Files
llvm/mlir/lib/Conversion/SPIRVToLLVM/ConvertSPIRVToLLVM.cpp
Alex Zinenko 5446ec8507 [mlir] take MLIRContext instead of LLVMDialect in getters of LLVMType's
Historical modeling of the LLVM dialect types had been wrapping LLVM IR types
and therefore needed access to the instance of LLVMContext stored in the
LLVMDialect. The new modeling does not rely on that and only needs the
MLIRContext that is used for uniquing, similarly to other MLIR types. Change
LLVMType::get<Kind>Ty functions to take `MLIRContext *` instead of
`LLVMDialect *` as first argument. This brings the code base closer to
completely removing the dependence on LLVMContext from the LLVMDialect,
together with additional support for thread-safety of its use.

Depends On D85371

Reviewed By: rriddle

Differential Revision: https://reviews.llvm.org/D85372
2020-08-06 11:05:40 +02:00

1261 lines
51 KiB
C++

//===- ConvertSPIRVToLLVM.cpp - SPIR-V dialect to LLVM dialect conversion -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns to convert SPIR-V dialect to LLVM dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/SPIRVToLLVM/ConvertSPIRVToLLVM.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/SPIRV/SPIRVDialect.h"
#include "mlir/Dialect/SPIRV/SPIRVOps.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "spirv-to-llvm-pattern"
using namespace mlir;
//===----------------------------------------------------------------------===//
// Utility functions
//===----------------------------------------------------------------------===//
/// Returns true if the given type is a signed integer or vector type.
static bool isSignedIntegerOrVector(Type type) {
if (type.isSignedInteger())
return true;
if (auto vecType = type.dyn_cast<VectorType>())
return vecType.getElementType().isSignedInteger();
return false;
}
/// Returns true if the given type is an unsigned integer or vector type
static bool isUnsignedIntegerOrVector(Type type) {
if (type.isUnsignedInteger())
return true;
if (auto vecType = type.dyn_cast<VectorType>())
return vecType.getElementType().isUnsignedInteger();
return false;
}
/// Returns the bit width of integer, float or vector of float or integer values
static unsigned getBitWidth(Type type) {
assert((type.isIntOrFloat() || type.isa<VectorType>()) &&
"bitwidth is not supported for this type");
if (type.isIntOrFloat())
return type.getIntOrFloatBitWidth();
auto vecType = type.dyn_cast<VectorType>();
auto elementType = vecType.getElementType();
assert(elementType.isIntOrFloat() &&
"only integers and floats have a bitwidth");
return elementType.getIntOrFloatBitWidth();
}
/// Returns the bit width of LLVMType integer or vector.
static unsigned getLLVMTypeBitWidth(LLVM::LLVMType type) {
return type.isVectorTy() ? type.getVectorElementType().getIntegerBitWidth()
: type.getIntegerBitWidth();
}
/// Creates `IntegerAttribute` with all bits set for given type
static IntegerAttr minusOneIntegerAttribute(Type type, Builder builder) {
if (auto vecType = type.dyn_cast<VectorType>()) {
auto integerType = vecType.getElementType().cast<IntegerType>();
return builder.getIntegerAttr(integerType, -1);
}
auto integerType = type.cast<IntegerType>();
return builder.getIntegerAttr(integerType, -1);
}
/// Creates `llvm.mlir.constant` with all bits set for the given type.
static Value createConstantAllBitsSet(Location loc, Type srcType, Type dstType,
PatternRewriter &rewriter) {
if (srcType.isa<VectorType>()) {
return rewriter.create<LLVM::ConstantOp>(
loc, dstType,
SplatElementsAttr::get(srcType.cast<ShapedType>(),
minusOneIntegerAttribute(srcType, rewriter)));
}
return rewriter.create<LLVM::ConstantOp>(
loc, dstType, minusOneIntegerAttribute(srcType, rewriter));
}
/// Creates `llvm.mlir.constant` with a floating-point scalar or vector value.
static Value createFPConstant(Location loc, Type srcType, Type dstType,
PatternRewriter &rewriter, double value) {
if (auto vecType = srcType.dyn_cast<VectorType>()) {
auto floatType = vecType.getElementType().cast<FloatType>();
return rewriter.create<LLVM::ConstantOp>(
loc, dstType,
SplatElementsAttr::get(vecType,
rewriter.getFloatAttr(floatType, value)));
}
auto floatType = srcType.cast<FloatType>();
return rewriter.create<LLVM::ConstantOp>(
loc, dstType, rewriter.getFloatAttr(floatType, value));
}
/// Utility function for bitfiled ops:
/// - `BitFieldInsert`
/// - `BitFieldSExtract`
/// - `BitFieldUExtract`
/// Truncates or extends the value. If the bitwidth of the value is the same as
/// `dstType` bitwidth, the value remains unchanged.
static Value optionallyTruncateOrExtend(Location loc, Value value, Type dstType,
PatternRewriter &rewriter) {
auto srcType = value.getType();
auto llvmType = dstType.cast<LLVM::LLVMType>();
unsigned targetBitWidth = getLLVMTypeBitWidth(llvmType);
unsigned valueBitWidth =
srcType.isa<LLVM::LLVMType>()
? getLLVMTypeBitWidth(srcType.cast<LLVM::LLVMType>())
: getBitWidth(srcType);
if (valueBitWidth < targetBitWidth)
return rewriter.create<LLVM::ZExtOp>(loc, llvmType, value);
// If the bit widths of `Count` and `Offset` are greater than the bit width
// of the target type, they are truncated. Truncation is safe since `Count`
// and `Offset` must be no more than 64 for op behaviour to be defined. Hence,
// both values can be expressed in 8 bits.
if (valueBitWidth > targetBitWidth)
return rewriter.create<LLVM::TruncOp>(loc, llvmType, value);
return value;
}
/// Broadcasts the value to vector with `numElements` number of elements.
