Files
llvm/lldb/source/Expression/ClangExpressionParser.cpp
Sean Callanan 503aa525ea Implemented a namespace map that allows searching
of namespaces (only in the modules where they've
been found) for entities inside those namespaces.

For each NamespaceDecl that has been imported into
the parser, we maintain a map containing
[ModuleSP, ClangNamespaceDecl] pairs in the ASTImporter.
This map has one entry for each module in which the
namespace has been found.  When we later scan for an
entity inside a namespace, we search only the modules
in which that namespace was found.

Also made a small whitespace fix in 
ClangExpressionParser.cpp.

llvm-svn: 141748
2011-10-12 00:12:34 +00:00

807 lines
29 KiB
C++

//===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Expression/ClangExpressionParser.h"
#include "lldb/Core/ArchSpec.h"
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Disassembler.h"
#include "lldb/Core/Stream.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Expression/ClangASTSource.h"
#include "lldb/Expression/ClangExpression.h"
#include "lldb/Expression/ClangExpressionDeclMap.h"
#include "lldb/Expression/IRDynamicChecks.h"
#include "lldb/Expression/RecordingMemoryManager.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/ObjCLanguageRuntime.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/Target.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Version.h"
#include "clang/CodeGen/CodeGenAction.h"
#include "clang/CodeGen/ModuleBuilder.h"
#include "clang/Driver/CC1Options.h"
#include "clang/Driver/OptTable.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/CompilerInvocation.h"
#include "clang/Frontend/FrontendActions.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Frontend/FrontendPluginRegistry.h"
#include "clang/Frontend/TextDiagnosticBuffer.h"
#include "clang/Frontend/TextDiagnosticPrinter.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Parse/ParseAST.h"
#include "clang/Rewrite/FrontendActions.h"
#include "clang/Sema/SemaConsumer.h"
#include "clang/StaticAnalyzer/Frontend/FrontendActions.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/Support/TargetSelect.h"
#if !defined(__APPLE__)
#define USE_STANDARD_JIT
#endif
#if defined (USE_STANDARD_JIT)
#include "llvm/ExecutionEngine/JIT.h"
#else
#include "llvm/ExecutionEngine/MCJIT.h"
#endif
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/Signals.h"
using namespace clang;
using namespace llvm;
using namespace lldb_private;
//===----------------------------------------------------------------------===//
// Utility Methods for Clang
//===----------------------------------------------------------------------===//
std::string GetBuiltinIncludePath(const char *Argv0) {
llvm::sys::Path P =
llvm::sys::Path::GetMainExecutable(Argv0,
(void*)(intptr_t) GetBuiltinIncludePath);
if (!P.isEmpty()) {
P.eraseComponent(); // Remove /clang from foo/bin/clang
P.eraseComponent(); // Remove /bin from foo/bin
// Get foo/lib/clang/<version>/include
P.appendComponent("lib");
P.appendComponent("clang");
P.appendComponent(CLANG_VERSION_STRING);
P.appendComponent("include");
}
return P.str();
}
//===----------------------------------------------------------------------===//
// Main driver for Clang
//===----------------------------------------------------------------------===//
static void LLVMErrorHandler(void *UserData, const std::string &Message) {
DiagnosticsEngine &Diags = *static_cast<DiagnosticsEngine*>(UserData);
Diags.Report(diag::err_fe_error_backend) << Message;
// We cannot recover from llvm errors.
