Files
llvm/mlir/lib/Conversion/VectorToSCF/VectorToSCF.cpp
Nicolas Vasilache 36cdc17f8c [mlir][Vector] Make minor identity permutation map optional in transfer op printing and parsing
Summary:
This revision makes the use of vector transfer operatons more idiomatic by
allowing to omit and inferring the permutation_map.

Differential Revision: https://reviews.llvm.org/D80092
2020-05-18 11:41:27 -04:00

592 lines
24 KiB
C++

//===- VectorToSCF.cpp - Conversion from Vector to mix of SCF and Std -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements target-dependent lowering of vector transfer operations.
//
//===----------------------------------------------------------------------===//
#include <type_traits>
#include "mlir/Conversion/VectorToSCF/VectorToSCF.h"
#include "mlir/Dialect/Affine/EDSC/Intrinsics.h"
#include "mlir/Dialect/SCF/EDSC/Builders.h"
#include "mlir/Dialect/SCF/EDSC/Intrinsics.h"
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
#include "mlir/Dialect/Vector/EDSC/Intrinsics.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OperationSupport.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/Types.h"
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using vector::TransferReadOp;
using vector::TransferWriteOp;
/// Helper class captures the common information needed to lower N>1-D vector
/// transfer operations (read and write).
/// On construction, this class opens an edsc::ScopedContext for simpler IR
/// manipulation.
/// In pseudo-IR, for an n-D vector_transfer_read such as:
///
/// ```
/// vector_transfer_read(%m, %offsets, identity_map, %fill) :
/// memref<(leading_dims) x (major_dims) x (minor_dims) x type>,
/// vector<(major_dims) x (minor_dims) x type>
/// ```
///
/// where rank(minor_dims) is the lower-level vector rank (e.g. 1 for LLVM or
/// higher).
///
/// This is the entry point to emitting pseudo-IR resembling:
///
/// ```
/// %tmp = alloc(): memref<(major_dims) x vector<minor_dim x type>>
/// for (%ivs_major, {0}, {vector_shape}, {1}) { // (N-1)-D loop nest
/// if (any_of(%ivs_major + %offsets, <, major_dims)) {
/// %v = vector_transfer_read(
/// {%offsets_leading, %ivs_major + %offsets_major, %offsets_minor},
/// %ivs_minor):
/// memref<(leading_dims) x (major_dims) x (minor_dims) x type>,
/// vector<(minor_dims) x type>;
/// store(%v, %tmp);
/// } else {
/// %v = splat(vector<(minor_dims) x type>, %fill)
/// store(%v, %tmp, %ivs_major);
/// }
/// }
/// %res = load(%tmp, %0): memref<(major_dims) x vector<minor_dim x type>>):
// vector<(major_dims) x (minor_dims) x type>
/// ```
///
template <typename ConcreteOp>
class NDTransferOpHelper {
public:
NDTransferOpHelper(PatternRewriter &rewriter, ConcreteOp xferOp)
: rewriter(rewriter), loc(xferOp.getLoc()),
scope(std::make_unique<ScopedContext>(rewriter, loc)), xferOp(xferOp),
op(xferOp.getOperation()) {
vectorType = xferOp.getVectorType();
// TODO(ntv, ajcbik): when we go to k > 1-D vectors adapt minorRank.
minorRank = 1;
majorRank = vectorType.getRank() - minorRank;
leadingRank = xferOp.getMemRefType().getRank() - (majorRank + minorRank);
majorVectorType =
VectorType::get(vectorType.getShape().take_front(majorRank),
vectorType.getElementType());
minorVectorType =
VectorType::get(vectorType.getShape().take_back(minorRank),
vectorType.getElementType());
/// Memref of minor vector type is used for individual transfers.
memRefMinorVectorType =
MemRefType::get(majorVectorType.getShape(), minorVectorType, {},
xferOp.getMemRefType().getMemorySpace());
}
LogicalResult doReplace();
private:
/// Creates the loop nest on the "major" dimensions and calls the
/// `loopBodyBuilder` lambda in the context of the loop nest.
template <typename Lambda>
void emitLoops(Lambda loopBodyBuilder);
/// Operate within the body of `emitLoops` to:
/// 1. Compute the indexings `majorIvs + majorOffsets`.