static Value broadcast(Location loc, Value toBroadcast, unsigned numElements,
LLVMTypeConverter &typeConverter,
ConversionPatternRewriter &rewriter) {
auto vectorType = VectorType::get(numElements, toBroadcast.getType());
auto llvmVectorType = typeConverter.convertType(vectorType);
auto llvmI32Type = typeConverter.convertType(rewriter.getIntegerType(32));
Value broadcasted = rewriter.create<LLVM::UndefOp>(loc, llvmVectorType);
for (unsigned i = 0; i < numElements; ++i) {
auto index = rewriter.create<LLVM::ConstantOp>(
loc, llvmI32Type, rewriter.getI32IntegerAttr(i));
broadcasted = rewriter.create<LLVM::InsertElementOp>(
loc, llvmVectorType, broadcasted, toBroadcast, index);
}
return broadcasted;
}
/// Broadcasts the value. If `srcType` is a scalar, the value remains unchanged.
static Value optionallyBroadcast(Location loc, Value value, Type srcType,
LLVMTypeConverter &typeConverter,
ConversionPatternRewriter &rewriter) {
if (auto vectorType = srcType.dyn_cast<VectorType>()) {
unsigned numElements = vectorType.getNumElements();
return broadcast(loc, value, numElements, typeConverter, rewriter);
}
return value;
}
/// Utility function for bitfiled ops: `BitFieldInsert`, `BitFieldSExtract` and
/// `BitFieldUExtract`.
/// Broadcast `Offset` and `Count` to match the type of `Base`. If `Base` is of
/// a vector type, construct a vector that has:
/// - same number of elements as `Base`
/// - each element has the type that is the same as the type of `Offset` or
/// `Count`
/// - each element has the same value as `Offset` or `Count`
/// Then cast `Offset` and `Count` if their bit width is different
/// from `Base` bit width.
static Value processCountOrOffset(Location loc, Value value, Type srcType,
Type dstType, LLVMTypeConverter &converter,
ConversionPatternRewriter &rewriter) {
Value broadcasted =
optionallyBroadcast(loc, value, srcType, converter, rewriter);
return optionallyTruncateOrExtend(loc, broadcasted, dstType, rewriter);
}
/// Converts SPIR-V struct with no offset to packed LLVM struct.
static Type convertStructTypePacked(spirv::StructType type,
LLVMTypeConverter &converter) {
auto elementsVector = llvm::to_vector<8>(
llvm::map_range(type.getElementTypes(), [&](Type elementType) {
return converter.convertType(elementType).cast<LLVM::LLVMType>();
}));
return LLVM::LLVMType::getStructTy(type.getContext(), elementsVector,
/*isPacked=*/true);
}
/// Creates LLVM dialect constant with the given value.
static Value createI32ConstantOf(Location loc, PatternRewriter &rewriter,
unsigned value) {
return rewriter.create<LLVM::ConstantOp>(
loc, LLVM::LLVMType::getInt32Ty(rewriter.getContext()),
rewriter.getIntegerAttr(rewriter.getI32Type(), value));
}
/// Utility for `spv.Load` and `spv.Store` conversion.
static LogicalResult replaceWithLoadOrStore(Operation *op,
ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter,
unsigned alignment, bool isVolatile,
bool isNonTemporal) {
if (auto loadOp = dyn_cast<spirv::LoadOp>(op)) {
auto dstType = typeConverter.convertType(loadOp.getType());
if (!dstType)
return failure();
rewriter.replaceOpWithNewOp<LLVM::LoadOp>(
loadOp, dstType, loadOp.ptr(), alignment, isVolatile, isNonTemporal);
return success();
}
auto storeOp = cast<spirv::StoreOp>(op);
rewriter.replaceOpWithNewOp<LLVM::StoreOp>(storeOp, storeOp.value(),
storeOp.ptr(), alignment,
isVolatile, isNonTemporal);
return success();
}
//===----------------------------------------------------------------------===//
// Type conversion
//===----------------------------------------------------------------------===//
/// Converts SPIR-V array type to LLVM array. There is no modelling of array
/// stride at the moment.
static Optional<Type> convertArrayType(spirv::ArrayType type,
TypeConverter &converter) {
if (type.getArrayStride() != 0)
return llvm::None;
auto elementType =
converter.convertType(type.getElementType()).cast<LLVM::LLVMType>();
unsigned numElements = type.getNumElements();
return LLVM::LLVMType::getArrayTy(elementType, numElements);
}
/// Converts SPIR-V pointer type to LLVM pointer. Pointer's storage class is not
/// modelled at the moment.
static Type convertPointerType(spirv::PointerType type,
TypeConverter &converter) {
auto pointeeType =
converter.convertType(type.getPointeeType()).cast<LLVM::LLVMType>();
return pointeeType.getPointerTo();
}
/// Converts SPIR-V runtime array to LLVM array. Since LLVM allows indexing over
/// the bounds, the runtime array is converted to a 0-sized LLVM array. There is
/// no modelling of array stride at the moment.
static Optional<Type> convertRuntimeArrayType(spirv::RuntimeArrayType type,
TypeConverter &converter) {
if (type.getArrayStride() != 0)
return llvm::None;
auto elementType =
converter.convertType(type.getElementType()).cast<LLVM::LLVMType>();
return LLVM::LLVMType::getArrayTy(elementType, 0);
}
/// Converts SPIR-V struct to LLVM struct. There is no support of structs with
/// member decorations or with offset.
static Optional<Type> convertStructType(spirv::StructType type,
LLVMTypeConverter &converter) {
SmallVector<spirv::StructType::MemberDecorationInfo, 4> memberDecorations;
type.getMemberDecorations(memberDecorations);
if (type.hasOffset() || !memberDecorations.empty())
return llvm::None;
return convertStructTypePacked(type, converter);
}
//===----------------------------------------------------------------------===//
// Operation conversion
//===----------------------------------------------------------------------===//
namespace {
class BitFieldInsertPattern
: public SPIRVToLLVMConversion<spirv::BitFieldInsertOp> {
public:
using SPIRVToLLVMConversion<spirv::BitFieldInsertOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::BitFieldInsertOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto srcType = op.getType();
auto dstType = typeConverter.convertType(srcType);
if (!dstType)
return failure();
Location loc = op.getLoc();
// Process `Offset` and `Count`: broadcast and extend/truncate if needed.
