Files
llvm/libc/utils/gpu/server/rpc_server.cpp
Joseph Huber 59896c168a [libc] Remove the 'rpc_reset' routine from the RPC implementation (#66700)
Summary:
This patch removes the `rpc_reset` function. This was previously used to
initialize the RPC client on the device by setting up the pointers to
communicate with the server. The purpose of this was to make it easier
to initialize the device for testing. However, this prevented us from
enforcing an invariant that the buffers are all read-only from the
client side.

The expected way to initialize the server is now to copy it from the
host runtime. This will allow us to maintain that the RPC client is in
the constant address space on the GPU, potentially through inference,
and improving caching behaviour.
2023-09-21 11:07:09 -05:00

415 lines
13 KiB
C++

//===-- Shared memory RPC server instantiation ------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "rpc_server.h"
#include "src/__support/RPC/rpc.h"
#include "src/stdio/gpu/file.h"
#include <atomic>
#include <cstdio>
#include <cstring>
#include <memory>
#include <mutex>
#include <unordered_map>
#include <variant>
#include <vector>
using namespace __llvm_libc;
static_assert(sizeof(rpc_buffer_t) == sizeof(rpc::Buffer),
"Buffer size mismatch");
static_assert(RPC_MAXIMUM_PORT_COUNT == rpc::MAX_PORT_COUNT,
"Incorrect maximum port count");
// The client needs to support different lane sizes for the SIMT model. Because
// of this we need to select between the possible sizes that the client can use.
struct Server {
template <uint32_t lane_size>
Server(std::unique_ptr<rpc::Server<lane_size>> &&server)
: server(std::move(server)) {}
uint64_t allocation_size(uint64_t port_count) {
uint64_t ret = 0;
std::visit([&](auto &server) { ret = server->allocation_size(port_count); },
server);
return ret;
}
rpc_status_t handle_server(
std::unordered_map<rpc_opcode_t, rpc_opcode_callback_ty> &callbacks,
std::unordered_map<rpc_opcode_t, void *> &callback_data) {
rpc_status_t ret = RPC_STATUS_SUCCESS;
std::visit(
[&](auto &server) {
ret = handle_server(*server, callbacks, callback_data);
},
server);
return ret;
}
private:
template <uint32_t lane_size>
rpc_status_t handle_server(
rpc::Server<lane_size> &server,
std::unordered_map<rpc_opcode_t, rpc_opcode_callback_ty> &callbacks,
std::unordered_map<rpc_opcode_t, void *> &callback_data) {
auto port = server.try_open();
if (!port)
return RPC_STATUS_SUCCESS;
switch (port->get_opcode()) {
case RPC_WRITE_TO_STREAM:
case RPC_WRITE_TO_STDERR:
case RPC_WRITE_TO_STDOUT: {
uint64_t sizes[lane_size] = {0};
void *strs[lane_size] = {nullptr};
FILE *files[lane_size] = {nullptr};
if (port->get_opcode() == RPC_WRITE_TO_STREAM)
port->recv([&](rpc::Buffer *buffer, uint32_t id) {
files[id] = reinterpret_cast<FILE *>(buffer->data[0]);
});
port->recv_n(strs, sizes, [&](uint64_t size) { return new char[size]; });
port->send([&](rpc::Buffer *buffer, uint32_t id) {
FILE *file =
port->get_opcode() == RPC_WRITE_TO_STDOUT
? stdout
: (port->get_opcode() == RPC_WRITE_TO_STDERR ? stderr
: files[id]);
uint64_t ret = fwrite(strs[id], 1, sizes[id], file);
std::memcpy(buffer->data, &ret, sizeof(uint64_t));
delete[] reinterpret_cast<uint8_t *>(strs[id]);
});
break;
}
case RPC_READ_FROM_STREAM:
case RPC_READ_FROM_STDIN: {
uint64_t sizes[lane_size] = {0};
void *data[lane_size] = {nullptr};
uint64_t rets[lane_size] = {0};
port->recv([&](rpc::Buffer *buffer, uint32_t id) {
sizes[id] = buffer->data[0];
data[id] = new char[sizes[id]];
FILE *file = port->get_opcode() == RPC_READ_FROM_STREAM
? reinterpret_cast<FILE *>(buffer->data[1])
: stdin;
rets[id] = fread(data[id], 1, sizes[id], file);
});
port->send_n(data, sizes);
port->send([&](rpc::Buffer *buffer, uint32_t id) {
delete[] reinterpret_cast<uint8_t *>(data[id]);
std::memcpy(buffer->data, &rets[id], sizeof(uint64_t));
});
break;
}
case RPC_OPEN_FILE: {
uint64_t sizes[lane_size] = {0};
void *paths[lane_size] = {nullptr};
port->recv_n(paths, sizes, [&](uint64_t size) { return new char[size]; });
port->recv_and_send([&](rpc::Buffer *buffer, uint32_t id) {
FILE *file = fopen(reinterpret_cast<char *>(paths[id]),
reinterpret_cast<char *>(buffer->data));
buffer->data[0] = reinterpret_cast<uintptr_t>(file);
});
break;
}
case RPC_CLOSE_FILE: {
port->recv_and_send([&](rpc::Buffer *buffer, uint32_t id) {
FILE *file = reinterpret_cast<FILE *>(buffer->data[0]);
buffer->data[0] = fclose(file);
});
break;
}
case RPC_EXIT: {
// Send a response to the client to signal that we are ready to exit.
