Files
llvm/lldb/source/Plugins/Process/Utility/RegisterContextLLDB.cpp
Ulrich Weigand 7311bb34f6 Add new ABI callback to provide fallback unwind register locations
If the UnwindPlan did not identify how to unwind the stack pointer
register, LLDB currently assumes it can determine to caller's SP
from the current frame's CFA.  This is true on most platforms
where CFA is by definition equal to the incoming SP at function
entry.

However, on the s390x target, we instead define the CFA to equal
the incoming SP plus an offset of 160 bytes.  This is because
our ABI defines that the caller has to provide a register save
area of size 160 bytes.  This area is allocated by the caller,
but is considered part of the callee's stack frame, and therefore
the CFA is defined as pointing to the top of this area.

In order to make this work on s390x, this patch introduces a new
ABI callback GetFallbackRegisterLocation that provides platform-
specific fallback register locations for unwinding.  The existing
code to handle SP unwinding as well as volatile registers is moved
into the default implementation of that ABI callback, to allow
targets where that implementation is incorrect to override it.

This patch in itself is a no-op for all existing platforms.
But it is a pre-requisite for adding s390x support.

Differential Revision: http://reviews.llvm.org/D18977

llvm-svn: 266307
2016-04-14 14:25:20 +00:00

2123 lines
85 KiB
C++

//===-- RegisterContextLLDB.cpp --------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/lldb-private.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/AddressRange.h"
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/RegisterValue.h"
#include "lldb/Core/Value.h"
#include "lldb/Expression/DWARFExpression.h"
#include "lldb/Symbol/ArmUnwindInfo.h"
#include "lldb/Symbol/DWARFCallFrameInfo.h"
#include "lldb/Symbol/FuncUnwinders.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/Symbol.h"
#include "lldb/Symbol/SymbolContext.h"
#include "lldb/Target/ABI.h"
#include "lldb/Target/DynamicLoader.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Platform.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/SectionLoadList.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "RegisterContextLLDB.h"
using namespace lldb;
using namespace lldb_private;
static ConstString GetSymbolOrFunctionName(const SymbolContext &sym_ctx)
{
if (sym_ctx.symbol)
return sym_ctx.symbol->GetName();
else if (sym_ctx.function)
return sym_ctx.function->GetName();
return ConstString();
}
RegisterContextLLDB::RegisterContextLLDB
(
Thread& thread,
const SharedPtr &next_frame,
SymbolContext& sym_ctx,
uint32_t frame_number,
UnwindLLDB& unwind_lldb
) :
RegisterContext (thread, frame_number),
m_thread(thread),
m_fast_unwind_plan_sp (),
m_full_unwind_plan_sp (),
m_fallback_unwind_plan_sp (),
m_all_registers_available(false),
m_frame_type (-1),
m_cfa (LLDB_INVALID_ADDRESS),
m_start_pc (),
m_current_pc (),
m_current_offset (0),
m_current_offset_backed_up_one (0),
m_sym_ctx(sym_ctx),
m_sym_ctx_valid (false),
m_frame_number (frame_number),
m_registers(),
m_parent_unwind (unwind_lldb)
{
m_sym_ctx.Clear(false);
m_sym_ctx_valid = false;
if (IsFrameZero ())
{
InitializeZerothFrame ();
}
else
{
InitializeNonZerothFrame ();
}
// This same code exists over in the GetFullUnwindPlanForFrame() but it may not have been executed yet
if (IsFrameZero()
|| next_frame->m_frame_type == eTrapHandlerFrame
|| next_frame->m_frame_type == eDebuggerFrame)
{
m_all_registers_available = true;
}
}
bool
RegisterContextLLDB::IsUnwindPlanValidForCurrentPC(lldb::UnwindPlanSP unwind_plan_sp, int &valid_pc_offset)
{
if (!unwind_plan_sp)
return false;
// check if m_current_pc is valid
if (unwind_plan_sp->PlanValidAtAddress(m_current_pc))
{
// yes - current offset can be used as is
valid_pc_offset = m_current_offset;
return true;
}
// if m_current_offset <= 0, we've got nothing else to try
if (m_current_offset <= 0)
return false;
// check pc - 1 to see if it's valid
Address pc_minus_one (m_current_pc);
pc_minus_one.SetOffset(m_current_pc.GetOffset() - 1);
if (unwind_plan_sp->PlanValidAtAddress(pc_minus_one))
{
// *valid_pc_offset = m_current_offset - 1;
valid_pc_offset = m_current_pc.GetOffset() - 1;
return true;
}
return false;
}
// Initialize a RegisterContextLLDB which is the first frame of a stack -- the zeroth frame or currently
// executing frame.
void
RegisterContextLLDB::InitializeZerothFrame()
{
Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
ExecutionContext exe_ctx(m_thread.shared_from_this());
RegisterContextSP reg_ctx_sp = m_thread.GetRegisterContext();
if (reg_ctx_sp.get() == NULL)
{
m_frame_type = eNotAValidFrame;
UnwindLogMsg ("frame does not have a register context");
return;
}
addr_t current_pc = reg_ctx_sp->GetPC();
if (current_pc == LLDB_INVALID_ADDRESS)
{
m_frame_type = eNotAValidFrame;
UnwindLogMsg ("frame does not have a pc");
return;
}
Process *process = exe_ctx.GetProcessPtr();
// Let ABIs fixup code addresses to make sure they are valid. In ARM ABIs
// this will strip bit zero in case we read a PC from memory or from the LR.
