indices.size(); idx < n; ++idx) {
auto val = indices[idx];
if (isAccessIndexInvariant(iv, val)) {
res.insert(val);
}
}
return res;
}
/// Given:
/// 1. an induction variable `iv` of type AffineForOp;
/// 2. a `memoryOp` of type const LoadOp& or const StoreOp&;
/// determines whether `memoryOp` has a contiguous access along `iv`. Contiguous
/// is defined as either invariant or varying only along a unique MemRef dim.
/// Upon success, the unique MemRef dim is written in `memRefDim` (or -1 to
/// convey the memRef access is invariant along `iv`).
///
/// Prerequisites:
/// 1. `memRefDim` ~= nullptr;
/// 2. `iv` of the proper type;
/// 3. the MemRef accessed by `memoryOp` has no layout map or at most an
/// identity layout map.
///
/// Currently only supports no layoutMap or identity layoutMap in the MemRef.
/// Returns false if the MemRef has a non-identity layoutMap or more than 1
/// layoutMap. This is conservative.
///
// TODO(ntv): check strides.
template <typename LoadOrStoreOp>
static bool isContiguousAccess(Value iv, LoadOrStoreOp memoryOp,
int *memRefDim) {
static_assert(std::is_same<LoadOrStoreOp, AffineLoadOp>::value ||
std::is_same<LoadOrStoreOp, AffineStoreOp>::value,
"Must be called on either const LoadOp & or const StoreOp &");
assert(memRefDim && "memRefDim == nullptr");
auto memRefType = memoryOp.getMemRefType();
auto layoutMap = memRefType.getAffineMaps();
// TODO(ntv): remove dependence on Builder once we support non-identity
// layout map.
Builder b(memoryOp.getContext());
if (layoutMap.size() >= 2 ||
(layoutMap.size() == 1 &&
!(layoutMap[0] ==
b.getMultiDimIdentityMap(layoutMap[0].getNumDims())))) {
return memoryOp.emitError("NYI: non-trivial layoutMap"), false;
}
int uniqueVaryingIndexAlongIv = -1;
auto accessMap = memoryOp.getAffineMap();
SmallVector<Value, 4> mapOperands(memoryOp.getMapOperands());
unsigned numDims = accessMap.getNumDims();
for (unsigned i = 0, e = memRefType.getRank(); i < e; ++i) {
// Gather map operands used result expr 'i' in 'exprOperands'.
SmallVector<Value, 4> exprOperands;
auto resultExpr = accessMap.getResult(i);
resultExpr.walk([&](AffineExpr expr) {
if (auto dimExpr = expr.dyn_cast<AffineDimExpr>())
exprOperands.push_back(mapOperands[dimExpr.getPosition()]);
else if (auto symExpr = expr.dyn_cast<AffineSymbolExpr>())
exprOperands.push_back(mapOperands[numDims + symExpr.getPosition()]);
});
// Check access invariance of each operand in 'exprOperands'.
for (auto exprOperand : exprOperands) {
if (!isAccessIndexInvariant(iv, exprOperand)) {
if (uniqueVaryingIndexAlongIv != -1) {
// 2+ varying indices -> do not vectorize along iv.
return false;
}
uniqueVaryingIndexAlongIv = i;
}
}
}
if (uniqueVaryingIndexAlongIv == -1)
*memRefDim = -1;
else
*memRefDim = memRefType.getRank() - (uniqueVaryingIndexAlongIv + 1);
return true;
}
template <typename LoadOrStoreOpPointer>
static bool isVectorElement(LoadOrStoreOpPointer memoryOp) {
auto memRefType = memoryOp.getMemRefType();
return memRefType.getElementType().template isa<VectorType>();
}
using VectorizableOpFun = std::function<bool(AffineForOp, Operation &)>;
static bool
isVectorizableLoopBodyWithOpCond(AffineForOp loop,
VectorizableOpFun isVectorizableOp,
NestedPattern &vectorTransferMatcher) {
auto *forOp = loop.getOperation();
// No vectorization across conditionals for now.