assert(0);
}
static FrontendAction *CreateFrontendBaseAction(CompilerInstance &CI) {
using namespace clang::frontend;
switch (CI.getFrontendOpts().ProgramAction) {
default:
llvm_unreachable("Invalid program action!");
case ASTDump: return new ASTDumpAction();
case ASTPrint: return new ASTPrintAction();
case ASTDumpXML: return new ASTDumpXMLAction();
case ASTView: return new ASTViewAction();
case DumpRawTokens: return new DumpRawTokensAction();
case DumpTokens: return new DumpTokensAction();
case EmitAssembly: return new EmitAssemblyAction();
case EmitBC: return new EmitBCAction();
case EmitHTML: return new HTMLPrintAction();
case EmitLLVM: return new EmitLLVMAction();
case EmitLLVMOnly: return new EmitLLVMOnlyAction();
case EmitCodeGenOnly: return new EmitCodeGenOnlyAction();
case EmitObj: return new EmitObjAction();
case FixIt: return new FixItAction();
case GeneratePCH: return new GeneratePCHAction(false);
case GeneratePTH: return new GeneratePTHAction();
case InitOnly: return new InitOnlyAction();
case ParseSyntaxOnly: return new SyntaxOnlyAction();
case PluginAction: {
for (FrontendPluginRegistry::iterator it =
FrontendPluginRegistry::begin(), ie = FrontendPluginRegistry::end();
it != ie; ++it) {
if (it->getName() == CI.getFrontendOpts().ActionName) {
llvm::OwningPtr<PluginASTAction> P(it->instantiate());
if (!P->ParseArgs(CI, CI.getFrontendOpts().PluginArgs))
return 0;
return P.take();
}
}
CI.getDiagnostics().Report(diag::err_fe_invalid_plugin_name)
<< CI.getFrontendOpts().ActionName;
return 0;
}
case PrintDeclContext: return new DeclContextPrintAction();
case PrintPreamble: return new PrintPreambleAction();
case PrintPreprocessedInput: return new PrintPreprocessedAction();
case RewriteMacros: return new RewriteMacrosAction();
case RewriteObjC: return new RewriteObjCAction();
case RewriteTest: return new RewriteTestAction();
//case RunAnalysis: return new AnalysisAction();
case RunPreprocessorOnly: return new PreprocessOnlyAction();
}
}
static FrontendAction *CreateFrontendAction(CompilerInstance &CI) {
// Create the underlying action.
FrontendAction *Act = CreateFrontendBaseAction(CI);
if (!Act)
return 0;
// If there are any AST files to merge, create a frontend action
// adaptor to perform the merge.
if (!CI.getFrontendOpts().ASTMergeFiles.empty())
Act = new ASTMergeAction(Act, &CI.getFrontendOpts().ASTMergeFiles[0],
CI.getFrontendOpts().ASTMergeFiles.size());
return Act;
}
//===----------------------------------------------------------------------===//
// Implementation of ClangExpressionParser
//===----------------------------------------------------------------------===//
ClangExpressionParser::ClangExpressionParser (ExecutionContextScope *exe_scope,
ClangExpression &expr) :
m_expr (expr),
m_compiler (),
m_code_generator (NULL),
m_execution_engine (),
m_jitted_functions ()
{
// Initialize targets first, so that --version shows registered targets.
static struct InitializeLLVM {
InitializeLLVM() {
llvm::InitializeAllTargets();
llvm::InitializeAllAsmPrinters();
llvm::InitializeAllTargetMCs();
}
} InitializeLLVM;
// 1. Create a new compiler instance.
m_compiler.reset(new CompilerInstance());
// 2. Set options.
// Parse expressions as Objective C++ regardless of context.
// Our hook into Clang's lookup mechanism only works in C++.
m_compiler->getLangOpts().CPlusPlus = true;
// Setup objective C
m_compiler->getLangOpts().ObjC1 = true;
m_compiler->getLangOpts().ObjC2 = true;
Process *process = NULL;
if (exe_scope)
process = exe_scope->CalculateProcess();
if (process)
{
if (process->GetObjCLanguageRuntime())
{
if (process->GetObjCLanguageRuntime()->GetRuntimeVersion() == eAppleObjC_V2)
{
m_compiler->getLangOpts().ObjCNonFragileABI = true; // NOT i386
m_compiler->getLangOpts().ObjCNonFragileABI2 = true; // NOT i386
}
}
}
m_compiler->getLangOpts().ThreadsafeStatics = false;
m_compiler->getLangOpts().AccessControl = false; // Debuggers get universal access
m_compiler->getLangOpts().DollarIdents = true; // $ indicates a persistent variable name
//m_compiler->getLangOpts().DebuggerSupport = true; // Features specifically for debugger clients
// Set CodeGen options
m_compiler->getCodeGenOpts().EmitDeclMetadata = true;
m_compiler->getCodeGenOpts().InstrumentFunctions = false;
// Disable some warnings.
m_compiler->getDiagnosticOpts().Warnings.push_back("no-unused-value");
// Set the target triple.
Target *target = NULL;
if (exe_scope)
target = exe_scope->CalculateTarget();
// TODO: figure out what to really do when we don't have a valid target.