/// 2. Compute a boolean that determines whether the first `majorIvs.rank()`
/// dimensions `majorIvs + majorOffsets` are all within `memrefBounds`.
/// 3. Create an IfOp conditioned on the boolean in step 2.
/// 4. Call a `thenBlockBuilder` and an `elseBlockBuilder` to append
/// operations to the IfOp blocks as appropriate.
template <typename LambdaThen, typename LambdaElse>
void emitInBounds(ValueRange majorIvs, ValueRange majorOffsets,
MemRefBoundsCapture &memrefBounds,
LambdaThen thenBlockBuilder, LambdaElse elseBlockBuilder);
/// Common state to lower vector transfer ops.
PatternRewriter &rewriter;
Location loc;
std::unique_ptr<ScopedContext> scope;
ConcreteOp xferOp;
Operation *op;
// A vector transfer copies data between:
// - memref<(leading_dims) x (major_dims) x (minor_dims) x type>
// - vector<(major_dims) x (minor_dims) x type>
unsigned minorRank; // for now always 1
unsigned majorRank; // vector rank - minorRank
unsigned leadingRank; // memref rank - vector rank
VectorType vectorType; // vector<(major_dims) x (minor_dims) x type>
VectorType majorVectorType; // vector<(major_dims) x type>
VectorType minorVectorType; // vector<(minor_dims) x type>
MemRefType memRefMinorVectorType; // memref<vector<(minor_dims) x type>>
};
template <typename ConcreteOp>
template <typename Lambda>
void NDTransferOpHelper<ConcreteOp>::emitLoops(Lambda loopBodyBuilder) {
/// Loop nest operates on the major dimensions
MemRefBoundsCapture memrefBoundsCapture(xferOp.memref());
VectorBoundsCapture vectorBoundsCapture(majorVectorType);
auto majorLbs = vectorBoundsCapture.getLbs();
auto majorUbs = vectorBoundsCapture.getUbs();
auto majorSteps = vectorBoundsCapture.getSteps();
SmallVector<Value, 8> majorIvs(vectorBoundsCapture.rank());
AffineLoopNestBuilder(majorIvs, majorLbs, majorUbs, majorSteps)([&] {
ValueRange indices(xferOp.indices());
loopBodyBuilder(majorIvs, indices.take_front(leadingRank),
indices.drop_front(leadingRank).take_front(majorRank),
indices.take_back(minorRank), memrefBoundsCapture);
});
}
template <typename ConcreteOp>
template <typename LambdaThen, typename LambdaElse>
void NDTransferOpHelper<ConcreteOp>::emitInBounds(
ValueRange majorIvs, ValueRange majorOffsets,
MemRefBoundsCapture &memrefBounds, LambdaThen thenBlockBuilder,
LambdaElse elseBlockBuilder) {
Value inBounds = std_constant_int(/*value=*/1, /*width=*/1);
SmallVector<Value, 4> majorIvsPlusOffsets;
majorIvsPlusOffsets.reserve(majorIvs.size());
for (auto it : llvm::zip(majorIvs, majorOffsets, memrefBounds.getUbs())) {
Value iv = std::get<0>(it), off = std::get<1>(it), ub = std::get<2>(it);
using namespace mlir::edsc::op;
majorIvsPlusOffsets.push_back(iv + off);
Value inBounds2 = majorIvsPlusOffsets.back() < ub;
inBounds = inBounds && inBounds2;
}
auto ifOp = ScopedContext::getBuilderRef().create<scf::IfOp>(
ScopedContext::getLocation(), TypeRange{}, inBounds,
/*withElseRegion=*/std::is_same<ConcreteOp, TransferReadOp>());
BlockBuilder(&ifOp.thenRegion().front(),
Append())([&] { thenBlockBuilder(majorIvsPlusOffsets); });
if (std::is_same<ConcreteOp, TransferReadOp>())
BlockBuilder(&ifOp.elseRegion().front(),
Append())([&] { elseBlockBuilder(majorIvsPlusOffsets); });
}
template <>
LogicalResult NDTransferOpHelper<TransferReadOp>::doReplace() {
Value alloc = std_alloc(memRefMinorVectorType);
emitLoops([&](ValueRange majorIvs, ValueRange leadingOffsets,
ValueRange majorOffsets, ValueRange minorOffsets,
MemRefBoundsCapture &memrefBounds) {
// If in-bounds, index into memref and lower to 1-D transfer read.
auto thenBlockBuilder = [&](ValueRange majorIvsPlusOffsets) {
SmallVector<Value, 8> indexing;
indexing.reserve(leadingRank + majorRank + minorRank);
indexing.append(leadingOffsets.begin(), leadingOffsets.end());
indexing.append(majorIvsPlusOffsets.begin(), majorIvsPlusOffsets.end());
indexing.append(minorOffsets.begin(), minorOffsets.end());
// Lower to 1-D vector_transfer_read and let recursion handle it.
