Files
llvm/lld/COFF/Writer.cpp
Rui Ueyama 5ace35cba5 Fix SizeOfImage in the PE header.
IIUC, SizeOfImage is the distance from the end of the last section to
the image base, rounded up to the page size. So the previous code is
wrong.

Should fix https://bugs.llvm.org/show_bug.cgi?id=34949

(It is nice to know that lld is already being used to create Putty
distribution binaries.)

llvm-svn: 316626
2017-10-25 23:00:40 +00:00

959 lines
31 KiB
C++

//===- Writer.cpp ---------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Writer.h"
#include "Config.h"
#include "DLL.h"
#include "InputFiles.h"
#include "MapFile.h"
#include "Memory.h"
#include "PDB.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/BinaryStreamReader.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/FileOutputBuffer.h"
#include "llvm/Support/Parallel.h"
#include "llvm/Support/RandomNumberGenerator.h"
#include <algorithm>
#include <cstdio>
#include <map>
#include <memory>
#include <utility>
using namespace llvm;
using namespace llvm::COFF;
using namespace llvm::object;
using namespace llvm::support;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::coff;
static const int SectorSize = 512;
static const int DOSStubSize = 64;
static const int NumberfOfDataDirectory = 16;
namespace {
class DebugDirectoryChunk : public Chunk {
public:
DebugDirectoryChunk(const std::vector<Chunk *> &R) : Records(R) {}
size_t getSize() const override {
return Records.size() * sizeof(debug_directory);
}
void writeTo(uint8_t *B) const override {
auto *D = reinterpret_cast<debug_directory *>(B + OutputSectionOff);
for (const Chunk *Record : Records) {
D->Characteristics = 0;
D->TimeDateStamp = 0;
D->MajorVersion = 0;
D->MinorVersion = 0;
D->Type = COFF::IMAGE_DEBUG_TYPE_CODEVIEW;
D->SizeOfData = Record->getSize();
D->AddressOfRawData = Record->getRVA();
OutputSection *OS = Record->getOutputSection();
uint64_t Offs = OS->getFileOff() + (Record->getRVA() - OS->getRVA());
D->PointerToRawData = Offs;
++D;
}
}
private:
const std::vector<Chunk *> &Records;
};
class CVDebugRecordChunk : public Chunk {
public:
CVDebugRecordChunk() {
PDBAbsPath = Config->PDBPath;
if (!PDBAbsPath.empty())
llvm::sys::fs::make_absolute(PDBAbsPath);
}
size_t getSize() const override {
return sizeof(codeview::DebugInfo) + PDBAbsPath.size() + 1;
}
void writeTo(uint8_t *B) const override {
// Save off the DebugInfo entry to backfill the file signature (build id)
// in Writer::writeBuildId
BuildId = reinterpret_cast<codeview::DebugInfo *>(B + OutputSectionOff);
// variable sized field (PDB Path)
char *P = reinterpret_cast<char *>(B + OutputSectionOff + sizeof(*BuildId));
if (!PDBAbsPath.empty())
memcpy(P, PDBAbsPath.data(), PDBAbsPath.size());
P[PDBAbsPath.size()] = '\0';
}
SmallString<128> PDBAbsPath;
mutable codeview::DebugInfo *BuildId = nullptr;
};
// The writer writes a SymbolTable result to a file.
class Writer {
public:
void run();
private:
void createSections();
void createMiscChunks();
void createImportTables();
void createExportTable();
void assignAddresses();
void removeEmptySections();
void createSymbolAndStringTable();
void openFile(StringRef OutputPath);
template <typename PEHeaderTy> void writeHeader();
void fixSafeSEHSymbols();
void setSectionPermissions();
void writeSections();
void writeBuildId();
void sortExceptionTable();
llvm::Optional<coff_symbol16> createSymbol(Defined *D);
size_t addEntryToStringTable(StringRef Str);
OutputSection *findSection(StringRef Name);
OutputSection *createSection(StringRef Name);
void addBaserels(OutputSection *Dest);
void addBaserelBlocks(OutputSection *Dest, std::vector<Baserel> &V);
uint32_t getSizeOfInitializedData();
std::map<StringRef, std::vector<DefinedImportData *>> binImports();
std::unique_ptr<FileOutputBuffer> Buffer;
std::vector<OutputSection *> OutputSections;
std::vector<char> Strtab;
std::vector<llvm::object::coff_symbol16> OutputSymtab;
IdataContents Idata;
DelayLoadContents DelayIdata;
EdataContents Edata;
SEHTableChunk *SEHTable = nullptr;
Chunk *DebugDirectory = nullptr;
std::vector<Chunk *> DebugRecords;
CVDebugRecordChunk *BuildId = nullptr;
Optional<codeview::DebugInfo> PreviousBuildId;
ArrayRef<uint8_t> SectionTable;
uint64_t FileSize;
uint32_t PointerToSymbolTable = 0;
uint64_t SizeOfImage;
uint64_t SizeOfHeaders;
};
} // anonymous namespace
namespace lld {
namespace coff {
void writeResult() { Writer().run(); }
void OutputSection::setRVA(uint64_t RVA) {
Header.VirtualAddress = RVA;
for (Chunk *C : Chunks)
C->setRVA(C->getRVA() + RVA);
}
void OutputSection::setFileOffset(uint64_t Off) {
// If a section has no actual data (i.e. BSS section), we want to
// set 0 to its PointerToRawData. Otherwise the output is rejected
// by the loader.