// Sometimes this will be ok to just use the host target triple (when we
// evaluate say "2+3", but other expressions like breakpoint conditions
// and other things that _are_ target specific really shouldn't just be
// using the host triple. This needs to be fixed in a better way.
if (target && target->GetArchitecture().IsValid())
{
std::string triple = target->GetArchitecture().GetTriple().str();
int dash_count = 0;
for (size_t i = 0; i < triple.size(); ++i)
{
if (triple[i] == '-')
dash_count++;
if (dash_count == 3)
{
triple.resize(i);
break;
}
}
m_compiler->getTargetOpts().Triple = triple;
}
else
{
m_compiler->getTargetOpts().Triple = llvm::sys::getHostTriple();
}
// 3. Set up various important bits of infrastructure.
m_compiler->createDiagnostics(0, 0);
// Create the target instance.
m_compiler->setTarget(TargetInfo::CreateTargetInfo(m_compiler->getDiagnostics(),
m_compiler->getTargetOpts()));
assert (m_compiler->hasTarget());
// Inform the target of the language options
//
// FIXME: We shouldn't need to do this, the target should be immutable once
// created. This complexity should be lifted elsewhere.
m_compiler->getTarget().setForcedLangOptions(m_compiler->getLangOpts());
// 4. Set up the diagnostic buffer for reporting errors
m_compiler->getDiagnostics().setClient(new clang::TextDiagnosticBuffer);
// 5. Set up the source management objects inside the compiler
clang::FileSystemOptions file_system_options;
m_file_manager.reset(new clang::FileManager(file_system_options));
if (!m_compiler->hasSourceManager())
m_compiler->createSourceManager(*m_file_manager.get());
m_compiler->createFileManager();
m_compiler->createPreprocessor();
// 6. Most of this we get from the CompilerInstance, but we
// also want to give the context an ExternalASTSource.
m_selector_table.reset(new SelectorTable());
m_builtin_context.reset(new Builtin::Context());
std::auto_ptr<clang::ASTContext> ast_context(new ASTContext(m_compiler->getLangOpts(),
m_compiler->getSourceManager(),
&m_compiler->getTarget(),
m_compiler->getPreprocessor().getIdentifierTable(),
*m_selector_table.get(),
*m_builtin_context.get(),
0));
ClangExpressionDeclMap *decl_map = m_expr.DeclMap();
if (decl_map)
{
OwningPtr<clang::ExternalASTSource> ast_source(new ClangASTSource(*ast_context, *decl_map));
ast_context->setExternalSource(ast_source);
}
m_compiler->setASTContext(ast_context.release());
std::string module_name("$__lldb_module");
m_llvm_context.reset(new LLVMContext());
m_code_generator.reset(CreateLLVMCodeGen(m_compiler->getDiagnostics(),
module_name,
m_compiler->getCodeGenOpts(),
*m_llvm_context));
}
ClangExpressionParser::~ClangExpressionParser()
{
}
unsigned
ClangExpressionParser::Parse (Stream &stream)
{
TextDiagnosticBuffer *diag_buf = static_cast<TextDiagnosticBuffer*>(m_compiler->getDiagnostics().getClient());
diag_buf->FlushDiagnostics (m_compiler->getDiagnostics());
MemoryBuffer *memory_buffer = MemoryBuffer::getMemBufferCopy(m_expr.Text(), __FUNCTION__);
FileID memory_buffer_file_id = m_compiler->getSourceManager().createMainFileIDForMemBuffer (memory_buffer);
diag_buf->BeginSourceFile(m_compiler->getLangOpts(), &m_compiler->getPreprocessor());
ASTConsumer *ast_transformer = m_expr.ASTTransformer(m_code_generator.get());
if (ast_transformer)
ParseAST(m_compiler->getPreprocessor(), ast_transformer, m_compiler->getASTContext());
else
ParseAST(m_compiler->getPreprocessor(), m_code_generator.get(), m_compiler->getASTContext());
diag_buf->EndSourceFile();
TextDiagnosticBuffer::const_iterator diag_iterator;
int num_errors = 0;
for (diag_iterator = diag_buf->warn_begin();
diag_iterator != diag_buf->warn_end();
++diag_iterator)
stream.Printf("warning: %s\n", (*diag_iterator).second.c_str());
num_errors = 0;
for (diag_iterator = diag_buf->err_begin();
diag_iterator != diag_buf->err_end();