port->recv_and_send([](rpc::Buffer *) {});
port->recv([](rpc::Buffer *buffer) {
int status = 0;
std::memcpy(&status, buffer->data, sizeof(int));
exit(status);
});
break;
}
case RPC_ABORT: {
// Send a response to the client to signal that we are ready to abort.
port->recv_and_send([](rpc::Buffer *) {});
port->recv([](rpc::Buffer *) {});
abort();
break;
}
case RPC_HOST_CALL: {
uint64_t sizes[lane_size] = {0};
void *args[lane_size] = {nullptr};
port->recv_n(args, sizes, [&](uint64_t size) { return new char[size]; });
port->recv([&](rpc::Buffer *buffer, uint32_t id) {
reinterpret_cast<void (*)(void *)>(buffer->data[0])(args[id]);
});
port->send([&](rpc::Buffer *, uint32_t id) {
delete[] reinterpret_cast<uint8_t *>(args[id]);
});
break;
}
case RPC_FEOF: {
port->recv_and_send([](rpc::Buffer *buffer) {
buffer->data[0] = feof(file::to_stream(buffer->data[0]));
});
break;
}
case RPC_FERROR: {
port->recv_and_send([](rpc::Buffer *buffer) {
buffer->data[0] = ferror(file::to_stream(buffer->data[0]));
});
break;
}
case RPC_CLEARERR: {
port->recv_and_send([](rpc::Buffer *buffer) {
clearerr(file::to_stream(buffer->data[0]));
});
break;
}
case RPC_NOOP: {
port->recv([](rpc::Buffer *) {});
break;
}
default: {
auto handler =
callbacks.find(static_cast<rpc_opcode_t>(port->get_opcode()));
// We error out on an unhandled opcode.
if (handler == callbacks.end())
return RPC_STATUS_UNHANDLED_OPCODE;
// Invoke the registered callback with a reference to the port.
void *data =
callback_data.at(static_cast<rpc_opcode_t>(port->get_opcode()));
rpc_port_t port_ref{reinterpret_cast<uint64_t>(&*port), lane_size};
(handler->second)(port_ref, data);
}
}
port->close();
return RPC_STATUS_CONTINUE;
}
std::variant<std::unique_ptr<rpc::Server<1>>,
std::unique_ptr<rpc::Server<32>>,
std::unique_ptr<rpc::Server<64>>>
server;
};
struct Device {
template <typename T>
Device(uint32_t num_ports, void *buffer, std::unique_ptr<T> &&server)
: buffer(buffer), server(std::move(server)), client(num_ports, buffer) {}
void *buffer;
Server server;
rpc::Client client;
std::unordered_map<rpc_opcode_t, rpc_opcode_callback_ty> callbacks;
std::unordered_map<rpc_opcode_t, void *> callback_data;
};
// A struct containing all the runtime state required to run the RPC server.
struct State {
State(uint32_t num_devices)
: num_devices(num_devices), devices(num_devices), reference_count(0u) {}
uint32_t num_devices;
std::vector<std::unique_ptr<Device>> devices;
std::atomic_uint32_t reference_count;
};
static std::mutex startup_mutex;
static State *state;
rpc_status_t rpc_init(uint32_t num_devices) {
std::scoped_lock<decltype(startup_mutex)> lock(startup_mutex);
if (!state)
state = new State(num_devices);
if (state->reference_count == std::numeric_limits<uint32_t>::max())
return RPC_STATUS_ERROR;
state->reference_count++;
return RPC_STATUS_SUCCESS;
}
rpc_status_t rpc_shutdown(void) {
if (state && state->reference_count-- == 1)
delete state;
return RPC_STATUS_SUCCESS;
}
template <uint32_t lane_size>
rpc_status_t server_init_impl(uint32_t device_id, uint64_t num_ports,
rpc_alloc_ty alloc, void *data) {
uint64_t size = rpc::Server<lane_size>::allocation_size(num_ports);
void *buffer = alloc(size, data);
if (!buffer)
return RPC_STATUS_ERROR;
state->devices[device_id] = std::make_unique<Device>(
num_ports, buffer,
std::make_unique<rpc::Server<lane_size>>(num_ports, buffer));
if (!state->devices[device_id])
return RPC_STATUS_ERROR;
return RPC_STATUS_SUCCESS;
}
rpc_status_t rpc_server_init(uint32_t device_id, uint64_t num_ports,
uint32_t lane_size, rpc_alloc_ty alloc,
void *data) {
if (!state)
return RPC_STATUS_NOT_INITIALIZED;
if (device_id >= state->num_devices)