if (Header.SizeOfRawData == 0)
return;
Header.PointerToRawData = Off;
}
void OutputSection::addChunk(Chunk *C) {
Chunks.push_back(C);
C->setOutputSection(this);
uint64_t Off = Header.VirtualSize;
Off = alignTo(Off, C->Alignment);
C->setRVA(Off);
C->OutputSectionOff = Off;
Off += C->getSize();
if (Off > UINT32_MAX)
error("section larger than 4 GiB: " + Name);
Header.VirtualSize = Off;
if (C->hasData())
Header.SizeOfRawData = alignTo(Off, SectorSize);
}
void OutputSection::addPermissions(uint32_t C) {
Header.Characteristics |= C & PermMask;
}
void OutputSection::setPermissions(uint32_t C) {
Header.Characteristics = C & PermMask;
}
// Write the section header to a given buffer.
void OutputSection::writeHeaderTo(uint8_t *Buf) {
auto *Hdr = reinterpret_cast<coff_section *>(Buf);
*Hdr = Header;
if (StringTableOff) {
// If name is too long, write offset into the string table as a name.
sprintf(Hdr->Name, "/%d", StringTableOff);
} else {
assert(!Config->Debug || Name.size() <= COFF::NameSize);
strncpy(Hdr->Name, Name.data(),
std::min(Name.size(), (size_t)COFF::NameSize));
}
}
} // namespace coff
} // namespace lld
// PDBs are matched against executables using a build id which consists of three
// components:
// 1. A 16-bit GUID
// 2. An age
// 3. A time stamp.
//
// Debuggers and symbol servers match executables against debug info by checking
// each of these components of the EXE/DLL against the corresponding value in
// the PDB and failing a match if any of the components differ. In the case of
// symbol servers, symbols are cached in a folder that is a function of the
// GUID. As a result, in order to avoid symbol cache pollution where every
// incremental build copies a new PDB to the symbol cache, we must try to re-use
// the existing GUID if one exists, but bump the age. This way the match will
// fail, so the symbol cache knows to use the new PDB, but the GUID matches, so
// it overwrites the existing item in the symbol cache rather than making a new
// one.
static Optional<codeview::DebugInfo> loadExistingBuildId(StringRef Path) {
// We don't need to incrementally update a previous build id if we're not
// writing codeview debug info.
if (!Config->Debug)
return None;
auto ExpectedBinary = llvm::object::createBinary(Path);
if (!ExpectedBinary) {
consumeError(ExpectedBinary.takeError());
return None;
}
auto Binary = std::move(*ExpectedBinary);
if (!Binary.getBinary()->isCOFF())
return None;
std::error_code EC;
COFFObjectFile File(Binary.getBinary()->getMemoryBufferRef(), EC);
if (EC)
return None;
// If the machine of the binary we're outputting doesn't match the machine
// of the existing binary, don't try to re-use the build id.
if (File.is64() != Config->is64() || File.getMachine() != Config->Machine)
return None;
for (const auto &DebugDir : File.debug_directories()) {
if (DebugDir.Type != IMAGE_DEBUG_TYPE_CODEVIEW)
continue;
const codeview::DebugInfo *ExistingDI = nullptr;
StringRef PDBFileName;
if (auto EC = File.getDebugPDBInfo(ExistingDI, PDBFileName)) {
(void)EC;
return None;
}
// We only support writing PDBs in v70 format. So if this is not a build
// id that we recognize / support, ignore it.
if (ExistingDI->Signature.CVSignature != OMF::Signature::PDB70)
return None;
return *ExistingDI;
}
return None;
}
// The main function of the writer.
void Writer::run() {
createSections();
createMiscChunks();
createImportTables();
createExportTable();
if (Config->Relocatable)
createSection(".reloc");
assignAddresses();
removeEmptySections();
setSectionPermissions();
createSymbolAndStringTable();
// We must do this before opening the output file, as it depends on being able
// to read the contents of the existing output file.