Value offset = processCountOrOffset(loc, op.offset(), srcType, dstType,
typeConverter, rewriter);
Value count = processCountOrOffset(loc, op.count(), srcType, dstType,
typeConverter, rewriter);
// Create a mask with bits set outside [Offset, Offset + Count - 1].
Value minusOne = createConstantAllBitsSet(loc, srcType, dstType, rewriter);
Value maskShiftedByCount =
rewriter.create<LLVM::ShlOp>(loc, dstType, minusOne, count);
Value negated = rewriter.create<LLVM::XOrOp>(loc, dstType,
maskShiftedByCount, minusOne);
Value maskShiftedByCountAndOffset =
rewriter.create<LLVM::ShlOp>(loc, dstType, negated, offset);
Value mask = rewriter.create<LLVM::XOrOp>(
loc, dstType, maskShiftedByCountAndOffset, minusOne);
// Extract unchanged bits from the `Base` that are outside of
// [Offset, Offset + Count - 1]. Then `or` with shifted `Insert`.
Value baseAndMask =
rewriter.create<LLVM::AndOp>(loc, dstType, op.base(), mask);
Value insertShiftedByOffset =
rewriter.create<LLVM::ShlOp>(loc, dstType, op.insert(), offset);
rewriter.replaceOpWithNewOp<LLVM::OrOp>(op, dstType, baseAndMask,
insertShiftedByOffset);
return success();
}
};
/// Converts SPIR-V ConstantOp with scalar or vector type.
class ConstantScalarAndVectorPattern
: public SPIRVToLLVMConversion<spirv::ConstantOp> {
public:
using SPIRVToLLVMConversion<spirv::ConstantOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::ConstantOp constOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto srcType = constOp.getType();
if (!srcType.isa<VectorType>() && !srcType.isIntOrFloat())
return failure();
auto dstType = typeConverter.convertType(srcType);
if (!dstType)
return failure();
// SPIR-V constant can be a signed/unsigned integer, which has to be
// casted to signless integer when converting to LLVM dialect. Removing the
// sign bit may have unexpected behaviour. However, it is better to handle
// it case-by-case, given that the purpose of the conversion is not to
// cover all possible corner cases.
if (isSignedIntegerOrVector(srcType) ||
isUnsignedIntegerOrVector(srcType)) {
auto *context = rewriter.getContext();
auto signlessType = IntegerType::get(getBitWidth(srcType), context);
if (srcType.isa<VectorType>()) {
auto dstElementsAttr = constOp.value().cast<DenseIntElementsAttr>();
rewriter.replaceOpWithNewOp<LLVM::ConstantOp>(
constOp, dstType,
dstElementsAttr.mapValues(
signlessType, [&](const APInt &value) { return value; }));
return success();
}
auto srcAttr = constOp.value().cast<IntegerAttr>();
auto dstAttr = rewriter.getIntegerAttr(signlessType, srcAttr.getValue());
rewriter.replaceOpWithNewOp<LLVM::ConstantOp>(constOp, dstType, dstAttr);
return success();
}
rewriter.replaceOpWithNewOp<LLVM::ConstantOp>(constOp, dstType, operands,
constOp.getAttrs());
return success();
}
};
class BitFieldSExtractPattern
: public SPIRVToLLVMConversion<spirv::BitFieldSExtractOp> {
public:
using SPIRVToLLVMConversion<spirv::BitFieldSExtractOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::BitFieldSExtractOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto srcType = op.getType();
auto dstType = typeConverter.convertType(srcType);
if (!dstType)
return failure();
Location loc = op.getLoc();
// Process `Offset` and `Count`: broadcast and extend/truncate if needed.
Value offset = processCountOrOffset(loc, op.offset(), srcType, dstType,
typeConverter, rewriter);
Value count = processCountOrOffset(loc, op.count(), srcType, dstType,
typeConverter, rewriter);
// Create a constant that holds the size of the `Base`.
IntegerType integerType;
if (auto vecType = srcType.dyn_cast<VectorType>())
integerType = vecType.getElementType().cast<IntegerType>();
else
integerType = srcType.cast<IntegerType>();
auto baseSize = rewriter.getIntegerAttr(integerType, getBitWidth(srcType));
Value size =
srcType.isa<VectorType>()
? rewriter.create<LLVM::ConstantOp>(
loc, dstType,
SplatElementsAttr::get(srcType.cast<ShapedType>(), baseSize))
: rewriter.create<LLVM::ConstantOp>(loc, dstType, baseSize);
// Shift `Base` left by [sizeof(Base) - (Count + Offset)], so that the bit
// at Offset + Count - 1 is the most significant bit now.
Value countPlusOffset =
rewriter.create<LLVM::AddOp>(loc, dstType, count, offset);
Value amountToShiftLeft =
rewriter.create<LLVM::SubOp>(loc, dstType, size, countPlusOffset);
Value baseShiftedLeft = rewriter.create<LLVM::ShlOp>(
loc, dstType, op.base(), amountToShiftLeft);
// Shift the result right, filling the bits with the sign bit.
Value amountToShiftRight =
rewriter.create<LLVM::AddOp>(loc, dstType, offset, amountToShiftLeft);
rewriter.replaceOpWithNewOp<LLVM::AShrOp>(op, dstType, baseShiftedLeft,
amountToShiftRight);
return success();
}
};
class BitFieldUExtractPattern
: public SPIRVToLLVMConversion<spirv::BitFieldUExtractOp> {
public:
using SPIRVToLLVMConversion<spirv::BitFieldUExtractOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::BitFieldUExtractOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto srcType = op.getType();
auto dstType = typeConverter.convertType(srcType);
if (!dstType)
return failure();
Location loc = op.getLoc();
// Process `Offset` and `Count`: broadcast and extend/truncate if needed.
Value offset = processCountOrOffset(loc, op.offset(), srcType, dstType,
typeConverter, rewriter);
Value count = processCountOrOffset(loc, op.count(), srcType, dstType,
typeConverter, rewriter);
// Create a mask with bits set at [0, Count - 1].