return RPC_STATUS_OUT_OF_RANGE;
if (!state->devices[device_id]) {
switch (lane_size) {
case 1:
if (rpc_status_t err =
server_init_impl<1>(device_id, num_ports, alloc, data))
return err;
break;
case 32: {
if (rpc_status_t err =
server_init_impl<32>(device_id, num_ports, alloc, data))
return err;
break;
}
case 64:
if (rpc_status_t err =
server_init_impl<64>(device_id, num_ports, alloc, data))
return err;
break;
default:
return RPC_STATUS_INVALID_LANE_SIZE;
}
}
return RPC_STATUS_SUCCESS;
}
rpc_status_t rpc_server_shutdown(uint32_t device_id, rpc_free_ty dealloc,
void *data) {
if (!state)
return RPC_STATUS_NOT_INITIALIZED;
if (device_id >= state->num_devices)
return RPC_STATUS_OUT_OF_RANGE;
if (!state->devices[device_id])
return RPC_STATUS_ERROR;
dealloc(state->devices[device_id]->buffer, data);
if (state->devices[device_id])
state->devices[device_id].release();
return RPC_STATUS_SUCCESS;
}
rpc_status_t rpc_handle_server(uint32_t device_id) {
if (!state)
return RPC_STATUS_NOT_INITIALIZED;
if (device_id >= state->num_devices)
return RPC_STATUS_OUT_OF_RANGE;
if (!state->devices[device_id])
return RPC_STATUS_ERROR;
for (;;) {
auto &device = *state->devices[device_id];
rpc_status_t status =
device.server.handle_server(device.callbacks, device.callback_data);
if (status != RPC_STATUS_CONTINUE)
return status;
}
}
rpc_status_t rpc_register_callback(uint32_t device_id, rpc_opcode_t opcode,
rpc_opcode_callback_ty callback,
void *data) {
if (!state)
return RPC_STATUS_NOT_INITIALIZED;
if (device_id >= state->num_devices)
return RPC_STATUS_OUT_OF_RANGE;
if (!state->devices[device_id])
return RPC_STATUS_ERROR;
state->devices[device_id]->callbacks[opcode] = callback;
state->devices[device_id]->callback_data[opcode] = data;
return RPC_STATUS_SUCCESS;
}
const void *rpc_get_client_buffer(uint32_t device_id) {
if (!state || device_id >= state->num_devices || !state->devices[device_id])
return nullptr;
return &state->devices[device_id]->client;
}
uint64_t rpc_get_client_size() { return sizeof(rpc::Client); }
using ServerPort = std::variant<rpc::Server<1>::Port *, rpc::Server<32>::Port *,
rpc::Server<64>::Port *>;
ServerPort get_port(rpc_port_t ref) {
if (ref.lane_size == 1)
return reinterpret_cast<rpc::Server<1>::Port *>(ref.handle);
else if (ref.lane_size == 32)
return reinterpret_cast<rpc::Server<32>::Port *>(ref.handle);
else if (ref.lane_size == 64)
return reinterpret_cast<rpc::Server<64>::Port *>(ref.handle);
else
__builtin_unreachable();
}
void rpc_send(rpc_port_t ref, rpc_port_callback_ty callback, void *data) {
auto port = get_port(ref);
std::visit(
[=](auto &port) {
port->send([=](rpc::Buffer *buffer) {
callback(reinterpret_cast<rpc_buffer_t *>(buffer), data);
});
},
port);
}
void rpc_send_n(rpc_port_t ref, const void *const *src, uint64_t *size) {
auto port = get_port(ref);
std::visit([=](auto &port) { port->send_n(src, size); }, port);
}
void rpc_recv(rpc_port_t ref, rpc_port_callback_ty callback, void *data) {
auto port = get_port(ref);
std::visit(
[=](auto &port) {
port->recv([=](rpc::Buffer *buffer) {
callback(reinterpret_cast<rpc_buffer_t *>(buffer), data);
});
},
port);
}
void rpc_recv_n(rpc_port_t ref, void **dst, uint64_t *size, rpc_alloc_ty alloc,
void *data) {
auto port = get_port(ref);
auto alloc_fn = [=](uint64_t size) { return alloc(size, data); };
std::visit([=](auto &port) { port->recv_n(dst, size, alloc_fn); }, port);
}
void rpc_recv_and_send(rpc_port_t ref, rpc_port_callback_ty callback,
void *data) {
auto port = get_port(ref);
std::visit(
[=](auto &port) {
port->recv_and_send([=](rpc::Buffer *buffer) {
callback(reinterpret_cast<rpc_buffer_t *>(buffer), data);
});
},
port);
}