PreviousBuildId = loadExistingBuildId(Config->OutputFile);
openFile(Config->OutputFile);
if (Config->is64()) {
writeHeader<pe32plus_header>();
} else {
writeHeader<pe32_header>();
}
fixSafeSEHSymbols();
writeSections();
sortExceptionTable();
writeBuildId();
if (!Config->PDBPath.empty() && Config->Debug) {
assert(BuildId);
createPDB(Symtab, OutputSections, SectionTable, *BuildId->BuildId);
}
writeMapFile(OutputSections);
if (auto EC = Buffer->commit())
fatal("failed to write the output file: " + EC.message());
}
static StringRef getOutputSection(StringRef Name) {
StringRef S = Name.split('$').first;
auto It = Config->Merge.find(S);
if (It == Config->Merge.end())
return S;
return It->second;
}
// Create output section objects and add them to OutputSections.
void Writer::createSections() {
// First, bin chunks by name.
std::map<StringRef, std::vector<Chunk *>> Map;
for (Chunk *C : Symtab->getChunks()) {
auto *SC = dyn_cast<SectionChunk>(C);
if (SC && !SC->isLive()) {
if (Config->Verbose)
SC->printDiscardedMessage();
continue;
}
Map[C->getSectionName()].push_back(C);
}
// Then create an OutputSection for each section.
// '$' and all following characters in input section names are
// discarded when determining output section. So, .text$foo
// contributes to .text, for example. See PE/COFF spec 3.2.
SmallDenseMap<StringRef, OutputSection *> Sections;
for (auto Pair : Map) {
StringRef Name = getOutputSection(Pair.first);
OutputSection *&Sec = Sections[Name];
if (!Sec) {
Sec = make<OutputSection>(Name);
OutputSections.push_back(Sec);
}
std::vector<Chunk *> &Chunks = Pair.second;
for (Chunk *C : Chunks) {
Sec->addChunk(C);
Sec->addPermissions(C->getPermissions());
}
}
}
void Writer::createMiscChunks() {
OutputSection *RData = createSection(".rdata");
// Create thunks for locally-dllimported symbols.
if (!Symtab->LocalImportChunks.empty()) {
for (Chunk *C : Symtab->LocalImportChunks)
RData->addChunk(C);
}
// Create Debug Information Chunks
if (Config->Debug) {
DebugDirectory = make<DebugDirectoryChunk>(DebugRecords);
// Make a CVDebugRecordChunk even when /DEBUG:CV is not specified. We
// output a PDB no matter what, and this chunk provides the only means of
// allowing a debugger to match a PDB and an executable. So we need it even
// if we're ultimately not going to write CodeView data to the PDB.
auto *CVChunk = make<CVDebugRecordChunk>();
BuildId = CVChunk;
DebugRecords.push_back(CVChunk);
RData->addChunk(DebugDirectory);
for (Chunk *C : DebugRecords)
RData->addChunk(C);
}
// Create SEH table. x86-only.
if (Config->Machine != I386)
return;
std::set<Defined *> Handlers;
for (ObjFile *File : ObjFile::Instances) {
if (!File->SEHCompat)
return;
for (SymbolBody *B : File->SEHandlers) {
// Make sure the handler is still live. Assume all handlers are regular
// symbols.
auto *D = dyn_cast<DefinedRegular>(B);
if (D && D->getChunk()->isLive())
Handlers.insert(D);
}
}
if (!Handlers.empty()) {
SEHTable = make<SEHTableChunk>(Handlers);
RData->addChunk(SEHTable);
}
}
// Create .idata section for the DLL-imported symbol table.
// The format of this section is inherently Windows-specific.