Value minusOne = createConstantAllBitsSet(loc, srcType, dstType, rewriter);
Value maskShiftedByCount =
rewriter.create<LLVM::ShlOp>(loc, dstType, minusOne, count);
Value mask = rewriter.create<LLVM::XOrOp>(loc, dstType, maskShiftedByCount,
minusOne);
// Shift `Base` by `Offset` and apply the mask on it.
Value shiftedBase =
rewriter.create<LLVM::LShrOp>(loc, dstType, op.base(), offset);
rewriter.replaceOpWithNewOp<LLVM::AndOp>(op, dstType, shiftedBase, mask);
return success();
}
};
class BranchConversionPattern : public SPIRVToLLVMConversion<spirv::BranchOp> {
public:
using SPIRVToLLVMConversion<spirv::BranchOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::BranchOp branchOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<LLVM::BrOp>(branchOp, operands,
branchOp.getTarget());
return success();
}
};
class BranchConditionalConversionPattern
: public SPIRVToLLVMConversion<spirv::BranchConditionalOp> {
public:
using SPIRVToLLVMConversion<
spirv::BranchConditionalOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::BranchConditionalOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
// If branch weights exist, map them to 32-bit integer vector.
ElementsAttr branchWeights = nullptr;
if (auto weights = op.branch_weights()) {
VectorType weightType = VectorType::get(2, rewriter.getI32Type());
branchWeights =
DenseElementsAttr::get(weightType, weights.getValue().getValue());
}
rewriter.replaceOpWithNewOp<LLVM::CondBrOp>(
op, op.condition(), op.getTrueBlockArguments(),
op.getFalseBlockArguments(), branchWeights, op.getTrueBlock(),
op.getFalseBlock());
return success();
}
};
/// Converts SPIR-V operations that have straightforward LLVM equivalent
/// into LLVM dialect operations.
template <typename SPIRVOp, typename LLVMOp>
class DirectConversionPattern : public SPIRVToLLVMConversion<SPIRVOp> {
public:
using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(SPIRVOp operation, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto dstType = this->typeConverter.convertType(operation.getType());
if (!dstType)
return failure();
rewriter.template replaceOpWithNewOp<LLVMOp>(operation, dstType, operands,
operation.getAttrs());
return success();
}
};
/// Converts SPIR-V cast ops that do not have straightforward LLVM
/// equivalent in LLVM dialect.
template <typename SPIRVOp, typename LLVMExtOp, typename LLVMTruncOp>
class IndirectCastPattern : public SPIRVToLLVMConversion<SPIRVOp> {
public:
using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(SPIRVOp operation, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
Type fromType = operation.operand().getType();
Type toType = operation.getType();
auto dstType = this->typeConverter.convertType(toType);
if (!dstType)
return failure();
if (getBitWidth(fromType) < getBitWidth(toType)) {
rewriter.template replaceOpWithNewOp<LLVMExtOp>(operation, dstType,
operands);
return success();
}
if (getBitWidth(fromType) > getBitWidth(toType)) {
rewriter.template replaceOpWithNewOp<LLVMTruncOp>(operation, dstType,
operands);
return success();
}
return failure();
}
};
class FunctionCallPattern
: public SPIRVToLLVMConversion<spirv::FunctionCallOp> {
public:
using SPIRVToLLVMConversion<spirv::FunctionCallOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::FunctionCallOp callOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
if (callOp.getNumResults() == 0) {
rewriter.replaceOpWithNewOp<LLVM::CallOp>(callOp, llvm::None, operands,
callOp.getAttrs());
return success();
}
// Function returns a single result.
auto dstType = typeConverter.convertType(callOp.getType(0));
rewriter.replaceOpWithNewOp<LLVM::CallOp>(callOp, dstType, operands,
callOp.getAttrs());
return success();
}
};
/// Converts SPIR-V floating-point comparisons to llvm.fcmp "predicate"
template <typename SPIRVOp, LLVM::FCmpPredicate predicate>
class FComparePattern : public SPIRVToLLVMConversion<SPIRVOp> {
public:
using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(SPIRVOp operation, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto dstType = this->typeConverter.convertType(operation.getType());
if (!dstType)
return failure();
rewriter.template replaceOpWithNewOp<LLVM::FCmpOp>(
operation, dstType,
rewriter.getI64IntegerAttr(static_cast<int64_t>(predicate)),
operation.operand1(), operation.operand2());
return success();
}
};
/// Converts SPIR-V integer comparisons to llvm.icmp "predicate"
template <typename SPIRVOp, LLVM::ICmpPredicate predicate>
class IComparePattern : public SPIRVToLLVMConversion<SPIRVOp> {
public:
using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(SPIRVOp operation, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto dstType = this->typeConverter.convertType(operation.getType());
if (!dstType)
return failure();
rewriter.template replaceOpWithNewOp<LLVM::ICmpOp>(
operation, dstType,
rewriter.getI64IntegerAttr(static_cast<int64_t>(predicate)),
operation.operand1(), operation.operand2());
return success();
}
};
class InverseSqrtPattern
: public SPIRVToLLVMConversion<spirv::GLSLInverseSqrtOp> {
public:
using SPIRVToLLVMConversion<spirv::GLSLInverseSqrtOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::GLSLInverseSqrtOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto srcType = op.getType();
auto dstType = typeConverter.convertType(srcType);
if (!dstType)
return failure();
Location loc = op.getLoc();
Value one = createFPConstant(loc, srcType, dstType, rewriter, 1.0);
Value sqrt = rewriter.create<LLVM::SqrtOp>(loc, dstType, op.operand());
rewriter.replaceOpWithNewOp<LLVM::FDivOp>(op, dstType, one, sqrt);
return success();
}
};
/// Converts `spv.Load` and `spv.Store` to LLVM dialect.