++diag_iterator)
{
num_errors++;
stream.Printf("error: %s\n", (*diag_iterator).second.c_str());
}
for (diag_iterator = diag_buf->note_begin();
diag_iterator != diag_buf->note_end();
++diag_iterator)
stream.Printf("note: %s\n", (*diag_iterator).second.c_str());
if (!num_errors)
{
if (m_expr.DeclMap() && !m_expr.DeclMap()->ResolveUnknownTypes())
{
stream.Printf("error: Couldn't infer the type of a variable\n");
num_errors++;
}
}
return num_errors;
}
static bool FindFunctionInModule (std::string &mangled_name,
llvm::Module *module,
const char *orig_name)
{
for (llvm::Module::iterator fi = module->getFunctionList().begin(), fe = module->getFunctionList().end();
fi != fe;
++fi)
{
if (fi->getName().str().find(orig_name) != std::string::npos)
{
mangled_name = fi->getName().str();
return true;
}
}
return false;
}
Error
ClangExpressionParser::PrepareForExecution (lldb::addr_t &func_allocation_addr,
lldb::addr_t &func_addr,
lldb::addr_t &func_end,
ExecutionContext &exe_ctx,
IRForTarget::StaticDataAllocator *data_allocator,
bool &evaluated_statically,
lldb::ClangExpressionVariableSP &const_result,
ExecutionPolicy execution_policy)
{
func_allocation_addr = LLDB_INVALID_ADDRESS;
func_addr = LLDB_INVALID_ADDRESS;
func_end = LLDB_INVALID_ADDRESS;
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
Error err;
llvm::Module *module = m_code_generator->ReleaseModule();
if (!module)
{
err.SetErrorToGenericError();
err.SetErrorString("IR doesn't contain a module");
return err;
}
// Find the actual name of the function (it's often mangled somehow)
std::string function_name;
if (!FindFunctionInModule(function_name, module, m_expr.FunctionName()))
{
err.SetErrorToGenericError();
err.SetErrorStringWithFormat("Couldn't find %s() in the module", m_expr.FunctionName());
return err;
}
else
{
if (log)
log->Printf("Found function %s for %s", function_name.c_str(), m_expr.FunctionName());
}
ClangExpressionDeclMap *decl_map = m_expr.DeclMap(); // result can be NULL
if (decl_map)
{
Stream *error_stream = NULL;
Target *target = exe_ctx.GetTargetPtr();
if (target)
error_stream = &target->GetDebugger().GetErrorStream();
IRForTarget ir_for_target(decl_map,
m_expr.NeedsVariableResolution(),
execution_policy,
const_result,
data_allocator,
error_stream,
function_name.c_str());
if (!ir_for_target.runOnModule(*module))
{
err.SetErrorToGenericError();
err.SetErrorString("Couldn't prepare the expression for execution in the target");
return err;
}
if (execution_policy != eExecutionPolicyAlways && ir_for_target.interpretSuccess())
{
evaluated_statically = true;
err.Clear();
return err;
}
Process *process = exe_ctx.GetProcessPtr();
if (!process || execution_policy == eExecutionPolicyNever)
{
err.SetErrorToGenericError();
err.SetErrorString("Execution needed to run in the target, but the target can't be run");
return err;
}
if (execution_policy != eExecutionPolicyNever &&
m_expr.NeedsValidation() &&
process)
{
if (!process->GetDynamicCheckers())
{
DynamicCheckerFunctions *dynamic_checkers = new DynamicCheckerFunctions();
StreamString install_errors;
if (!dynamic_checkers->Install(install_errors, exe_ctx))
{
if (install_errors.GetString().empty())
err.SetErrorString ("couldn't install checkers, unknown error");
else
err.SetErrorString (install_errors.GetString().c_str());
return err;
}
process->SetDynamicCheckers(dynamic_checkers);
if (log)
log->Printf("== [ClangUserExpression::Evaluate] Finished installing dynamic checkers ==");
}
IRDynamicChecks ir_dynamic_checks(*process->GetDynamicCheckers(), function_name.c_str());
if (!ir_dynamic_checks.runOnModule(*module))
{
err.SetErrorToGenericError();
err.SetErrorString("Couldn't add dynamic checks to the expression");
return err;
}
}
}
// llvm will own this pointer when llvm::ExecutionEngine::createJIT is called
// below so we don't need to free it.