// IdataContents class abstracted away the details for us,
// so we just let it create chunks and add them to the section.
void Writer::createImportTables() {
if (ImportFile::Instances.empty())
return;
// Initialize DLLOrder so that import entries are ordered in
// the same order as in the command line. (That affects DLL
// initialization order, and this ordering is MSVC-compatible.)
for (ImportFile *File : ImportFile::Instances) {
if (!File->Live)
continue;
std::string DLL = StringRef(File->DLLName).lower();
if (Config->DLLOrder.count(DLL) == 0)
Config->DLLOrder[DLL] = Config->DLLOrder.size();
}
OutputSection *Text = createSection(".text");
for (ImportFile *File : ImportFile::Instances) {
if (!File->Live)
continue;
if (DefinedImportThunk *Thunk = File->ThunkSym)
Text->addChunk(Thunk->getChunk());
if (Config->DelayLoads.count(StringRef(File->DLLName).lower())) {
if (!File->ThunkSym)
fatal("cannot delay-load " + toString(File) +
" due to import of data: " + toString(*File->ImpSym));
DelayIdata.add(File->ImpSym);
} else {
Idata.add(File->ImpSym);
}
}
if (!Idata.empty()) {
OutputSection *Sec = createSection(".idata");
for (Chunk *C : Idata.getChunks())
Sec->addChunk(C);
}
if (!DelayIdata.empty()) {
Defined *Helper = cast<Defined>(Config->DelayLoadHelper);
DelayIdata.create(Helper);
OutputSection *Sec = createSection(".didat");
for (Chunk *C : DelayIdata.getChunks())
Sec->addChunk(C);
Sec = createSection(".data");
for (Chunk *C : DelayIdata.getDataChunks())
Sec->addChunk(C);
Sec = createSection(".text");
for (Chunk *C : DelayIdata.getCodeChunks())
Sec->addChunk(C);
}
}
void Writer::createExportTable() {
if (Config->Exports.empty())
return;
OutputSection *Sec = createSection(".edata");
for (Chunk *C : Edata.Chunks)
Sec->addChunk(C);
}
// The Windows loader doesn't seem to like empty sections,
// so we remove them if any.
void Writer::removeEmptySections() {
auto IsEmpty = [](OutputSection *S) { return S->getVirtualSize() == 0; };
OutputSections.erase(
std::remove_if(OutputSections.begin(), OutputSections.end(), IsEmpty),
OutputSections.end());
uint32_t Idx = 1;
for (OutputSection *Sec : OutputSections)
Sec->SectionIndex = Idx++;
}
size_t Writer::addEntryToStringTable(StringRef Str) {
assert(Str.size() > COFF::NameSize);
size_t OffsetOfEntry = Strtab.size() + 4; // +4 for the size field
Strtab.insert(Strtab.end(), Str.begin(), Str.end());
Strtab.push_back('\0');
return OffsetOfEntry;
}
Optional<coff_symbol16> Writer::createSymbol(Defined *Def) {
// Relative symbols are unrepresentable in a COFF symbol table.
if (isa<DefinedSynthetic>(Def))
return None;
// Don't write dead symbols or symbols in codeview sections to the symbol
// table.
if (!Def->isLive())
return None;
if (auto *D = dyn_cast<DefinedRegular>(Def))
if (D->getChunk()->isCodeView())
return None;
coff_symbol16 Sym;
StringRef Name = Def->getName();
if (Name.size() > COFF::NameSize) {
Sym.Name.Offset.Zeroes = 0;
Sym.Name.Offset.Offset = addEntryToStringTable(Name);
} else {
memset(Sym.Name.ShortName, 0, COFF::NameSize);
memcpy(Sym.Name.ShortName, Name.data(), Name.size());
}
if (auto *D = dyn_cast<DefinedCOFF>(Def)) {
COFFSymbolRef Ref = D->getCOFFSymbol();
Sym.Type = Ref.getType();
Sym.StorageClass = Ref.getStorageClass();
} else {
Sym.Type = IMAGE_SYM_TYPE_NULL;
Sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL;
}
Sym.NumberOfAuxSymbols = 0;
switch (Def->kind()) {
case SymbolBody::DefinedAbsoluteKind:
Sym.Value = Def->getRVA();
Sym.SectionNumber = IMAGE_SYM_ABSOLUTE;
break;
default: {
uint64_t RVA = Def->getRVA();
OutputSection *Sec = nullptr;
for (OutputSection *S : OutputSections) {
if (S->getRVA() > RVA)
break;
Sec = S;
}
Sym.Value = RVA - Sec->getRVA();
Sym.SectionNumber = Sec->SectionIndex;
break;
}
}
return Sym;
}
void Writer::createSymbolAndStringTable() {
if (!Config->Debug || !Config->WriteSymtab)
return;
// Name field in the section table is 8 byte long. Longer names need
// to be written to the string table. First, construct string table.