template <typename SPIRVop>
class LoadStorePattern : public SPIRVToLLVMConversion<SPIRVop> {
public:
using SPIRVToLLVMConversion<SPIRVop>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(SPIRVop op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
if (!op.memory_access().hasValue()) {
replaceWithLoadOrStore(op, rewriter, this->typeConverter, /*alignment=*/0,
/*isVolatile=*/false, /*isNonTemporal=*/ false);
return success();
}
auto memoryAccess = op.memory_access().getValue();
switch (memoryAccess) {
case spirv::MemoryAccess::Aligned:
case spirv::MemoryAccess::None:
case spirv::MemoryAccess::Nontemporal:
case spirv::MemoryAccess::Volatile: {
unsigned alignment = memoryAccess == spirv::MemoryAccess::Aligned
? op.alignment().getValue().getZExtValue()
: 0;
bool isNonTemporal = memoryAccess == spirv::MemoryAccess::Nontemporal;
bool isVolatile = memoryAccess == spirv::MemoryAccess::Volatile;
replaceWithLoadOrStore(op, rewriter, this->typeConverter, alignment,
isVolatile, isNonTemporal);
return success();
}
default:
// There is no support of other memory access attributes.
return failure();
}
}
};
/// Converts `spv.Not` and `spv.LogicalNot` into LLVM dialect.
template <typename SPIRVOp>
class NotPattern : public SPIRVToLLVMConversion<SPIRVOp> {
public:
using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(SPIRVOp notOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto srcType = notOp.getType();
auto dstType = this->typeConverter.convertType(srcType);
if (!dstType)
return failure();
Location loc = notOp.getLoc();
IntegerAttr minusOne = minusOneIntegerAttribute(srcType, rewriter);
auto mask = srcType.template isa<VectorType>()
? rewriter.create<LLVM::ConstantOp>(
loc, dstType,
SplatElementsAttr::get(
srcType.template cast<VectorType>(), minusOne))
: rewriter.create<LLVM::ConstantOp>(loc, dstType, minusOne);
rewriter.template replaceOpWithNewOp<LLVM::XOrOp>(notOp, dstType,
notOp.operand(), mask);
return success();
}
};
class ReturnPattern : public SPIRVToLLVMConversion<spirv::ReturnOp> {
public:
using SPIRVToLLVMConversion<spirv::ReturnOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::ReturnOp returnOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(returnOp, ArrayRef<Type>(),
ArrayRef<Value>());
return success();
}
};
class ReturnValuePattern : public SPIRVToLLVMConversion<spirv::ReturnValueOp> {
public:
using SPIRVToLLVMConversion<spirv::ReturnValueOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::ReturnValueOp returnValueOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(returnValueOp, ArrayRef<Type>(),
operands);
return success();
}
};
/// Converts `spv.loop` to LLVM dialect. All blocks within selection should be
/// reachable for conversion to succeed.
/// The structure of the loop in LLVM dialect will be the following:
///
/// +------------------------------------+
/// | <code before spv.loop> |
/// | llvm.br ^header |
/// +------------------------------------+
/// |
/// +----------------+ |
/// | | |
/// | V V
/// | +------------------------------------+
/// | | ^header: |
/// | | <header code> |
/// | | llvm.cond_br %cond, ^body, ^exit |
/// | +------------------------------------+
/// | |
/// | |----------------------+
/// | | |
/// | V |
/// | +------------------------------------+ |
/// | | ^body: | |
/// | | <body code> | |
/// | | llvm.br ^continue | |
/// | +------------------------------------+ |
/// | | |
/// | V |
/// | +------------------------------------+ |
/// | | ^continue: | |
/// | | <continue code> | |
/// | | llvm.br ^header | |
/// | +------------------------------------+ |
/// | | |
/// +---------------+ +----------------------+
/// |
/// V
/// +------------------------------------+
/// | ^exit: |
/// | llvm.br ^remaining |
/// +------------------------------------+
/// |
/// V
/// +------------------------------------+
/// | ^remaining: |
/// | <code after spv.loop> |
/// +------------------------------------+
///
class LoopPattern : public SPIRVToLLVMConversion<spirv::LoopOp> {
public:
using SPIRVToLLVMConversion<spirv::LoopOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::LoopOp loopOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
// There is no support of loop control at the moment.
if (loopOp.loop_control() != spirv::LoopControl::None)
return failure();
Location loc = loopOp.getLoc();
// Split the current block after `spv.loop`. The remaing ops will be used in
// `endBlock`.
Block *currentBlock = rewriter.getBlock();
auto position = Block::iterator(loopOp);
Block *endBlock = rewriter.splitBlock(currentBlock, position);
// Remove entry block and create a branch in the current block going to the
// header block.
Block *entryBlock = loopOp.getEntryBlock();
assert(entryBlock->getOperations().size() == 1);
auto brOp = dyn_cast<spirv::BranchOp>(entryBlock->getOperations().front());
if (!brOp)
return failure();
Block *headerBlock = loopOp.getHeaderBlock();
rewriter.setInsertionPointToEnd(currentBlock);
rewriter.create<LLVM::BrOp>(loc, brOp.getBlockArguments(), headerBlock);
rewriter.eraseBlock(entryBlock);
// Branch from merge block to end block.
Block *mergeBlock = loopOp.getMergeBlock();
Operation *terminator = mergeBlock->getTerminator();
ValueRange terminatorOperands = terminator->getOperands();
rewriter.setInsertionPointToEnd(mergeBlock);
rewriter.create<LLVM::BrOp>(loc, terminatorOperands, endBlock);
rewriter.inlineRegionBefore(loopOp.body(), endBlock);
rewriter.replaceOp(loopOp, endBlock->getArguments());
return success();
}
};
class MergePattern : public SPIRVToLLVMConversion<spirv::MergeOp> {
public:
using SPIRVToLLVMConversion<spirv::MergeOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::MergeOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
rewriter.eraseOp(op);
return success();
}
};
/// Converts `spv.selection` with `spv.BranchConditional` in its header block.