// (which would be a no-op in frame 0 where we get it from the register set,
// but still a good idea to make the call here for other ABIs that may exist.)
ABI *abi = process->GetABI().get();
if (abi)
current_pc = abi->FixCodeAddress(current_pc);
// Initialize m_current_pc, an Address object, based on current_pc, an addr_t.
m_current_pc.SetLoadAddress (current_pc, &process->GetTarget());
// If we don't have a Module for some reason, we're not going to find symbol/function information - just
// stick in some reasonable defaults and hope we can unwind past this frame.
ModuleSP pc_module_sp (m_current_pc.GetModule());
if (!m_current_pc.IsValid() || !pc_module_sp)
{
UnwindLogMsg ("using architectural default unwind method");
}
// We require either a symbol or function in the symbols context to be successfully
// filled in or this context is of no use to us.
const uint32_t resolve_scope = eSymbolContextFunction | eSymbolContextSymbol;
if (pc_module_sp.get()
&& (pc_module_sp->ResolveSymbolContextForAddress (m_current_pc, resolve_scope, m_sym_ctx) & resolve_scope))
{
m_sym_ctx_valid = true;
}
if (m_sym_ctx.symbol)
{
UnwindLogMsg ("with pc value of 0x%" PRIx64 ", symbol name is '%s'",
current_pc, GetSymbolOrFunctionName(m_sym_ctx).AsCString(""));
}
else if (m_sym_ctx.function)
{
UnwindLogMsg ("with pc value of 0x%" PRIx64 ", function name is '%s'",
current_pc, GetSymbolOrFunctionName(m_sym_ctx).AsCString(""));
}
else
{
UnwindLogMsg ("with pc value of 0x%" PRIx64 ", no symbol/function name is known.", current_pc);
}
AddressRange addr_range;
m_sym_ctx.GetAddressRange (resolve_scope, 0, false, addr_range);
if (IsTrapHandlerSymbol (process, m_sym_ctx))
{
m_frame_type = eTrapHandlerFrame;
}
else
{
// FIXME: Detect eDebuggerFrame here.
m_frame_type = eNormalFrame;
}
// If we were able to find a symbol/function, set addr_range to the bounds of that symbol/function.
// else treat the current pc value as the start_pc and record no offset.
if (addr_range.GetBaseAddress().IsValid())
{
m_start_pc = addr_range.GetBaseAddress();
if (m_current_pc.GetSection() == m_start_pc.GetSection())
{
m_current_offset = m_current_pc.GetOffset() - m_start_pc.GetOffset();
}
else if (m_current_pc.GetModule() == m_start_pc.GetModule())
{
// This means that whatever symbol we kicked up isn't really correct
// --- we should not cross section boundaries ... We really should NULL out
// the function/symbol in this case unless there is a bad assumption
// here due to inlined functions?
m_current_offset = m_current_pc.GetFileAddress() - m_start_pc.GetFileAddress();
}
m_current_offset_backed_up_one = m_current_offset;
}
else
{
m_start_pc = m_current_pc;
m_current_offset = -1;
m_current_offset_backed_up_one = -1;
}
// We've set m_frame_type and m_sym_ctx before these calls.
m_fast_unwind_plan_sp = GetFastUnwindPlanForFrame ();
m_full_unwind_plan_sp = GetFullUnwindPlanForFrame ();
UnwindPlan::RowSP active_row;
lldb::RegisterKind row_register_kind = eRegisterKindGeneric;
if (m_full_unwind_plan_sp && m_full_unwind_plan_sp->PlanValidAtAddress (m_current_pc))
{
active_row = m_full_unwind_plan_sp->GetRowForFunctionOffset (m_current_offset);
row_register_kind = m_full_unwind_plan_sp->GetRegisterKind ();
if (active_row.get() && log)
{
StreamString active_row_strm;
active_row->Dump(active_row_strm, m_full_unwind_plan_sp.get(), &m_thread, m_start_pc.GetLoadAddress(exe_ctx.GetTargetPtr()));
UnwindLogMsg ("%s", active_row_strm.GetString().c_str());
}
}
if (!active_row.get())
{
UnwindLogMsg ("could not find an unwindplan row for this frame's pc");
m_frame_type = eNotAValidFrame;
return;
}
if (!ReadCFAValueForRow (row_register_kind, active_row, m_cfa))
{
// Try the fall back unwind plan since the
// full unwind plan failed.
FuncUnwindersSP func_unwinders_sp;
UnwindPlanSP call_site_unwind_plan;
bool cfa_status = false;
if (m_sym_ctx_valid)
{
func_unwinders_sp = pc_module_sp->GetObjectFile()->GetUnwindTable().GetFuncUnwindersContainingAddress (m_current_pc, m_sym_ctx);
}
if(func_unwinders_sp.get() != nullptr)
call_site_unwind_plan = func_unwinders_sp->GetUnwindPlanAtCallSite(process->GetTarget(), m_current_offset_backed_up_one);
if (call_site_unwind_plan.get() != nullptr)
{
m_fallback_unwind_plan_sp = call_site_unwind_plan;
if(TryFallbackUnwindPlan())
cfa_status = true;
}
if (!cfa_status)
{
UnwindLogMsg ("could not read CFA value for first frame.");
m_frame_type = eNotAValidFrame;
return;
}
}
UnwindLogMsg ("initialized frame current pc is 0x%" PRIx64 " cfa is 0x%" PRIx64 " using %s UnwindPlan",
(uint64_t) m_current_pc.GetLoadAddress (exe_ctx.GetTargetPtr()),
(uint64_t) m_cfa,
m_full_unwind_plan_sp->GetSourceName().GetCString());
}
// Initialize a RegisterContextLLDB for the non-zeroth frame -- rely on the RegisterContextLLDB "below" it
// to provide things like its current pc value.