for (OutputSection *Sec : OutputSections) {
StringRef Name = Sec->getName();
if (Name.size() <= COFF::NameSize)
continue;
Sec->setStringTableOff(addEntryToStringTable(Name));
}
for (ObjFile *File : ObjFile::Instances) {
for (SymbolBody *B : File->getSymbols()) {
auto *D = dyn_cast<Defined>(B);
if (!D || D->WrittenToSymtab)
continue;
D->WrittenToSymtab = true;
if (Optional<coff_symbol16> Sym = createSymbol(D))
OutputSymtab.push_back(*Sym);
}
}
OutputSection *LastSection = OutputSections.back();
// We position the symbol table to be adjacent to the end of the last section.
uint64_t FileOff = LastSection->getFileOff() +
alignTo(LastSection->getRawSize(), SectorSize);
if (!OutputSymtab.empty()) {
PointerToSymbolTable = FileOff;
FileOff += OutputSymtab.size() * sizeof(coff_symbol16);
}
if (!Strtab.empty())
FileOff += Strtab.size() + 4;
FileSize = alignTo(FileOff, SectorSize);
}
// Visits all sections to assign incremental, non-overlapping RVAs and
// file offsets.
void Writer::assignAddresses() {
SizeOfHeaders = DOSStubSize + sizeof(PEMagic) + sizeof(coff_file_header) +
sizeof(data_directory) * NumberfOfDataDirectory +
sizeof(coff_section) * OutputSections.size();
SizeOfHeaders +=
Config->is64() ? sizeof(pe32plus_header) : sizeof(pe32_header);
SizeOfHeaders = alignTo(SizeOfHeaders, SectorSize);
uint64_t RVA = 0x1000; // The first page is kept unmapped.
FileSize = SizeOfHeaders;
// Move DISCARDABLE (or non-memory-mapped) sections to the end of file because
// the loader cannot handle holes.
std::stable_partition(
OutputSections.begin(), OutputSections.end(), [](OutputSection *S) {
return (S->getPermissions() & IMAGE_SCN_MEM_DISCARDABLE) == 0;
});
for (OutputSection *Sec : OutputSections) {
if (Sec->getName() == ".reloc")
addBaserels(Sec);
Sec->setRVA(RVA);
Sec->setFileOffset(FileSize);
RVA += alignTo(Sec->getVirtualSize(), PageSize);
FileSize += alignTo(Sec->getRawSize(), SectorSize);
}
SizeOfImage = alignTo(RVA, PageSize);
}
template <typename PEHeaderTy> void Writer::writeHeader() {
// Write DOS stub
uint8_t *Buf = Buffer->getBufferStart();
auto *DOS = reinterpret_cast<dos_header *>(Buf);
Buf += DOSStubSize;
DOS->Magic[0] = 'M';
DOS->Magic[1] = 'Z';
DOS->AddressOfRelocationTable = sizeof(dos_header);
DOS->AddressOfNewExeHeader = DOSStubSize;
// Write PE magic
memcpy(Buf, PEMagic, sizeof(PEMagic));
Buf += sizeof(PEMagic);
// Write COFF header
auto *COFF = reinterpret_cast<coff_file_header *>(Buf);
Buf += sizeof(*COFF);
COFF->Machine = Config->Machine;
COFF->NumberOfSections = OutputSections.size();
COFF->Characteristics = IMAGE_FILE_EXECUTABLE_IMAGE;
if (Config->LargeAddressAware)
COFF->Characteristics |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
if (!Config->is64())
COFF->Characteristics |= IMAGE_FILE_32BIT_MACHINE;
if (Config->DLL)
COFF->Characteristics |= IMAGE_FILE_DLL;
if (!Config->Relocatable)
COFF->Characteristics |= IMAGE_FILE_RELOCS_STRIPPED;
COFF->SizeOfOptionalHeader =
sizeof(PEHeaderTy) + sizeof(data_directory) * NumberfOfDataDirectory;
// Write PE header
auto *PE = reinterpret_cast<PEHeaderTy *>(Buf);
Buf += sizeof(*PE);
PE->Magic = Config->is64() ? PE32Header::PE32_PLUS : PE32Header::PE32;
// If {Major,Minor}LinkerVersion is left at 0.0, then for some
// reason signing the resulting PE file with Authenticode produces a
// signature that fails to validate on Windows 7 (but is OK on 10).