/// All blocks within selection should be reachable for conversion to succeed.
class SelectionPattern : public SPIRVToLLVMConversion<spirv::SelectionOp> {
public:
using SPIRVToLLVMConversion<spirv::SelectionOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::SelectionOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
// There is no support for `Flatten` or `DontFlatten` selection control at
// the moment. This are just compiler hints and can be performed during the
// optimization passes.
if (op.selection_control() != spirv::SelectionControl::None)
return failure();
// `spv.selection` should have at least two blocks: one selection header
// block and one merge block. If no blocks are present, or control flow
// branches straight to merge block (two blocks are present), the op is
// redundant and it is erased.
if (op.body().getBlocks().size() <= 2) {
rewriter.eraseOp(op);
return success();
}
Location loc = op.getLoc();
// Split the current block after `spv.selection`. The remaing ops will be
// used in `continueBlock`.
auto *currentBlock = rewriter.getInsertionBlock();
rewriter.setInsertionPointAfter(op);
auto position = rewriter.getInsertionPoint();
auto *continueBlock = rewriter.splitBlock(currentBlock, position);
// Extract conditional branch information from the header block. By SPIR-V
// dialect spec, it should contain `spv.BranchConditional` or `spv.Switch`
// op. Note that `spv.Switch op` is not supported at the moment in the
// SPIR-V dialect. Remove this block when finished.
auto *headerBlock = op.getHeaderBlock();
assert(headerBlock->getOperations().size() == 1);
auto condBrOp = dyn_cast<spirv::BranchConditionalOp>(
headerBlock->getOperations().front());
if (!condBrOp)
return failure();
rewriter.eraseBlock(headerBlock);
// Branch from merge block to continue block.
auto *mergeBlock = op.getMergeBlock();
Operation *terminator = mergeBlock->getTerminator();
ValueRange terminatorOperands = terminator->getOperands();
rewriter.setInsertionPointToEnd(mergeBlock);
rewriter.create<LLVM::BrOp>(loc, terminatorOperands, continueBlock);
// Link current block to `true` and `false` blocks within the selection.
Block *trueBlock = condBrOp.getTrueBlock();
Block *falseBlock = condBrOp.getFalseBlock();
rewriter.setInsertionPointToEnd(currentBlock);
rewriter.create<LLVM::CondBrOp>(loc, condBrOp.condition(), trueBlock,
condBrOp.trueTargetOperands(), falseBlock,
condBrOp.falseTargetOperands());
rewriter.inlineRegionBefore(op.body(), continueBlock);
rewriter.replaceOp(op, continueBlock->getArguments());
return success();
}
};
/// Converts SPIR-V shift ops to LLVM shift ops. Since LLVM dialect
/// puts a restriction on `Shift` and `Base` to have the same bit width,
/// `Shift` is zero or sign extended to match this specification. Cases when
/// `Shift` bit width > `Base` bit width are considered to be illegal.
template <typename SPIRVOp, typename LLVMOp>
class ShiftPattern : public SPIRVToLLVMConversion<SPIRVOp> {
public:
using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(SPIRVOp operation, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto dstType = this->typeConverter.convertType(operation.getType());
if (!dstType)
return failure();
Type op1Type = operation.operand1().getType();
Type op2Type = operation.operand2().getType();
if (op1Type == op2Type) {
rewriter.template replaceOpWithNewOp<LLVMOp>(operation, dstType,
operands);
return success();
}
Location loc = operation.getLoc();
Value extended;
if (isUnsignedIntegerOrVector(op2Type)) {
extended = rewriter.template create<LLVM::ZExtOp>(loc, dstType,
operation.operand2());
} else {
extended = rewriter.template create<LLVM::SExtOp>(loc, dstType,
operation.operand2());
}
Value result = rewriter.template create<LLVMOp>(
loc, dstType, operation.operand1(), extended);
rewriter.replaceOp(operation, result);
return success();
}
};
class TanPattern : public SPIRVToLLVMConversion<spirv::GLSLTanOp> {
public:
using SPIRVToLLVMConversion<spirv::GLSLTanOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::GLSLTanOp tanOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto dstType = typeConverter.convertType(tanOp.getType());
if (!dstType)
return failure();
Location loc = tanOp.getLoc();
Value sin = rewriter.create<LLVM::SinOp>(loc, dstType, tanOp.operand());
Value cos = rewriter.create<LLVM::CosOp>(loc, dstType, tanOp.operand());
rewriter.replaceOpWithNewOp<LLVM::FDivOp>(tanOp, dstType, sin, cos);
return success();
}
};
/// Convert `spv.Tanh` to
///
/// exp(2x) - 1
/// -----------
/// exp(2x) + 1
///
class TanhPattern : public SPIRVToLLVMConversion<spirv::GLSLTanhOp> {
public:
using SPIRVToLLVMConversion<spirv::GLSLTanhOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::GLSLTanhOp tanhOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto srcType = tanhOp.getType();
auto dstType = typeConverter.convertType(srcType);
if (!dstType)
return failure();
Location loc = tanhOp.getLoc();
Value two = createFPConstant(loc, srcType, dstType, rewriter, 2.0);
Value multiplied =
rewriter.create<LLVM::FMulOp>(loc, dstType, two, tanhOp.operand());
Value exponential = rewriter.create<LLVM::ExpOp>(loc, dstType, multiplied);
Value one = createFPConstant(loc, srcType, dstType, rewriter, 1.0);
Value numerator =
rewriter.create<LLVM::FSubOp>(loc, dstType, exponential, one);
Value denominator =
rewriter.create<LLVM::FAddOp>(loc, dstType, exponential, one);
rewriter.replaceOpWithNewOp<LLVM::FDivOp>(tanhOp, dstType, numerator,
denominator);
return success();
}
};
class VariablePattern : public SPIRVToLLVMConversion<spirv::VariableOp> {
public:
using SPIRVToLLVMConversion<spirv::VariableOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::VariableOp varOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto srcType = varOp.getType();
// Initialization is supported for scalars and vectors only.