Value memref = xferOp.memref();
auto map = TransferReadOp::getTransferMinorIdentityMap(
xferOp.getMemRefType(), minorVectorType);
auto loaded1D =
vector_transfer_read(minorVectorType, memref, indexing,
AffineMapAttr::get(map), xferOp.padding());
// Store the 1-D vector.
std_store(loaded1D, alloc, majorIvs);
};
// If out-of-bounds, just store a splatted vector.
auto elseBlockBuilder = [&](ValueRange majorIvsPlusOffsets) {
auto vector = std_splat(minorVectorType, xferOp.padding());
std_store(vector, alloc, majorIvs);
};
emitInBounds(majorIvs, majorOffsets, memrefBounds, thenBlockBuilder,
elseBlockBuilder);
});
Value loaded =
std_load(vector_type_cast(MemRefType::get({}, vectorType), alloc));
rewriter.replaceOp(op, loaded);
return success();
}
template <>
LogicalResult NDTransferOpHelper<TransferWriteOp>::doReplace() {
Value alloc = std_alloc(memRefMinorVectorType);
std_store(xferOp.vector(),
vector_type_cast(MemRefType::get({}, vectorType), alloc));
emitLoops([&](ValueRange majorIvs, ValueRange leadingOffsets,
ValueRange majorOffsets, ValueRange minorOffsets,
MemRefBoundsCapture &memrefBounds) {
auto thenBlockBuilder = [&](ValueRange majorIvsPlusOffsets) {
// Lower to 1-D vector_transfer_write and let recursion handle it.
SmallVector<Value, 8> indexing;
indexing.reserve(leadingRank + majorRank + minorRank);
indexing.append(leadingOffsets.begin(), leadingOffsets.end());
indexing.append(majorIvsPlusOffsets.begin(), majorIvsPlusOffsets.end());
indexing.append(minorOffsets.begin(), minorOffsets.end());
// Lower to 1-D vector_transfer_write and let recursion handle it.
Value loaded1D = std_load(alloc, majorIvs);
auto map = TransferWriteOp::getTransferMinorIdentityMap(
xferOp.getMemRefType(), minorVectorType);
vector_transfer_write(loaded1D, xferOp.memref(), indexing,
AffineMapAttr::get(map));
};
// Don't write anything when out of bounds.
auto elseBlockBuilder = [&](ValueRange majorIvsPlusOffsets) {};
emitInBounds(majorIvs, majorOffsets, memrefBounds, thenBlockBuilder,
elseBlockBuilder);
});
rewriter.eraseOp(op);
return success();
}
/// Analyzes the `transfer` to find an access dimension along the fastest remote
/// MemRef dimension. If such a dimension with coalescing properties is found,
/// `pivs` and `vectorBoundsCapture` are swapped so that the invocation of
/// LoopNestBuilder captures it in the innermost loop.
template <typename TransferOpTy>
static int computeCoalescedIndex(TransferOpTy transfer) {
// rank of the remote memory access, coalescing behavior occurs on the
// innermost memory dimension.
auto remoteRank = transfer.getMemRefType().getRank();
// Iterate over the results expressions of the permutation map to determine
// the loop order for creating pointwise copies between remote and local
// memories.
int coalescedIdx = -1;
auto exprs = transfer.permutation_map().getResults();
for (auto en : llvm::enumerate(exprs)) {
auto dim = en.value().template dyn_cast<AffineDimExpr>();
if (!dim) {
continue;
}
auto memRefDim = dim.getPosition();
if (memRefDim == remoteRank - 1) {
// memRefDim has coalescing properties, it should be swapped in the last
// position.