void
RegisterContextLLDB::InitializeNonZerothFrame()
{
Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
if (IsFrameZero ())
{
m_frame_type = eNotAValidFrame;
UnwindLogMsg ("non-zeroth frame tests positive for IsFrameZero -- that shouldn't happen.");
return;
}
if (!GetNextFrame().get() || !GetNextFrame()->IsValid())
{
m_frame_type = eNotAValidFrame;
UnwindLogMsg ("Could not get next frame, marking this frame as invalid.");
return;
}
if (!m_thread.GetRegisterContext())
{
m_frame_type = eNotAValidFrame;
UnwindLogMsg ("Could not get register context for this thread, marking this frame as invalid.");
return;
}
addr_t pc;
if (!ReadGPRValue (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, pc))
{
UnwindLogMsg ("could not get pc value");
m_frame_type = eNotAValidFrame;
return;
}
if (log)
{
UnwindLogMsg ("pc = 0x%" PRIx64, pc);
addr_t reg_val;
if (ReadGPRValue (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FP, reg_val))
UnwindLogMsg ("fp = 0x%" PRIx64, reg_val);
if (ReadGPRValue (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, reg_val))
UnwindLogMsg ("sp = 0x%" PRIx64, reg_val);
}
// A pc of 0x0 means it's the end of the stack crawl unless we're above a trap handler function
bool above_trap_handler = false;
if (GetNextFrame().get() && GetNextFrame()->IsValid() && GetNextFrame()->IsTrapHandlerFrame())
above_trap_handler = true;
if (pc == 0 || pc == 0x1)
{
if (above_trap_handler == false)
{
m_frame_type = eNotAValidFrame;
UnwindLogMsg ("this frame has a pc of 0x0");
return;
}
}
ExecutionContext exe_ctx(m_thread.shared_from_this());
Process *process = exe_ctx.GetProcessPtr();
// Let ABIs fixup code addresses to make sure they are valid. In ARM ABIs
// this will strip bit zero in case we read a PC from memory or from the LR.
ABI *abi = process->GetABI().get();
if (abi)
pc = abi->FixCodeAddress(pc);
m_current_pc.SetLoadAddress (pc, &process->GetTarget());
// If we don't have a Module for some reason, we're not going to find symbol/function information - just
// stick in some reasonable defaults and hope we can unwind past this frame.
ModuleSP pc_module_sp (m_current_pc.GetModule());
if (!m_current_pc.IsValid() || !pc_module_sp)
{
UnwindLogMsg ("using architectural default unwind method");
// Test the pc value to see if we know it's in an unmapped/non-executable region of memory.
uint32_t permissions;
if (process->GetLoadAddressPermissions(pc, permissions)
&& (permissions & ePermissionsExecutable) == 0)
{
// If this is the second frame off the stack, we may have unwound the first frame
// incorrectly. But using the architecture default unwind plan may get us back on
// track -- albeit possibly skipping a real frame. Give this frame a clearly-invalid
// pc and see if we can get any further.
if (GetNextFrame().get() && GetNextFrame()->IsValid() && GetNextFrame()->IsFrameZero())
{
UnwindLogMsg ("had a pc of 0x%" PRIx64 " which is not in executable memory but on frame 1 -- allowing it once.",
(uint64_t) pc);
m_frame_type = eSkipFrame;
}
else
{
// anywhere other than the second frame, a non-executable pc means we're off in the weeds -- stop now.
m_frame_type = eNotAValidFrame;
UnwindLogMsg ("pc is in a non-executable section of memory and this isn't the 2nd frame in the stack walk.");
return;
}
}
if (abi)
{
m_fast_unwind_plan_sp.reset ();
m_full_unwind_plan_sp.reset (new UnwindPlan (lldb::eRegisterKindGeneric));
abi->CreateDefaultUnwindPlan(*m_full_unwind_plan_sp);
if (m_frame_type != eSkipFrame) // don't override eSkipFrame
{
m_frame_type = eNormalFrame;
}
m_all_registers_available = false;
m_current_offset = -1;
m_current_offset_backed_up_one = -1;
RegisterKind row_register_kind = m_full_unwind_plan_sp->GetRegisterKind ();
UnwindPlan::RowSP row = m_full_unwind_plan_sp->GetRowForFunctionOffset(0);
if (row.get())
{
if (!ReadCFAValueForRow (row_register_kind, row, m_cfa))
{
UnwindLogMsg ("failed to get cfa value");
if (m_frame_type != eSkipFrame) // don't override eSkipFrame
{
m_frame_type = eNotAValidFrame;
}
return;
}
// A couple of sanity checks..