auto pointerTo = srcType.cast<spirv::PointerType>().getPointeeType();
auto init = varOp.initializer();
if (init && !pointerTo.isIntOrFloat() && !pointerTo.isa<VectorType>())
return failure();
auto dstType = typeConverter.convertType(srcType);
if (!dstType)
return failure();
Location loc = varOp.getLoc();
Value size = createI32ConstantOf(loc, rewriter, 1);
if (!init) {
rewriter.replaceOpWithNewOp<LLVM::AllocaOp>(varOp, dstType, size);
return success();
}
Value allocated = rewriter.create<LLVM::AllocaOp>(loc, dstType, size);
rewriter.create<LLVM::StoreOp>(loc, init, allocated);
rewriter.replaceOp(varOp, allocated);
return success();
}
};
//===----------------------------------------------------------------------===//
// FuncOp conversion
//===----------------------------------------------------------------------===//
class FuncConversionPattern : public SPIRVToLLVMConversion<spirv::FuncOp> {
public:
using SPIRVToLLVMConversion<spirv::FuncOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::FuncOp funcOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
// Convert function signature. At the moment LLVMType converter is enough
// for currently supported types.
auto funcType = funcOp.getType();
TypeConverter::SignatureConversion signatureConverter(
funcType.getNumInputs());
auto llvmType = typeConverter.convertFunctionSignature(
funcOp.getType(), /*isVariadic=*/false, signatureConverter);
if (!llvmType)
return failure();
// Create a new `LLVMFuncOp`
Location loc = funcOp.getLoc();
StringRef name = funcOp.getName();
auto newFuncOp = rewriter.create<LLVM::LLVMFuncOp>(loc, name, llvmType);
// Convert SPIR-V Function Control to equivalent LLVM function attribute
MLIRContext *context = funcOp.getContext();
switch (funcOp.function_control()) {
#define DISPATCH(functionControl, llvmAttr) \
case functionControl: \
newFuncOp.setAttr("passthrough", ArrayAttr::get({llvmAttr}, context)); \
break;
DISPATCH(spirv::FunctionControl::Inline,
StringAttr::get("alwaysinline", context));
DISPATCH(spirv::FunctionControl::DontInline,
StringAttr::get("noinline", context));
DISPATCH(spirv::FunctionControl::Pure,
StringAttr::get("readonly", context));
DISPATCH(spirv::FunctionControl::Const,
StringAttr::get("readnone", context));
#undef DISPATCH
// Default: if `spirv::FunctionControl::None`, then no attributes are
// needed.
default:
break;
}
rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(),
newFuncOp.end());
if (failed(rewriter.convertRegionTypes(&newFuncOp.getBody(), typeConverter,
&signatureConverter))) {
return failure();
}
rewriter.eraseOp(funcOp);
return success();
}
};
//===----------------------------------------------------------------------===//
// ModuleOp conversion
//===----------------------------------------------------------------------===//
class ModuleConversionPattern : public SPIRVToLLVMConversion<spirv::ModuleOp> {
public:
using SPIRVToLLVMConversion<spirv::ModuleOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::ModuleOp spvModuleOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto newModuleOp = rewriter.create<ModuleOp>(spvModuleOp.getLoc());
rewriter.inlineRegionBefore(spvModuleOp.body(), newModuleOp.getBody());
// Remove the terminator block that was automatically added by builder
rewriter.eraseBlock(&newModuleOp.getBodyRegion().back());
rewriter.eraseOp(spvModuleOp);
return success();
}
};
class ModuleEndConversionPattern
: public SPIRVToLLVMConversion<spirv::ModuleEndOp> {
public:
using SPIRVToLLVMConversion<spirv::ModuleEndOp>::SPIRVToLLVMConversion;
LogicalResult
matchAndRewrite(spirv::ModuleEndOp moduleEndOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<ModuleTerminatorOp>(moduleEndOp);
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Pattern population
//===----------------------------------------------------------------------===//
void mlir::populateSPIRVToLLVMTypeConversion(LLVMTypeConverter &typeConverter) {
typeConverter.addConversion([&](spirv::ArrayType type) {
return convertArrayType(type, typeConverter);
});
typeConverter.addConversion([&](spirv::PointerType type) {
return convertPointerType(type, typeConverter);
});
typeConverter.addConversion([&](spirv::RuntimeArrayType type) {
return convertRuntimeArrayType(type, typeConverter);
});
typeConverter.addConversion([&](spirv::StructType type) {
return convertStructType(type, typeConverter);
});
}
void mlir::populateSPIRVToLLVMConversionPatterns(
MLIRContext *context, LLVMTypeConverter &typeConverter,
OwningRewritePatternList &patterns) {
patterns.insert<
// Arithmetic ops
DirectConversionPattern<spirv::IAddOp, LLVM::AddOp>,
DirectConversionPattern<spirv::IMulOp, LLVM::MulOp>,
DirectConversionPattern<spirv::ISubOp, LLVM::SubOp>,
DirectConversionPattern<spirv::FAddOp, LLVM::FAddOp>,
DirectConversionPattern<spirv::FDivOp, LLVM::FDivOp>,
DirectConversionPattern<spirv::FMulOp, LLVM::FMulOp>,
DirectConversionPattern<spirv::FNegateOp, LLVM::FNegOp>,
DirectConversionPattern<spirv::FRemOp, LLVM::FRemOp>,