assert(coalescedIdx == -1 && "Unexpected > 1 coalesced indices");
coalescedIdx = en.index();
}
}
return coalescedIdx;
}
/// Emits remote memory accesses that are clipped to the boundaries of the
/// MemRef.
template <typename TransferOpTy>
static SmallVector<Value, 8>
clip(TransferOpTy transfer, MemRefBoundsCapture &bounds, ArrayRef<Value> ivs) {
using namespace mlir::edsc;
Value zero(std_constant_index(0)), one(std_constant_index(1));
SmallVector<Value, 8> memRefAccess(transfer.indices());
SmallVector<Value, 8> clippedScalarAccessExprs(memRefAccess.size());
// Indices accessing to remote memory are clipped and their expressions are
// returned in clippedScalarAccessExprs.
for (unsigned memRefDim = 0; memRefDim < clippedScalarAccessExprs.size();
++memRefDim) {
// Linear search on a small number of entries.
int loopIndex = -1;
auto exprs = transfer.permutation_map().getResults();
for (auto en : llvm::enumerate(exprs)) {
auto expr = en.value();
auto dim = expr.template dyn_cast<AffineDimExpr>();
// Sanity check.
assert(
(dim || expr.template cast<AffineConstantExpr>().getValue() == 0) &&
"Expected dim or 0 in permutationMap");
if (dim && memRefDim == dim.getPosition()) {
loopIndex = en.index();
break;
}
}
// We cannot distinguish atm between unrolled dimensions that implement
// the "always full" tile abstraction and need clipping from the other
// ones. So we conservatively clip everything.
using namespace edsc::op;
auto N = bounds.ub(memRefDim);
auto i = memRefAccess[memRefDim];
if (loopIndex < 0) {
auto N_minus_1 = N - one;
auto select_1 = std_select(i < N, i, N_minus_1);
clippedScalarAccessExprs[memRefDim] =
std_select(i < zero, zero, select_1);
} else {
auto ii = ivs[loopIndex];
auto i_plus_ii = i + ii;
auto N_minus_1 = N - one;
auto select_1 = std_select(i_plus_ii < N, i_plus_ii, N_minus_1);
clippedScalarAccessExprs[memRefDim] =
std_select(i_plus_ii < zero, zero, select_1);
}
}
return clippedScalarAccessExprs;
}
namespace {
/// Implements lowering of TransferReadOp and TransferWriteOp to a
/// proper abstraction for the hardware.
///
/// For now, we only emit a simple loop nest that performs clipped pointwise
/// copies from a remote to a locally allocated memory.
///
/// Consider the case:
///
/// ```mlir
/// // Read the slice `%A[%i0, %i1:%i1+256, %i2:%i2+32]` into
/// // vector<32x256xf32> and pad with %f0 to handle the boundary case:
/// %f0 = constant 0.0f : f32
/// scf.for %i0 = 0 to %0 {
/// scf.for %i1 = 0 to %1 step %c256 {
/// scf.for %i2 = 0 to %2 step %c32 {
/// %v = vector.transfer_read %A[%i0, %i1, %i2], %f0
/// {permutation_map: (d0, d1, d2) -> (d2, d1)} :
/// memref<?x?x?xf32>, vector<32x256xf32>
/// }}}
/// ```
///
/// The rewriters construct loop and indices that access MemRef A in a pattern
/// resembling the following (while guaranteeing an always full-tile
/// abstraction):
///
/// ```mlir
/// scf.for %d2 = 0 to %c256 {
/// scf.for %d1 = 0 to %c32 {
/// %s = %A[%i0, %i1 + %d1, %i2 + %d2] : f32
/// %tmp[%d2, %d1] = %s
/// }
/// }
/// ```
///
/// In the current state, only a clipping transfer is implemented by `clip`,
/// which creates individual indexing expressions of the form:
///
/// ```mlir-dsc
/// auto condMax = i + ii < N;
/// auto max = std_select(condMax, i + ii, N - one)
/// auto cond = i + ii < zero;
/// std_select(cond, zero, max);
/// ```
///
/// In the future, clipping should not be the only way and instead we should
/// load vectors + mask them. Similarly on the write side, load/mask/store for
/// implementing RMW behavior.
///
/// Lowers TransferOp into a combination of:
/// 1. local memory allocation;
/// 2. perfect loop nest over:
/// a. scalar load/stores from local buffers (viewed as a scalar memref);
/// a. scalar store/load to original memref (with clipping).