if (m_cfa == LLDB_INVALID_ADDRESS || m_cfa == 0 || m_cfa == 1)
{
UnwindLogMsg ("could not find a valid cfa address");
m_frame_type = eNotAValidFrame;
return;
}
// m_cfa should point into the stack memory; if we can query memory region permissions,
// see if the memory is allocated & readable.
if (process->GetLoadAddressPermissions(m_cfa, permissions)
&& (permissions & ePermissionsReadable) == 0)
{
m_frame_type = eNotAValidFrame;
UnwindLogMsg ("the CFA points to a region of memory that is not readable");
return;
}
}
else
{
UnwindLogMsg ("could not find a row for function offset zero");
m_frame_type = eNotAValidFrame;
return;
}
if (CheckIfLoopingStack ())
{
TryFallbackUnwindPlan();
if (CheckIfLoopingStack ())
{
UnwindLogMsg ("same CFA address as next frame, assuming the unwind is looping - stopping");
m_frame_type = eNotAValidFrame;
return;
}
}
UnwindLogMsg ("initialized frame cfa is 0x%" PRIx64, (uint64_t) m_cfa);
return;
}
m_frame_type = eNotAValidFrame;
UnwindLogMsg ("could not find any symbol for this pc, or a default unwind plan, to continue unwind.");
return;
}
bool resolve_tail_call_address = true; // m_current_pc can be one past the address range of the function...
// This will handle the case where the saved pc does not point to
// a function/symbol because it is beyond the bounds of the correct
// function and there's no symbol there. ResolveSymbolContextForAddress
// will fail to find a symbol, back up the pc by 1 and re-search.
const uint32_t resolve_scope = eSymbolContextFunction | eSymbolContextSymbol;
uint32_t resolved_scope = pc_module_sp->ResolveSymbolContextForAddress (m_current_pc,
resolve_scope,
m_sym_ctx, resolve_tail_call_address);
// We require either a symbol or function in the symbols context to be successfully
// filled in or this context is of no use to us.
if (resolve_scope & resolved_scope)
{
m_sym_ctx_valid = true;
}
if (m_sym_ctx.symbol)
{
UnwindLogMsg ("with pc value of 0x%" PRIx64 ", symbol name is '%s'",
pc, GetSymbolOrFunctionName(m_sym_ctx).AsCString(""));
}
else if (m_sym_ctx.function)
{
UnwindLogMsg ("with pc value of 0x%" PRIx64 ", function name is '%s'",
pc, GetSymbolOrFunctionName(m_sym_ctx).AsCString(""));
}
else
{
UnwindLogMsg ("with pc value of 0x%" PRIx64 ", no symbol/function name is known.", pc);
}
AddressRange addr_range;
if (!m_sym_ctx.GetAddressRange (resolve_scope, 0, false, addr_range))
{
m_sym_ctx_valid = false;
}
bool decr_pc_and_recompute_addr_range = false;
// If the symbol lookup failed...
if (m_sym_ctx_valid == false)
decr_pc_and_recompute_addr_range = true;
// Or if we're in the middle of the stack (and not "above" an asynchronous event like sigtramp),
// and our "current" pc is the start of a function...
if (m_sym_ctx_valid
&& GetNextFrame()->m_frame_type != eTrapHandlerFrame
&& GetNextFrame()->m_frame_type != eDebuggerFrame
&& addr_range.GetBaseAddress().IsValid()
&& addr_range.GetBaseAddress().GetSection() == m_current_pc.GetSection()
&& addr_range.GetBaseAddress().GetOffset() == m_current_pc.GetOffset())
{
decr_pc_and_recompute_addr_range = true;
}
// We need to back up the pc by 1 byte and re-search for the Symbol to handle the case where the "saved pc"
// value is pointing to the next function, e.g. if a function ends with a CALL instruction.
// FIXME this may need to be an architectural-dependent behavior; if so we'll need to add a member function
// to the ABI plugin and consult that.
if (decr_pc_and_recompute_addr_range)
{
UnwindLogMsg ("Backing up the pc value of 0x%" PRIx64 " by 1 and re-doing symbol lookup; old symbol was %s",
pc, GetSymbolOrFunctionName(m_sym_ctx).AsCString(""));
Address temporary_pc;
temporary_pc.SetLoadAddress (pc - 1, &process->GetTarget());
m_sym_ctx.Clear (false);
m_sym_ctx_valid = false;
uint32_t resolve_scope = eSymbolContextFunction | eSymbolContextSymbol;
ModuleSP temporary_module_sp = temporary_pc.GetModule();
if (temporary_module_sp &&
temporary_module_sp->ResolveSymbolContextForAddress (temporary_pc, resolve_scope, m_sym_ctx) & resolve_scope)
{
if (m_sym_ctx.GetAddressRange (resolve_scope, 0, false, addr_range))
m_sym_ctx_valid = true;
}
UnwindLogMsg ("Symbol is now %s", GetSymbolOrFunctionName(m_sym_ctx).AsCString(""));
}
// If we were able to find a symbol/function, set addr_range_ptr to the bounds of that symbol/function.