DirectConversionPattern<spirv::FSubOp, LLVM::FSubOp>,
DirectConversionPattern<spirv::SDivOp, LLVM::SDivOp>,
DirectConversionPattern<spirv::SRemOp, LLVM::SRemOp>,
DirectConversionPattern<spirv::UDivOp, LLVM::UDivOp>,
DirectConversionPattern<spirv::UModOp, LLVM::URemOp>,
// Bitwise ops
BitFieldInsertPattern, BitFieldUExtractPattern, BitFieldSExtractPattern,
DirectConversionPattern<spirv::BitCountOp, LLVM::CtPopOp>,
DirectConversionPattern<spirv::BitReverseOp, LLVM::BitReverseOp>,
DirectConversionPattern<spirv::BitwiseAndOp, LLVM::AndOp>,
DirectConversionPattern<spirv::BitwiseOrOp, LLVM::OrOp>,
DirectConversionPattern<spirv::BitwiseXorOp, LLVM::XOrOp>,
NotPattern<spirv::NotOp>,
// Cast ops
DirectConversionPattern<spirv::BitcastOp, LLVM::BitcastOp>,
DirectConversionPattern<spirv::ConvertFToSOp, LLVM::FPToSIOp>,
DirectConversionPattern<spirv::ConvertFToUOp, LLVM::FPToUIOp>,
DirectConversionPattern<spirv::ConvertSToFOp, LLVM::SIToFPOp>,
DirectConversionPattern<spirv::ConvertUToFOp, LLVM::UIToFPOp>,
IndirectCastPattern<spirv::FConvertOp, LLVM::FPExtOp, LLVM::FPTruncOp>,
IndirectCastPattern<spirv::SConvertOp, LLVM::SExtOp, LLVM::TruncOp>,
IndirectCastPattern<spirv::UConvertOp, LLVM::ZExtOp, LLVM::TruncOp>,
// Comparison ops
IComparePattern<spirv::IEqualOp, LLVM::ICmpPredicate::eq>,
IComparePattern<spirv::INotEqualOp, LLVM::ICmpPredicate::ne>,
FComparePattern<spirv::FOrdEqualOp, LLVM::FCmpPredicate::oeq>,
FComparePattern<spirv::FOrdGreaterThanOp, LLVM::FCmpPredicate::ogt>,
FComparePattern<spirv::FOrdGreaterThanEqualOp, LLVM::FCmpPredicate::oge>,
FComparePattern<spirv::FOrdLessThanEqualOp, LLVM::FCmpPredicate::ole>,
FComparePattern<spirv::FOrdLessThanOp, LLVM::FCmpPredicate::olt>,
FComparePattern<spirv::FOrdNotEqualOp, LLVM::FCmpPredicate::one>,
FComparePattern<spirv::FUnordEqualOp, LLVM::FCmpPredicate::ueq>,
FComparePattern<spirv::FUnordGreaterThanOp, LLVM::FCmpPredicate::ugt>,
FComparePattern<spirv::FUnordGreaterThanEqualOp,
LLVM::FCmpPredicate::uge>,
FComparePattern<spirv::FUnordLessThanEqualOp, LLVM::FCmpPredicate::ule>,
FComparePattern<spirv::FUnordLessThanOp, LLVM::FCmpPredicate::ult>,
FComparePattern<spirv::FUnordNotEqualOp, LLVM::FCmpPredicate::une>,
IComparePattern<spirv::SGreaterThanOp, LLVM::ICmpPredicate::sgt>,
IComparePattern<spirv::SGreaterThanEqualOp, LLVM::ICmpPredicate::sge>,
IComparePattern<spirv::SLessThanEqualOp, LLVM::ICmpPredicate::sle>,
IComparePattern<spirv::SLessThanOp, LLVM::ICmpPredicate::slt>,
IComparePattern<spirv::UGreaterThanOp, LLVM::ICmpPredicate::ugt>,
IComparePattern<spirv::UGreaterThanEqualOp, LLVM::ICmpPredicate::uge>,
IComparePattern<spirv::ULessThanEqualOp, LLVM::ICmpPredicate::ule>,
IComparePattern<spirv::ULessThanOp, LLVM::ICmpPredicate::ult>,
// Constant op
ConstantScalarAndVectorPattern,
// Control Flow ops
BranchConversionPattern, BranchConditionalConversionPattern, LoopPattern,
SelectionPattern, MergePattern,
// Function Call op
FunctionCallPattern,
// GLSL extended instruction set ops
DirectConversionPattern<spirv::GLSLCeilOp, LLVM::FCeilOp>,
DirectConversionPattern<spirv::GLSLCosOp, LLVM::CosOp>,
DirectConversionPattern<spirv::GLSLExpOp, LLVM::ExpOp>,
DirectConversionPattern<spirv::GLSLFAbsOp, LLVM::FAbsOp>,
DirectConversionPattern<spirv::GLSLFloorOp, LLVM::FFloorOp>,
DirectConversionPattern<spirv::GLSLFMaxOp, LLVM::MaxNumOp>,
DirectConversionPattern<spirv::GLSLFMinOp, LLVM::MinNumOp>,
DirectConversionPattern<spirv::GLSLLogOp, LLVM::LogOp>,
DirectConversionPattern<spirv::GLSLSinOp, LLVM::SinOp>,
DirectConversionPattern<spirv::GLSLSMaxOp, LLVM::SMaxOp>,
DirectConversionPattern<spirv::GLSLSMinOp, LLVM::SMinOp>,
DirectConversionPattern<spirv::GLSLSqrtOp, LLVM::SqrtOp>,
InverseSqrtPattern, TanPattern, TanhPattern,
// Logical ops
DirectConversionPattern<spirv::LogicalAndOp, LLVM::AndOp>,
DirectConversionPattern<spirv::LogicalOrOp, LLVM::OrOp>,
IComparePattern<spirv::LogicalEqualOp, LLVM::ICmpPredicate::eq>,
IComparePattern<spirv::LogicalNotEqualOp, LLVM::ICmpPredicate::ne>,
NotPattern<spirv::LogicalNotOp>,
// Memory ops
LoadStorePattern<spirv::LoadOp>, LoadStorePattern<spirv::StoreOp>,
VariablePattern,
// Miscellaneous ops
DirectConversionPattern<spirv::SelectOp, LLVM::SelectOp>,
DirectConversionPattern<spirv::UndefOp, LLVM::UndefOp>,
// Shift ops
ShiftPattern<spirv::ShiftRightArithmeticOp, LLVM::AShrOp>,
ShiftPattern<spirv::ShiftRightLogicalOp, LLVM::LShrOp>,
ShiftPattern<spirv::ShiftLeftLogicalOp, LLVM::ShlOp>,
// Return ops
ReturnPattern, ReturnValuePattern>(context, typeConverter);
}
void mlir::populateSPIRVToLLVMFunctionConversionPatterns(
MLIRContext *context, LLVMTypeConverter &typeConverter,
OwningRewritePatternList &patterns) {
patterns.insert<FuncConversionPattern>(context, typeConverter);
}
void mlir::populateSPIRVToLLVMModuleConversionPatterns(
MLIRContext *context, LLVMTypeConverter &typeConverter,
OwningRewritePatternList &patterns) {
patterns.insert<ModuleConversionPattern, ModuleEndConversionPattern>(
context, typeConverter);
}