RecordingMemoryManager *jit_memory_manager = new RecordingMemoryManager();
std::string error_string;
#if defined (USE_STANDARD_JIT)
m_execution_engine.reset(llvm::ExecutionEngine::createJIT (module,
&error_string,
jit_memory_manager,
CodeGenOpt::Less,
true,
Reloc::Default,
CodeModel::Small));
#else
EngineBuilder builder(module);
builder.setEngineKind(EngineKind::JIT)
.setErrorStr(&error_string)
.setRelocationModel(llvm::Reloc::PIC_)
.setJITMemoryManager(jit_memory_manager)
.setOptLevel(CodeGenOpt::Less)
.setAllocateGVsWithCode(true)
.setCodeModel(CodeModel::Small)
.setUseMCJIT(true);
m_execution_engine.reset(builder.create());
#endif
if (!m_execution_engine.get())
{
err.SetErrorToGenericError();
err.SetErrorStringWithFormat("Couldn't JIT the function: %s", error_string.c_str());
return err;
}
m_execution_engine->DisableLazyCompilation();
llvm::Function *function = module->getFunction (function_name.c_str());
// We don't actually need the function pointer here, this just forces it to get resolved.
void *fun_ptr = m_execution_engine->getPointerToFunction(function);
// Errors usually cause failures in the JIT, but if we're lucky we get here.
if (!fun_ptr)
{
err.SetErrorToGenericError();
err.SetErrorString("Couldn't JIT the function");
return err;
}
m_jitted_functions.push_back (ClangExpressionParser::JittedFunction(function_name.c_str(), (lldb::addr_t)fun_ptr));
Process *process = exe_ctx.GetProcessPtr();
if (process == NULL)
{
err.SetErrorToGenericError();
err.SetErrorString("Couldn't write the JIT compiled code into the target because there is no target");
return err;
}
// Look over the regions allocated for the function compiled. The JIT
// tries to allocate the functions & stubs close together, so we should try to
// write them that way too...
// For now I only write functions with no stubs, globals, exception tables,
// etc. So I only need to write the functions.
size_t alloc_size = 0;
std::map<uint8_t *, uint8_t *>::iterator fun_pos = jit_memory_manager->m_functions.begin();
std::map<uint8_t *, uint8_t *>::iterator fun_end = jit_memory_manager->m_functions.end();
for (; fun_pos != fun_end; ++fun_pos)
{
size_t mem_size = fun_pos->second - fun_pos->first;
if (log)
log->Printf ("JIT memory: [%p - %p) size = %zu", fun_pos->first, fun_pos->second, mem_size);
alloc_size += mem_size;
}
Error alloc_error;
func_allocation_addr = process->AllocateMemory (alloc_size,
lldb::ePermissionsReadable|lldb::ePermissionsExecutable,
alloc_error);
if (func_allocation_addr == LLDB_INVALID_ADDRESS)
{
err.SetErrorToGenericError();
err.SetErrorStringWithFormat("Couldn't allocate memory for the JITted function: %s", alloc_error.AsCString("unknown error"));
return err;
}
lldb::addr_t cursor = func_allocation_addr;
for (fun_pos = jit_memory_manager->m_functions.begin(); fun_pos != fun_end; fun_pos++)
{
lldb::addr_t lstart = (lldb::addr_t) (*fun_pos).first;
lldb::addr_t lend = (lldb::addr_t) (*fun_pos).second;
size_t size = lend - lstart;
Error write_error;
if (process->WriteMemory(cursor, (void *) lstart, size, write_error) != size)
{
err.SetErrorToGenericError();
err.SetErrorStringWithFormat("Couldn't copy JIT code for function into the target: %s", write_error.AsCString("unknown error"));
return err;
}
jit_memory_manager->AddToLocalToRemoteMap (lstart, size, cursor);
cursor += size;
}
std::vector<JittedFunction>::iterator pos, end = m_jitted_functions.end();
for (pos = m_jitted_functions.begin(); pos != end; pos++)
{
(*pos).m_remote_addr = jit_memory_manager->GetRemoteAddressForLocal ((*pos).m_local_addr);
if (!(*pos).m_name.compare(function_name.c_str()))
{
func_end = jit_memory_manager->GetRemoteRangeForLocal ((*pos).m_local_addr).second;