// else treat the current pc value as the start_pc and record no offset.
if (addr_range.GetBaseAddress().IsValid())
{
m_start_pc = addr_range.GetBaseAddress();
m_current_offset = pc - m_start_pc.GetLoadAddress (&process->GetTarget());
m_current_offset_backed_up_one = m_current_offset;
if (decr_pc_and_recompute_addr_range && m_current_offset_backed_up_one > 0)
{
m_current_offset_backed_up_one--;
if (m_sym_ctx_valid)
{
m_current_pc.SetLoadAddress (pc - 1, &process->GetTarget());
}
}
}
else
{
m_start_pc = m_current_pc;
m_current_offset = -1;
m_current_offset_backed_up_one = -1;
}
if (IsTrapHandlerSymbol (process, m_sym_ctx))
{
m_frame_type = eTrapHandlerFrame;
}
else
{
// FIXME: Detect eDebuggerFrame here.
if (m_frame_type != eSkipFrame) // don't override eSkipFrame
{
m_frame_type = eNormalFrame;
}
}
// We've set m_frame_type and m_sym_ctx before this call.
m_fast_unwind_plan_sp = GetFastUnwindPlanForFrame ();
UnwindPlan::RowSP active_row;
RegisterKind row_register_kind = eRegisterKindGeneric;
// Try to get by with just the fast UnwindPlan if possible - the full UnwindPlan may be expensive to get
// (e.g. if we have to parse the entire eh_frame section of an ObjectFile for the first time.)
if (m_fast_unwind_plan_sp && m_fast_unwind_plan_sp->PlanValidAtAddress (m_current_pc))
{
active_row = m_fast_unwind_plan_sp->GetRowForFunctionOffset (m_current_offset);
row_register_kind = m_fast_unwind_plan_sp->GetRegisterKind ();
if (active_row.get() && log)
{
StreamString active_row_strm;
active_row->Dump(active_row_strm, m_fast_unwind_plan_sp.get(), &m_thread, m_start_pc.GetLoadAddress(exe_ctx.GetTargetPtr()));
UnwindLogMsg ("active row: %s", active_row_strm.GetString().c_str());
}
}
else
{
m_full_unwind_plan_sp = GetFullUnwindPlanForFrame ();
int valid_offset = -1;
if (IsUnwindPlanValidForCurrentPC(m_full_unwind_plan_sp, valid_offset))
{
active_row = m_full_unwind_plan_sp->GetRowForFunctionOffset (valid_offset);
row_register_kind = m_full_unwind_plan_sp->GetRegisterKind ();
if (active_row.get() && log)
{
StreamString active_row_strm;
active_row->Dump(active_row_strm, m_full_unwind_plan_sp.get(), &m_thread, m_start_pc.GetLoadAddress(exe_ctx.GetTargetPtr()));
UnwindLogMsg ("active row: %s", active_row_strm.GetString().c_str());
}
}
}
if (!active_row.get())
{
m_frame_type = eNotAValidFrame;
UnwindLogMsg ("could not find unwind row for this pc");
return;
}
if (!ReadCFAValueForRow (row_register_kind, active_row, m_cfa))
{
UnwindLogMsg ("failed to get cfa");
m_frame_type = eNotAValidFrame;
return;
}
UnwindLogMsg ("m_cfa = 0x%" PRIx64, m_cfa);
if (CheckIfLoopingStack ())
{
TryFallbackUnwindPlan();
if (CheckIfLoopingStack ())
{
UnwindLogMsg ("same CFA address as next frame, assuming the unwind is looping - stopping");
m_frame_type = eNotAValidFrame;
return;
}
}
UnwindLogMsg ("initialized frame current pc is 0x%" PRIx64 " cfa is 0x%" PRIx64,
(uint64_t) m_current_pc.GetLoadAddress (exe_ctx.GetTargetPtr()), (uint64_t) m_cfa);
}
bool
RegisterContextLLDB::CheckIfLoopingStack ()
{
// If we have a bad stack setup, we can get the same CFA value multiple times -- or even
// more devious, we can actually oscillate between two CFA values. Detect that here and
// break out to avoid a possible infinite loop in lldb trying to unwind the stack.
// To detect when we have the same CFA value multiple times, we compare the CFA of the current
// frame with the 2nd next frame because in some specail case (e.g. signal hanlders, hand
// written assembly without ABI compiance) we can have 2 frames with the same CFA (in theory we
// can have arbitrary number of frames with the same CFA, but more then 2 is very very unlikely)
RegisterContextLLDB::SharedPtr next_frame = GetNextFrame();
if (next_frame)
{
RegisterContextLLDB::SharedPtr next_next_frame = next_frame->GetNextFrame();
addr_t next_next_frame_cfa = LLDB_INVALID_ADDRESS;
if (next_next_frame && next_next_frame->GetCFA(next_next_frame_cfa))
{
if (next_next_frame_cfa == m_cfa)
{
// We have a loop in the stack unwind
return true;
}
}
}
return false;
}
bool
RegisterContextLLDB::IsFrameZero () const
{
return m_frame_number == 0;
}
// Find a fast unwind plan for this frame, if possible.