/// 3. vector_load/store
/// 4. local memory deallocation.
/// Minor variations occur depending on whether a TransferReadOp or
/// a TransferWriteOp is rewritten.
template <typename TransferOpTy>
struct VectorTransferRewriter : public RewritePattern {
explicit VectorTransferRewriter(MLIRContext *context)
: RewritePattern(TransferOpTy::getOperationName(), 1, context) {}
/// Used for staging the transfer in a local scalar buffer.
MemRefType tmpMemRefType(TransferOpTy transfer) const {
auto vectorType = transfer.getVectorType();
return MemRefType::get(vectorType.getShape(), vectorType.getElementType(),
{}, 0);
}
/// Performs the rewrite.
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override;
};
/// Lowers TransferReadOp into a combination of:
/// 1. local memory allocation;
/// 2. perfect loop nest over:
/// a. scalar load from local buffers (viewed as a scalar memref);
/// a. scalar store to original memref (with clipping).
/// 3. vector_load from local buffer (viewed as a memref<1 x vector>);
/// 4. local memory deallocation.
///
/// Lowers the data transfer part of a TransferReadOp while ensuring no
/// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by
/// clipping. This means that a given value in memory can be read multiple
/// times and concurrently.
///
/// Important notes about clipping and "full-tiles only" abstraction:
/// =================================================================
/// When using clipping for dealing with boundary conditions, the same edge
/// value will appear multiple times (a.k.a edge padding). This is fine if the
/// subsequent vector operations are all data-parallel but **is generally
/// incorrect** in the presence of reductions or extract operations.
///
/// More generally, clipping is a scalar abstraction that is expected to work
/// fine as a baseline for CPUs and GPUs but not for vector_load and DMAs.
/// To deal with real vector_load and DMAs, a "padded allocation + view"
/// abstraction with the ability to read out-of-memref-bounds (but still within
/// the allocated region) is necessary.
///
/// Whether using scalar loops or vector_load/DMAs to perform the transfer,
/// junk values will be materialized in the vectors and generally need to be
/// filtered out and replaced by the "neutral element". This neutral element is
/// op-dependent so, in the future, we expect to create a vector filter and
/// apply it to a splatted constant vector with the proper neutral element at
/// each ssa-use. This filtering is not necessary for pure data-parallel
/// operations.
///
/// In the case of vector_store/DMAs, Read-Modify-Write will be required, which
/// also have concurrency implications. Note that by using clipped scalar stores
/// in the presence of data-parallel only operations, we generate code that
/// writes the same value multiple time on the edge locations.
///
/// TODO(ntv): implement alternatives to clipping.
/// TODO(ntv): support non-data-parallel operations.
/// Performs the rewrite.
template <>
LogicalResult VectorTransferRewriter<TransferReadOp>::matchAndRewrite(
Operation *op, PatternRewriter &rewriter) const {
using namespace mlir::edsc::op;
TransferReadOp transfer = cast<TransferReadOp>(op);
if (AffineMap::isMinorIdentity(transfer.permutation_map())) {
// If > 1D, emit a bunch of loops around 1-D vector transfers.
if (transfer.getVectorType().getRank() > 1)
return NDTransferOpHelper<TransferReadOp>(rewriter, transfer).doReplace();
// If 1-D this is now handled by the target-specific lowering.
if (transfer.getVectorType().getRank() == 1)
return failure();
}
// Conservative lowering to scalar load / stores.
// 1. Setup all the captures.
ScopedContext scope(rewriter, transfer.getLoc());
StdIndexedValue remote(transfer.memref());
MemRefBoundsCapture memRefBoundsCapture(transfer.memref());
VectorBoundsCapture vectorBoundsCapture(transfer.vector());
int coalescedIdx = computeCoalescedIndex(transfer);
// Swap the vectorBoundsCapture which will reorder loop bounds.
if (coalescedIdx >= 0)
vectorBoundsCapture.swapRanges(vectorBoundsCapture.rank() - 1,
coalescedIdx);
auto lbs = vectorBoundsCapture.getLbs();
auto ubs = vectorBoundsCapture.getUbs();
SmallVector<Value, 8> steps;
steps.reserve(vectorBoundsCapture.getSteps().size());
for (auto step : vectorBoundsCapture.getSteps())
steps.push_back(std_constant_index(step));
// 2. Emit alloc-copy-load-dealloc.