func_addr = (*pos).m_remote_addr;
}
}
if (log)
{
log->Printf("Code can be run in the target.");
StreamString disassembly_stream;
Error err = DisassembleFunction(disassembly_stream, exe_ctx, jit_memory_manager);
if (!err.Success())
{
log->Printf("Couldn't disassemble function : %s", err.AsCString("unknown error"));
}
else
{
log->Printf("Function disassembly:\n%s", disassembly_stream.GetData());
}
}
err.Clear();
return err;
}
Error
ClangExpressionParser::DisassembleFunction (Stream &stream, ExecutionContext &exe_ctx, RecordingMemoryManager *jit_memory_manager)
{
lldb::LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
const char *name = m_expr.FunctionName();
Error ret;
ret.Clear();
lldb::addr_t func_local_addr = LLDB_INVALID_ADDRESS;
lldb::addr_t func_remote_addr = LLDB_INVALID_ADDRESS;
std::vector<JittedFunction>::iterator pos, end = m_jitted_functions.end();
for (pos = m_jitted_functions.begin(); pos < end; pos++)
{
if (strstr(pos->m_name.c_str(), name))
{
func_local_addr = pos->m_local_addr;
func_remote_addr = pos->m_remote_addr;
}
}
if (func_local_addr == LLDB_INVALID_ADDRESS)
{
ret.SetErrorToGenericError();
ret.SetErrorStringWithFormat("Couldn't find function %s for disassembly", name);
return ret;
}
if (log)
log->Printf("Found function, has local address 0x%llx and remote address 0x%llx", (uint64_t)func_local_addr, (uint64_t)func_remote_addr);
std::pair <lldb::addr_t, lldb::addr_t> func_range;
func_range = jit_memory_manager->GetRemoteRangeForLocal(func_local_addr);
if (func_range.first == 0 && func_range.second == 0)
{
ret.SetErrorToGenericError();
ret.SetErrorStringWithFormat("Couldn't find code range for function %s", name);
return ret;
}
if (log)
log->Printf("Function's code range is [0x%llx-0x%llx]", func_range.first, func_range.second);
Target *target = exe_ctx.GetTargetPtr();
if (!target)
{
ret.SetErrorToGenericError();
ret.SetErrorString("Couldn't find the target");
}
lldb::DataBufferSP buffer_sp(new DataBufferHeap(func_range.second - func_remote_addr, 0));
Process *process = exe_ctx.GetProcessPtr();
Error err;
process->ReadMemory(func_remote_addr, buffer_sp->GetBytes(), buffer_sp->GetByteSize(), err);
if (!err.Success())
{
ret.SetErrorToGenericError();
ret.SetErrorStringWithFormat("Couldn't read from process: %s", err.AsCString("unknown error"));
return ret;
}
ArchSpec arch(target->GetArchitecture());
Disassembler *disassembler = Disassembler::FindPlugin(arch, NULL);
if (disassembler == NULL)
{
ret.SetErrorToGenericError();
ret.SetErrorStringWithFormat("Unable to find disassembler plug-in for %s architecture.", arch.GetArchitectureName());
return ret;
}
if (!process)
{
ret.SetErrorToGenericError();
ret.SetErrorString("Couldn't find the process");
return ret;
}
DataExtractor extractor(buffer_sp,
process->GetByteOrder(),
target->GetArchitecture().GetAddressByteSize());
if (log)
{
log->Printf("Function data has contents:");
extractor.PutToLog (log.get(),
0,
extractor.GetByteSize(),
func_remote_addr,
16,
DataExtractor::TypeUInt8);
}
disassembler->DecodeInstructions (Address (NULL, func_remote_addr), extractor, 0, UINT32_MAX, false);
InstructionList &instruction_list = disassembler->GetInstructionList();
const uint32_t max_opcode_byte_size = instruction_list.GetMaxOpcocdeByteSize();
for (uint32_t instruction_index = 0, num_instructions = instruction_list.GetSize();
instruction_index < num_instructions;
++instruction_index)
{
Instruction *instruction = instruction_list.GetInstructionAtIndex(instruction_index).get();
instruction->Dump (&stream,
max_opcode_byte_size,
true,
true,
&exe_ctx,
true);
stream.PutChar('\n');
}
return ret;
}