//
// On entry to this method,
//
// 1. m_frame_type should already be set to eTrapHandlerFrame/eDebuggerFrame if either of those are correct,
// 2. m_sym_ctx should already be filled in, and
// 3. m_current_pc should have the current pc value for this frame
// 4. m_current_offset_backed_up_one should have the current byte offset into the function, maybe backed up by 1, -1 if unknown
UnwindPlanSP
RegisterContextLLDB::GetFastUnwindPlanForFrame ()
{
UnwindPlanSP unwind_plan_sp;
ModuleSP pc_module_sp (m_current_pc.GetModule());
if (!m_current_pc.IsValid() || !pc_module_sp || pc_module_sp->GetObjectFile() == NULL)
return unwind_plan_sp;
if (IsFrameZero ())
return unwind_plan_sp;
FuncUnwindersSP func_unwinders_sp (pc_module_sp->GetObjectFile()->GetUnwindTable().GetFuncUnwindersContainingAddress (m_current_pc, m_sym_ctx));
if (!func_unwinders_sp)
return unwind_plan_sp;
// If we're in _sigtramp(), unwinding past this frame requires special knowledge.
if (m_frame_type == eTrapHandlerFrame || m_frame_type == eDebuggerFrame)
return unwind_plan_sp;
unwind_plan_sp = func_unwinders_sp->GetUnwindPlanFastUnwind (*m_thread.CalculateTarget(), m_thread);
if (unwind_plan_sp)
{
if (unwind_plan_sp->PlanValidAtAddress (m_current_pc))
{
Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
if (log && log->GetVerbose())
{
if (m_fast_unwind_plan_sp)
UnwindLogMsgVerbose ("frame, and has a fast UnwindPlan");
else
UnwindLogMsgVerbose ("frame");
}
m_frame_type = eNormalFrame;
return unwind_plan_sp;
}
else
{
unwind_plan_sp.reset();
}
}
return unwind_plan_sp;
}
// On entry to this method,
//
// 1. m_frame_type should already be set to eTrapHandlerFrame/eDebuggerFrame if either of those are correct,
// 2. m_sym_ctx should already be filled in, and
// 3. m_current_pc should have the current pc value for this frame
// 4. m_current_offset_backed_up_one should have the current byte offset into the function, maybe backed up by 1, -1 if unknown
UnwindPlanSP
RegisterContextLLDB::GetFullUnwindPlanForFrame ()
{
UnwindPlanSP unwind_plan_sp;
UnwindPlanSP arch_default_unwind_plan_sp;
ExecutionContext exe_ctx(m_thread.shared_from_this());
Process *process = exe_ctx.GetProcessPtr();
ABI *abi = process ? process->GetABI().get() : NULL;
if (abi)
{
arch_default_unwind_plan_sp.reset (new UnwindPlan (lldb::eRegisterKindGeneric));
abi->CreateDefaultUnwindPlan(*arch_default_unwind_plan_sp);
}
else
{
UnwindLogMsg ("unable to get architectural default UnwindPlan from ABI plugin");
}
bool behaves_like_zeroth_frame = false;
if (IsFrameZero ()
|| GetNextFrame()->m_frame_type == eTrapHandlerFrame
|| GetNextFrame()->m_frame_type == eDebuggerFrame)
{
behaves_like_zeroth_frame = true;
// If this frame behaves like a 0th frame (currently executing or
// interrupted asynchronously), all registers can be retrieved.
m_all_registers_available = true;
}
// If we've done a jmp 0x0 / bl 0x0 (called through a null function pointer) so the pc is 0x0
// in the zeroth frame, we need to use the "unwind at first instruction" arch default UnwindPlan
// Also, if this Process can report on memory region attributes, any non-executable region means
// we jumped through a bad function pointer - handle the same way as 0x0.
// Note, if we have a symbol context & a symbol, we don't want to follow this code path. This is
// for jumping to memory regions without any information available.
if ((!m_sym_ctx_valid || (m_sym_ctx.function == NULL && m_sym_ctx.symbol == NULL)) && behaves_like_zeroth_frame && m_current_pc.IsValid())
{
uint32_t permissions;
addr_t current_pc_addr = m_current_pc.GetLoadAddress (exe_ctx.GetTargetPtr());
if (current_pc_addr == 0
|| (process &&
process->GetLoadAddressPermissions (current_pc_addr, permissions)
&& (permissions & ePermissionsExecutable) == 0))
{
if (abi)
{
unwind_plan_sp.reset (new UnwindPlan (lldb::eRegisterKindGeneric));
abi->CreateFunctionEntryUnwindPlan(*unwind_plan_sp);
m_frame_type = eNormalFrame;
return unwind_plan_sp;
}
}
}
// No Module for the current pc, try using the architecture default unwind.
ModuleSP pc_module_sp (m_current_pc.GetModule());
if (!m_current_pc.IsValid() || !pc_module_sp || pc_module_sp->GetObjectFile() == NULL)
{
m_frame_type = eNormalFrame;
return arch_default_unwind_plan_sp;
}
FuncUnwindersSP func_unwinders_sp;
if (m_sym_ctx_valid)
{
func_unwinders_sp = pc_module_sp->GetObjectFile()->GetUnwindTable().GetFuncUnwindersContainingAddress (m_current_pc, m_sym_ctx);
}
// No FuncUnwinders available for this pc (stripped function symbols, lldb could not augment its
// function table with another source, like LC_FUNCTION_STARTS or eh_frame in ObjectFileMachO).
// See if eh_frame or the .ARM.exidx tables have unwind information for this address, else fall
// back to the architectural default unwind.
if (!func_unwinders_sp)
{
m_frame_type = eNormalFrame;
if (!pc_module_sp || !pc_module_sp->GetObjectFile() || !m_current_pc.IsValid())
return arch_default_unwind_plan_sp;
// Even with -fomit-frame-pointer, we can try eh_frame to get back on track.