// Set it to 14.0, which is what VS2015 outputs, and which avoids
// that problem.
PE->MajorLinkerVersion = 14;
PE->MinorLinkerVersion = 0;
PE->ImageBase = Config->ImageBase;
PE->SectionAlignment = PageSize;
PE->FileAlignment = SectorSize;
PE->MajorImageVersion = Config->MajorImageVersion;
PE->MinorImageVersion = Config->MinorImageVersion;
PE->MajorOperatingSystemVersion = Config->MajorOSVersion;
PE->MinorOperatingSystemVersion = Config->MinorOSVersion;
PE->MajorSubsystemVersion = Config->MajorOSVersion;
PE->MinorSubsystemVersion = Config->MinorOSVersion;
PE->Subsystem = Config->Subsystem;
PE->SizeOfImage = SizeOfImage;
PE->SizeOfHeaders = SizeOfHeaders;
if (!Config->NoEntry) {
Defined *Entry = cast<Defined>(Config->Entry);
PE->AddressOfEntryPoint = Entry->getRVA();
// Pointer to thumb code must have the LSB set, so adjust it.
if (Config->Machine == ARMNT)
PE->AddressOfEntryPoint |= 1;
}
PE->SizeOfStackReserve = Config->StackReserve;
PE->SizeOfStackCommit = Config->StackCommit;
PE->SizeOfHeapReserve = Config->HeapReserve;
PE->SizeOfHeapCommit = Config->HeapCommit;
if (Config->AppContainer)
PE->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_APPCONTAINER;
if (Config->DynamicBase)
PE->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE;
if (Config->HighEntropyVA)
PE->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA;
if (!Config->AllowBind)
PE->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_BIND;
if (Config->NxCompat)
PE->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NX_COMPAT;
if (!Config->AllowIsolation)
PE->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION;
if (Config->TerminalServerAware)
PE->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE;
PE->NumberOfRvaAndSize = NumberfOfDataDirectory;
if (OutputSection *Text = findSection(".text")) {
PE->BaseOfCode = Text->getRVA();
PE->SizeOfCode = Text->getRawSize();
}
PE->SizeOfInitializedData = getSizeOfInitializedData();
// Write data directory
auto *Dir = reinterpret_cast<data_directory *>(Buf);
Buf += sizeof(*Dir) * NumberfOfDataDirectory;
if (OutputSection *Sec = findSection(".edata")) {
Dir[EXPORT_TABLE].RelativeVirtualAddress = Sec->getRVA();
Dir[EXPORT_TABLE].Size = Sec->getVirtualSize();
}
if (!Idata.empty()) {
Dir[IMPORT_TABLE].RelativeVirtualAddress = Idata.getDirRVA();
Dir[IMPORT_TABLE].Size = Idata.getDirSize();
Dir[IAT].RelativeVirtualAddress = Idata.getIATRVA();
Dir[IAT].Size = Idata.getIATSize();
}
if (OutputSection *Sec = findSection(".rsrc")) {
Dir[RESOURCE_TABLE].RelativeVirtualAddress = Sec->getRVA();
Dir[RESOURCE_TABLE].Size = Sec->getVirtualSize();
}
if (OutputSection *Sec = findSection(".pdata")) {
Dir[EXCEPTION_TABLE].RelativeVirtualAddress = Sec->getRVA();
Dir[EXCEPTION_TABLE].Size = Sec->getVirtualSize();
}
if (OutputSection *Sec = findSection(".reloc")) {
Dir[BASE_RELOCATION_TABLE].RelativeVirtualAddress = Sec->getRVA();
Dir[BASE_RELOCATION_TABLE].Size = Sec->getVirtualSize();
}
if (Symbol *Sym = Symtab->findUnderscore("_tls_used")) {
if (Defined *B = dyn_cast<Defined>(Sym->body())) {
Dir[TLS_TABLE].RelativeVirtualAddress = B->getRVA();
Dir[TLS_TABLE].Size = Config->is64()
? sizeof(object::coff_tls_directory64)
: sizeof(object::coff_tls_directory32);
}
}
if (Config->Debug) {