auto conditionals = matcher::If();
SmallVector<NestedMatch, 8> conditionalsMatched;
conditionals.match(forOp, &conditionalsMatched);
if (!conditionalsMatched.empty()) {
return false;
}
// No vectorization across unknown regions.
auto regions = matcher::Op([](Operation &op) -> bool {
return op.getNumRegions() != 0 &&
!(isa<AffineIfOp>(op) || isa<AffineForOp>(op));
});
SmallVector<NestedMatch, 8> regionsMatched;
regions.match(forOp, &regionsMatched);
if (!regionsMatched.empty()) {
return false;
}
SmallVector<NestedMatch, 8> vectorTransfersMatched;
vectorTransferMatcher.match(forOp, &vectorTransfersMatched);
if (!vectorTransfersMatched.empty()) {
return false;
}
auto loadAndStores = matcher::Op(matcher::isLoadOrStore);
SmallVector<NestedMatch, 8> loadAndStoresMatched;
loadAndStores.match(forOp, &loadAndStoresMatched);
for (auto ls : loadAndStoresMatched) {
auto *op = ls.getMatchedOperation();
auto load = dyn_cast<AffineLoadOp>(op);
auto store = dyn_cast<AffineStoreOp>(op);
// Only scalar types are considered vectorizable, all load/store must be
// vectorizable for a loop to qualify as vectorizable.
// TODO(ntv): ponder whether we want to be more general here.
bool vector = load ? isVectorElement(load) : isVectorElement(store);
if (vector) {
return false;
}
if (isVectorizableOp && !isVectorizableOp(loop, *op)) {
return false;
}
}
return true;
}
bool mlir::isVectorizableLoopBody(AffineForOp loop, int *memRefDim,
NestedPattern &vectorTransferMatcher) {
VectorizableOpFun fun([memRefDim](AffineForOp loop, Operation &op) {
auto load = dyn_cast<AffineLoadOp>(op);
auto store = dyn_cast<AffineStoreOp>(op);
return load ? isContiguousAccess(loop.getInductionVar(), load, memRefDim)
: isContiguousAccess(loop.getInductionVar(), store, memRefDim);
});
return isVectorizableLoopBodyWithOpCond(loop, fun, vectorTransferMatcher);
}
bool mlir::isVectorizableLoopBody(AffineForOp loop,
NestedPattern &vectorTransferMatcher) {
return isVectorizableLoopBodyWithOpCond(loop, nullptr, vectorTransferMatcher);
}
/// Checks whether SSA dominance would be violated if a for op's body
/// operations are shifted by the specified shifts. This method checks if a
/// 'def' and all its uses have the same shift factor.
// TODO(mlir-team): extend this to check for memory-based dependence violation
// when we have the support.
bool mlir::isInstwiseShiftValid(AffineForOp forOp, ArrayRef<uint64_t> shifts) {
auto *forBody = forOp.getBody();
assert(shifts.size() == forBody->getOperations().size());
// Work backwards over the body of the block so that the shift of a use's
// ancestor operation in the block gets recorded before it's looked up.
DenseMap<Operation *, uint64_t> forBodyShift;
for (auto it : llvm::enumerate(llvm::reverse(forBody->getOperations()))) {
auto &op = it.value();
// Get the index of the current operation, note that we are iterating in
// reverse so we need to fix it up.
size_t index = shifts.size() - it.index() - 1;
// Remember the shift of this operation.
uint64_t shift = shifts[index];
forBodyShift.try_emplace(&op, shift);
// Validate the results of this operation if it were to be shifted.
for (unsigned i = 0, e = op.getNumResults(); i < e; ++i) {
Value result = op.getResult(i);
for (auto *user : result.getUsers()) {
// If an ancestor operation doesn't lie in the block of forOp,
// there is no shift to check.
if (auto *ancOp = forBody->findAncestorOpInBlock(*user)) {
assert(forBodyShift.count(ancOp) > 0 && "ancestor expected in map");
if (shift != forBodyShift[ancOp])
return false;
}
}
}
}
return true;
}