DWARFCallFrameInfo *eh_frame = pc_module_sp->GetObjectFile()->GetUnwindTable().GetEHFrameInfo();
if (eh_frame)
{
unwind_plan_sp.reset (new UnwindPlan (lldb::eRegisterKindGeneric));
if (eh_frame->GetUnwindPlan (m_current_pc, *unwind_plan_sp))
return unwind_plan_sp;
else
unwind_plan_sp.reset();
}
ArmUnwindInfo *arm_exidx = pc_module_sp->GetObjectFile()->GetUnwindTable().GetArmUnwindInfo();
if (arm_exidx)
{
unwind_plan_sp.reset (new UnwindPlan (lldb::eRegisterKindGeneric));
if (arm_exidx->GetUnwindPlan (exe_ctx.GetTargetRef(), m_current_pc, *unwind_plan_sp))
return unwind_plan_sp;
else
unwind_plan_sp.reset();
}
return arch_default_unwind_plan_sp;
}
// If we're in _sigtramp(), unwinding past this frame requires special knowledge. On Mac OS X this knowledge
// is properly encoded in the eh_frame section, so prefer that if available.
// On other platforms we may need to provide a platform-specific UnwindPlan which encodes the details of
// how to unwind out of sigtramp.
if (m_frame_type == eTrapHandlerFrame && process)
{
m_fast_unwind_plan_sp.reset();
unwind_plan_sp = func_unwinders_sp->GetEHFrameUnwindPlan (process->GetTarget(), m_current_offset_backed_up_one);
if (unwind_plan_sp && unwind_plan_sp->PlanValidAtAddress (m_current_pc) && unwind_plan_sp->GetSourcedFromCompiler() == eLazyBoolYes)
{
return unwind_plan_sp;
}
}
// Ask the DynamicLoader if the eh_frame CFI should be trusted in this frame even when it's frame zero
// This comes up if we have hand-written functions in a Module and hand-written eh_frame. The assembly
// instruction inspection may fail and the eh_frame CFI were probably written with some care to do the
// right thing. It'd be nice if there was a way to ask the eh_frame directly if it is asynchronous
// (can be trusted at every instruction point) or synchronous (the normal case - only at call sites).
// But there is not.
if (process && process->GetDynamicLoader() && process->GetDynamicLoader()->AlwaysRelyOnEHUnwindInfo (m_sym_ctx))
{
// We must specifically call the GetEHFrameUnwindPlan() method here -- normally we would
// call GetUnwindPlanAtCallSite() -- because CallSite may return an unwind plan sourced from
// either eh_frame (that's what we intend) or compact unwind (this won't work)
unwind_plan_sp = func_unwinders_sp->GetEHFrameUnwindPlan (process->GetTarget(), m_current_offset_backed_up_one);
if (unwind_plan_sp && unwind_plan_sp->PlanValidAtAddress (m_current_pc))
{
UnwindLogMsgVerbose ("frame uses %s for full UnwindPlan because the DynamicLoader suggested we prefer it",
unwind_plan_sp->GetSourceName().GetCString());
return unwind_plan_sp;
}
}
// Typically the NonCallSite UnwindPlan is the unwind created by inspecting the assembly language instructions
if (behaves_like_zeroth_frame && process)
{
unwind_plan_sp = func_unwinders_sp->GetUnwindPlanAtNonCallSite (process->GetTarget(), m_thread, m_current_offset_backed_up_one);
if (unwind_plan_sp && unwind_plan_sp->PlanValidAtAddress (m_current_pc))
{
if (unwind_plan_sp->GetSourcedFromCompiler() == eLazyBoolNo)
{
// We probably have an UnwindPlan created by inspecting assembly instructions. The
// assembly profilers work really well with compiler-generated functions but hand-
// written assembly can be problematic. We set the eh_frame based unwind plan as our
// fallback unwind plan if instruction emulation doesn't work out even for non call
// sites if it is available and use the architecture default unwind plan if it is
// not available. The eh_frame unwind plan is more reliable even on non call sites
// then the architecture default plan and for hand written assembly code it is often
// written in a way that it valid at all location what helps in the most common
// cases when the instruction emulation fails.
UnwindPlanSP call_site_unwind_plan = func_unwinders_sp->GetUnwindPlanAtCallSite(process->GetTarget(), m_current_offset_backed_up_one);
if (call_site_unwind_plan &&
call_site_unwind_plan.get() != unwind_plan_sp.get() &&
call_site_unwind_plan->GetSourceName() != unwind_plan_sp->GetSourceName())
{
m_fallback_unwind_plan_sp = call_site_unwind_plan;
}
else
{
m_fallback_unwind_plan_sp = arch_default_unwind_plan_sp;
}
}
UnwindLogMsgVerbose ("frame uses %s for full UnwindPlan", unwind_plan_sp->GetSourceName().GetCString());
return unwind_plan_sp;
}
}
// Typically this is unwind info from an eh_frame section intended for exception handling; only valid at call sites
if (process)
{
unwind_plan_sp = func_unwinders_sp->GetUnwindPlanAtCallSite (process->GetTarget(), m_current_offset_backed_up_one);
}
int valid_offset = -1;
if (IsUnwindPlanValidForCurrentPC(unwind_plan_sp, valid_offset))
{
UnwindLogMsgVerbose ("frame uses %s for full UnwindPlan", unwind_plan_sp->GetSourceName().GetCString());
return unwind_plan_sp;
}
// We'd prefer to use an UnwindPlan intended for call sites when we're at a call site but if we've
// struck out on that, fall back to using the non-call-site assembly inspection UnwindPlan if possible.