Dir[DEBUG_DIRECTORY].RelativeVirtualAddress = DebugDirectory->getRVA();
Dir[DEBUG_DIRECTORY].Size = DebugDirectory->getSize();
}
if (Symbol *Sym = Symtab->findUnderscore("_load_config_used")) {
if (auto *B = dyn_cast<DefinedRegular>(Sym->body())) {
SectionChunk *SC = B->getChunk();
assert(B->getRVA() >= SC->getRVA());
uint64_t OffsetInChunk = B->getRVA() - SC->getRVA();
if (!SC->hasData() || OffsetInChunk + 4 > SC->getSize())
fatal("_load_config_used is malformed");
ArrayRef<uint8_t> SecContents = SC->getContents();
uint32_t LoadConfigSize =
*reinterpret_cast<const ulittle32_t *>(&SecContents[OffsetInChunk]);
if (OffsetInChunk + LoadConfigSize > SC->getSize())
fatal("_load_config_used is too large");
Dir[LOAD_CONFIG_TABLE].RelativeVirtualAddress = B->getRVA();
Dir[LOAD_CONFIG_TABLE].Size = LoadConfigSize;
}
}
if (!DelayIdata.empty()) {
Dir[DELAY_IMPORT_DESCRIPTOR].RelativeVirtualAddress =
DelayIdata.getDirRVA();
Dir[DELAY_IMPORT_DESCRIPTOR].Size = DelayIdata.getDirSize();
}
// Write section table
for (OutputSection *Sec : OutputSections) {
Sec->writeHeaderTo(Buf);
Buf += sizeof(coff_section);
}
SectionTable = ArrayRef<uint8_t>(
Buf - OutputSections.size() * sizeof(coff_section), Buf);
if (OutputSymtab.empty())
return;
COFF->PointerToSymbolTable = PointerToSymbolTable;
uint32_t NumberOfSymbols = OutputSymtab.size();
COFF->NumberOfSymbols = NumberOfSymbols;
auto *SymbolTable = reinterpret_cast<coff_symbol16 *>(
Buffer->getBufferStart() + COFF->PointerToSymbolTable);
for (size_t I = 0; I != NumberOfSymbols; ++I)
SymbolTable[I] = OutputSymtab[I];
// Create the string table, it follows immediately after the symbol table.
// The first 4 bytes is length including itself.
Buf = reinterpret_cast<uint8_t *>(&SymbolTable[NumberOfSymbols]);
write32le(Buf, Strtab.size() + 4);
if (!Strtab.empty())
memcpy(Buf + 4, Strtab.data(), Strtab.size());
}
void Writer::openFile(StringRef Path) {
Buffer = check(
FileOutputBuffer::create(Path, FileSize, FileOutputBuffer::F_executable),
"failed to open " + Path);
}
void Writer::fixSafeSEHSymbols() {
if (!SEHTable)
return;
// Replace the absolute table symbol with a synthetic symbol pointing to the
// SEHTable chunk so that we can emit base relocations for it and resolve
// section relative relocations.
Symbol *T = Symtab->find("___safe_se_handler_table");
Symbol *C = Symtab->find("___safe_se_handler_count");
replaceBody<DefinedSynthetic>(T, T->body()->getName(), SEHTable);
cast<DefinedAbsolute>(C->body())->setVA(SEHTable->getSize() / 4);
}
// Handles /section options to allow users to overwrite
// section attributes.
void Writer::setSectionPermissions() {
for (auto &P : Config->Section) {
StringRef Name = P.first;
uint32_t Perm = P.second;
if (auto *Sec = findSection(Name))
Sec->setPermissions(Perm);
}
}
// Write section contents to a mmap'ed file.
void Writer::writeSections() {
// Record the section index that should be used when resolving a section
// relocation against an absolute symbol.
DefinedAbsolute::OutputSectionIndex = OutputSections.size() + 1;
uint8_t *Buf = Buffer->getBufferStart();
for (OutputSection *Sec : OutputSections) {
uint8_t *SecBuf = Buf + Sec->getFileOff();
// Fill gaps between functions in .text with INT3 instructions
// instead of leaving as NUL bytes (which can be interpreted as
// ADD instructions).
