mirror of
https://github.com/intel/llvm.git
synced 2026-01-29 12:53:33 +08:00
This revision adds support for generating utilities for passes such as options/statistics/etc. that can be inferred from the tablegen definition. This removes additional boilerplate from the pass, and also makes it easier to remove the reliance on the pass registry to provide certain things(e.g. the pass argument). Differential Revision: https://reviews.llvm.org/D76659
147 lines
5.0 KiB
C++
147 lines
5.0 KiB
C++
//===- ConvertSimQuant.cpp - Converts simulated quant ops------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Quant/FakeQuantSupport.h"
|
|
#include "mlir/Dialect/Quant/Passes.h"
|
|
#include "mlir/Dialect/Quant/QuantOps.h"
|
|
#include "mlir/Dialect/Quant/UniformSupport.h"
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/IR/StandardTypes.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::quant;
|
|
|
|
namespace {
|
|
struct ConvertSimulatedQuantPass
|
|
: public FunctionPass<ConvertSimulatedQuantPass> {
|
|
/// Include the generated pass utilities.
|
|
#define GEN_PASS_QuantConvertSimulatedQuant
|
|
#include "mlir/Dialect/Quant/Passes.h.inc"
|
|
|
|
void runOnFunction() override;
|
|
};
|
|
|
|
/// Base class rewrites ConstFakeQuant into a qbarrier/dbarrier pair.
|
|
template <typename ConcreteRewriteClass, typename FakeQuantOp>
|
|
class FakeQuantRewrite : public OpRewritePattern<FakeQuantOp> {
|
|
public:
|
|
using OpRewritePattern<FakeQuantOp>::OpRewritePattern;
|
|
|
|
FakeQuantRewrite(MLIRContext *ctx, bool *hadFailure)
|
|
: OpRewritePattern<FakeQuantOp>(ctx), hadFailure(hadFailure) {}
|
|
|
|
LogicalResult matchAndRewrite(FakeQuantOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
// TODO: If this pattern comes up more frequently, consider adding core
|
|
// support for failable rewrites.
|
|
if (failableRewrite(op, rewriter)) {
|
|
*hadFailure = true;
|
|
return failure();
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
bool *hadFailure;
|
|
|
|
bool failableRewrite(FakeQuantOp op, PatternRewriter &rewriter) const {
|
|
auto converter = ExpressedToQuantizedConverter::forInputType(op.getType());
|
|
if (!converter) {
|
|
return (op.emitError("unsupported quantized type conversion"), true);
|
|
}
|
|
|
|
QuantizedType elementType =
|
|
static_cast<const ConcreteRewriteClass *>(this)
|
|
->convertFakeQuantAttrsToType(op, converter.expressedType);
|
|
|
|
if (!elementType) {
|
|
// Note that the fakeQuantAttrsToType will have emitted the error.
|
|
return true;
|
|
}
|
|
|
|
Type quantizedType = converter.convert(elementType);
|
|
assert(quantizedType &&
|
|
"Converter accepted a type that it did not convert");
|
|
|
|
// TODO: Map to a qbarrier with an attribute like [Forced] to signal that
|
|
// this is a forced/hard-coded constraint.
|
|
auto qbarrier = rewriter.create<QuantizeCastOp>(op.getLoc(), quantizedType,
|
|
op.inputs());
|
|
rewriter.replaceOpWithNewOp<DequantizeCastOp>(op, converter.inputType,
|
|
qbarrier.getResult());
|
|
|
|
return false;
|
|
}
|
|
};
|
|
|
|
class ConstFakeQuantRewrite
|
|
: public FakeQuantRewrite<ConstFakeQuantRewrite, ConstFakeQuant> {
|
|
public:
|
|
using BaseRewrite = FakeQuantRewrite<ConstFakeQuantRewrite, ConstFakeQuant>;
|
|
|
|
ConstFakeQuantRewrite(MLIRContext *ctx, bool *hadFailure)
|
|
: BaseRewrite(ctx, hadFailure) {}
|
|
|
|
QuantizedType convertFakeQuantAttrsToType(ConstFakeQuant fqOp,
|
|
Type expressedType) const {
|
|
return fakeQuantAttrsToType(
|
|
fqOp.getLoc(), fqOp.num_bits().getSExtValue(),
|
|
fqOp.min().convertToFloat(), fqOp.max().convertToFloat(),
|
|
fqOp.narrow_range(), expressedType, fqOp.is_signed());
|
|
}
|
|
};
|
|
|
|
class ConstFakeQuantPerAxisRewrite
|
|
: public FakeQuantRewrite<ConstFakeQuantPerAxisRewrite,
|
|
ConstFakeQuantPerAxis> {
|
|
public:
|
|
using BaseRewrite =
|
|
FakeQuantRewrite<ConstFakeQuantPerAxisRewrite, ConstFakeQuantPerAxis>;
|
|
|
|
ConstFakeQuantPerAxisRewrite(MLIRContext *ctx, bool *hadFailure)
|
|
: BaseRewrite(ctx, hadFailure) {}
|
|
|
|
QuantizedType convertFakeQuantAttrsToType(ConstFakeQuantPerAxis fqOp,
|
|
Type expressedType) const {
|
|
SmallVector<double, 4> min, max;
|
|
min.reserve(fqOp.min().size());
|
|
max.reserve(fqOp.max().size());
|
|
for (auto m : fqOp.min())
|
|
min.push_back(m.cast<FloatAttr>().getValueAsDouble());
|
|
for (auto m : fqOp.max())
|
|
max.push_back(m.cast<FloatAttr>().getValueAsDouble());
|
|
|
|
return fakeQuantAttrsToType(fqOp.getLoc(), fqOp.num_bits().getSExtValue(),
|
|
fqOp.axis().getSExtValue(), min, max,
|
|
fqOp.narrow_range(), expressedType,
|
|
fqOp.is_signed());
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void ConvertSimulatedQuantPass::runOnFunction() {
|
|
bool hadFailure = false;
|
|
OwningRewritePatternList patterns;
|
|
auto func = getFunction();
|
|
auto ctx = func.getContext();
|
|
patterns.insert<ConstFakeQuantRewrite, ConstFakeQuantPerAxisRewrite>(
|
|
ctx, &hadFailure);
|
|
applyPatternsGreedily(func, patterns);
|
|
if (hadFailure)
|
|
signalPassFailure();
|
|
}
|
|
|
|
std::unique_ptr<OpPassBase<FuncOp>>
|
|
mlir::quant::createConvertSimulatedQuantPass() {
|
|
return std::make_unique<ConvertSimulatedQuantPass>();
|
|
}
|