Value tmp = std_alloc(tmpMemRefType(transfer));
StdIndexedValue local(tmp);
Value vec = vector_type_cast(tmp);
SmallVector<Value, 8> ivs(lbs.size());
LoopNestBuilder(ivs, lbs, ubs, steps)([&] {
// Swap the ivs which will reorder memory accesses.
if (coalescedIdx >= 0)
std::swap(ivs.back(), ivs[coalescedIdx]);
// Computes clippedScalarAccessExprs in the loop nest scope (ivs exist).
local(ivs) = remote(clip(transfer, memRefBoundsCapture, ivs));
});
Value vectorValue = std_load(vec);
(std_dealloc(tmp)); // vexing parse
// 3. Propagate.
rewriter.replaceOp(op, vectorValue);
return success();
}
/// Lowers TransferWriteOp into a combination of:
/// 1. local memory allocation;
/// 2. vector_store to local buffer (viewed as a memref<1 x vector>);
/// 3. perfect loop nest over:
/// a. scalar load from local buffers (viewed as a scalar memref);
/// a. scalar store to original memref (with clipping).
/// 4. local memory deallocation.
///
/// More specifically, lowers the data transfer part while ensuring no
/// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by
/// clipping. This means that a given value in memory can be written to multiple
/// times and concurrently.
///
/// See `Important notes about clipping and full-tiles only abstraction` in the
/// description of `readClipped` above.
///
/// TODO(ntv): implement alternatives to clipping.
/// TODO(ntv): support non-data-parallel operations.
template <>
LogicalResult VectorTransferRewriter<TransferWriteOp>::matchAndRewrite(
Operation *op, PatternRewriter &rewriter) const {
using namespace edsc::op;
TransferWriteOp transfer = cast<TransferWriteOp>(op);
if (AffineMap::isMinorIdentity(transfer.permutation_map())) {
// If > 1D, emit a bunch of loops around 1-D vector transfers.
if (transfer.getVectorType().getRank() > 1)
return NDTransferOpHelper<TransferWriteOp>(rewriter, transfer)
.doReplace();
// If 1-D this is now handled by the target-specific lowering.
if (transfer.getVectorType().getRank() == 1)
return failure();
}
// 1. Setup all the captures.
ScopedContext scope(rewriter, transfer.getLoc());
StdIndexedValue remote(transfer.memref());
MemRefBoundsCapture memRefBoundsCapture(transfer.memref());
Value vectorValue(transfer.vector());
VectorBoundsCapture vectorBoundsCapture(transfer.vector());
int coalescedIdx = computeCoalescedIndex(transfer);
// Swap the vectorBoundsCapture which will reorder loop bounds.
if (coalescedIdx >= 0)
vectorBoundsCapture.swapRanges(vectorBoundsCapture.rank() - 1,
coalescedIdx);
auto lbs = vectorBoundsCapture.getLbs();
auto ubs = vectorBoundsCapture.getUbs();
SmallVector<Value, 8> steps;
steps.reserve(vectorBoundsCapture.getSteps().size());
for (auto step : vectorBoundsCapture.getSteps())
steps.push_back(std_constant_index(step));
// 2. Emit alloc-store-copy-dealloc.
Value tmp = std_alloc(tmpMemRefType(transfer));
StdIndexedValue local(tmp);
Value vec = vector_type_cast(tmp);
std_store(vectorValue, vec);
SmallVector<Value, 8> ivs(lbs.size());
LoopNestBuilder(ivs, lbs, ubs, steps)([&] {
// Swap the ivs which will reorder memory accesses.
if (coalescedIdx >= 0)
std::swap(ivs.back(), ivs[coalescedIdx]);
// Computes clippedScalarAccessExprs in the loop nest scope (ivs exist).
remote(clip(transfer, memRefBoundsCapture, ivs)) = local(ivs);
});
(std_dealloc(tmp)); // vexing parse...
rewriter.eraseOp(op);
return success();
}
} // namespace
void mlir::populateVectorToSCFConversionPatterns(
OwningRewritePatternList &patterns, MLIRContext *context) {
patterns.insert<VectorTransferRewriter<vector::TransferReadOp>,
VectorTransferRewriter<vector::TransferWriteOp>>(context);
}