if (Sec->getPermissions() & IMAGE_SCN_CNT_CODE)
memset(SecBuf, 0xCC, Sec->getRawSize());
for_each(parallel::par, Sec->getChunks().begin(), Sec->getChunks().end(),
[&](Chunk *C) { C->writeTo(SecBuf); });
}
}
void Writer::writeBuildId() {
// If we're not writing a build id (e.g. because /debug is not specified),
// then just return;
if (!Config->Debug)
return;
assert(BuildId && "BuildId is not set!");
if (PreviousBuildId.hasValue()) {
*BuildId->BuildId = *PreviousBuildId;
BuildId->BuildId->PDB70.Age = BuildId->BuildId->PDB70.Age + 1;
return;
}
BuildId->BuildId->Signature.CVSignature = OMF::Signature::PDB70;
BuildId->BuildId->PDB70.Age = 1;
llvm::getRandomBytes(BuildId->BuildId->PDB70.Signature, 16);
}
// Sort .pdata section contents according to PE/COFF spec 5.5.
void Writer::sortExceptionTable() {
OutputSection *Sec = findSection(".pdata");
if (!Sec)
return;
// We assume .pdata contains function table entries only.
uint8_t *Begin = Buffer->getBufferStart() + Sec->getFileOff();
uint8_t *End = Begin + Sec->getVirtualSize();
if (Config->Machine == AMD64) {
struct Entry { ulittle32_t Begin, End, Unwind; };
sort(parallel::par, (Entry *)Begin, (Entry *)End,
[](const Entry &A, const Entry &B) { return A.Begin < B.Begin; });
return;
}
if (Config->Machine == ARMNT) {
struct Entry { ulittle32_t Begin, Unwind; };
sort(parallel::par, (Entry *)Begin, (Entry *)End,
[](const Entry &A, const Entry &B) { return A.Begin < B.Begin; });
return;
}
errs() << "warning: don't know how to handle .pdata.\n";
}
OutputSection *Writer::findSection(StringRef Name) {
for (OutputSection *Sec : OutputSections)
if (Sec->getName() == Name)
return Sec;
return nullptr;
}
uint32_t Writer::getSizeOfInitializedData() {
uint32_t Res = 0;
for (OutputSection *S : OutputSections)
if (S->getPermissions() & IMAGE_SCN_CNT_INITIALIZED_DATA)
Res += S->getRawSize();
return Res;
}
// Returns an existing section or create a new one if not found.
OutputSection *Writer::createSection(StringRef Name) {
if (auto *Sec = findSection(Name))
return Sec;
const auto DATA = IMAGE_SCN_CNT_INITIALIZED_DATA;
const auto BSS = IMAGE_SCN_CNT_UNINITIALIZED_DATA;
const auto CODE = IMAGE_SCN_CNT_CODE;
const auto DISCARDABLE = IMAGE_SCN_MEM_DISCARDABLE;
const auto R = IMAGE_SCN_MEM_READ;
const auto W = IMAGE_SCN_MEM_WRITE;
const auto X = IMAGE_SCN_MEM_EXECUTE;
uint32_t Perms = StringSwitch<uint32_t>(Name)
.Case(".bss", BSS | R | W)
.Case(".data", DATA | R | W)
.Cases(".didat", ".edata", ".idata", ".rdata", DATA | R)
.Case(".reloc", DATA | DISCARDABLE | R)
.Case(".text", CODE | R | X)
.Default(0);
if (!Perms)
llvm_unreachable("unknown section name");
auto Sec = make<OutputSection>(Name);
Sec->addPermissions(Perms);
OutputSections.push_back(Sec);
return Sec;
}
// Dest is .reloc section. Add contents to that section.
void Writer::addBaserels(OutputSection *Dest) {
std::vector<Baserel> V;
for (OutputSection *Sec : OutputSections) {
if (Sec == Dest)
continue;
// Collect all locations for base relocations.
for (Chunk *C : Sec->getChunks())
C->getBaserels(&V);
// Add the addresses to .reloc section.
if (!V.empty())
addBaserelBlocks(Dest, V);
V.clear();
}
}
// Add addresses to .reloc section. Note that addresses are grouped by page.
void Writer::addBaserelBlocks(OutputSection *Dest, std::vector<Baserel> &V) {
const uint32_t Mask = ~uint32_t(PageSize - 1);
uint32_t Page = V[0].RVA & Mask;
size_t I = 0, J = 1;
for (size_t E = V.size(); J < E; ++J) {
uint32_t P = V[J].RVA & Mask;
if (P == Page)
continue;
Dest->addChunk(make<BaserelChunk>(Page, &V[I], &V[0] + J));
I = J;
Page = P;
}
if (I == J)
return;
Dest->addChunk(make<BaserelChunk>(Page, &V[I], &V[0] + J));
}