if (process)
{
unwind_plan_sp = func_unwinders_sp->GetUnwindPlanAtNonCallSite (process->GetTarget(), m_thread, m_current_offset_backed_up_one);
}
if (unwind_plan_sp && unwind_plan_sp->GetSourcedFromCompiler() == eLazyBoolNo)
{
// We probably have an UnwindPlan created by inspecting assembly instructions. The assembly
// profilers work really well with compiler-generated functions but hand- written assembly
// can be problematic. We set the eh_frame based unwind plan as our fallback unwind plan if
// instruction emulation doesn't work out even for non call sites if it is available and use
// the architecture default unwind plan if it is not available. The eh_frame unwind plan is
// more reliable even on non call sites then the architecture default plan and for hand
// written assembly code it is often written in a way that it valid at all location what
// helps in the most common cases when the instruction emulation fails.
UnwindPlanSP call_site_unwind_plan = func_unwinders_sp->GetUnwindPlanAtCallSite(process->GetTarget(), m_current_offset_backed_up_one);
if (call_site_unwind_plan &&
call_site_unwind_plan.get() != unwind_plan_sp.get() &&
call_site_unwind_plan->GetSourceName() != unwind_plan_sp->GetSourceName())
{
m_fallback_unwind_plan_sp = call_site_unwind_plan;
}
else
{
m_fallback_unwind_plan_sp = arch_default_unwind_plan_sp;
}
}
if (IsUnwindPlanValidForCurrentPC(unwind_plan_sp, valid_offset))
{
UnwindLogMsgVerbose ("frame uses %s for full UnwindPlan", unwind_plan_sp->GetSourceName().GetCString());
return unwind_plan_sp;
}
// If we're on the first instruction of a function, and we have an architectural default UnwindPlan
// for the initial instruction of a function, use that.
if (m_current_offset_backed_up_one == 0)
{
unwind_plan_sp = func_unwinders_sp->GetUnwindPlanArchitectureDefaultAtFunctionEntry (m_thread);
if (unwind_plan_sp)
{
UnwindLogMsgVerbose ("frame uses %s for full UnwindPlan", unwind_plan_sp->GetSourceName().GetCString());
return unwind_plan_sp;
}
}
// If nothing else, use the architectural default UnwindPlan and hope that does the job.
if (arch_default_unwind_plan_sp)
UnwindLogMsgVerbose ("frame uses %s for full UnwindPlan", arch_default_unwind_plan_sp->GetSourceName().GetCString());
else
UnwindLogMsg ("Unable to find any UnwindPlan for full unwind of this frame.");
return arch_default_unwind_plan_sp;
}
void
RegisterContextLLDB::InvalidateAllRegisters ()
{
m_frame_type = eNotAValidFrame;
}
size_t
RegisterContextLLDB::GetRegisterCount ()
{
return m_thread.GetRegisterContext()->GetRegisterCount();
}
const RegisterInfo *
RegisterContextLLDB::GetRegisterInfoAtIndex (size_t reg)
{
return m_thread.GetRegisterContext()->GetRegisterInfoAtIndex (reg);
}
size_t
RegisterContextLLDB::GetRegisterSetCount ()
{
return m_thread.GetRegisterContext()->GetRegisterSetCount ();
}
const RegisterSet *
RegisterContextLLDB::GetRegisterSet (size_t reg_set)
{
return m_thread.GetRegisterContext()->GetRegisterSet (reg_set);
}
uint32_t
RegisterContextLLDB::ConvertRegisterKindToRegisterNumber (lldb::RegisterKind kind, uint32_t num)
{
return m_thread.GetRegisterContext()->ConvertRegisterKindToRegisterNumber (kind, num);
}
bool
RegisterContextLLDB::ReadRegisterValueFromRegisterLocation (lldb_private::UnwindLLDB::RegisterLocation regloc,
const RegisterInfo *reg_info,
RegisterValue &value)
{
if (!IsValid())
return false;
bool success = false;
switch (regloc.type)
{
case UnwindLLDB::RegisterLocation::eRegisterInLiveRegisterContext:
{
const RegisterInfo *other_reg_info = GetRegisterInfoAtIndex(regloc.location.register_number);
if (!other_reg_info)
return false;
success = m_thread.GetRegisterContext()->ReadRegister (other_reg_info, value);
}
break;
case UnwindLLDB::RegisterLocation::eRegisterInRegister:
{
const RegisterInfo *other_reg_info = GetRegisterInfoAtIndex(regloc.location.register_number);
if (!other_reg_info)
return false;
if (IsFrameZero ())
{
success = m_thread.GetRegisterContext()->ReadRegister (other_reg_info, value);
}
else
{
success = GetNextFrame()->ReadRegister (other_reg_info, value);
}
}
break;
case UnwindLLDB::RegisterLocation::eRegisterValueInferred:
success = value.SetUInt (regloc.location.inferred_value, reg_info->byte_size);
break;
case UnwindLLDB::RegisterLocation::eRegisterNotSaved:
break;
case UnwindLLDB::RegisterLocation::eRegisterSavedAtHostMemoryLocation:
assert ("FIXME debugger inferior function call unwind");
break;
case UnwindLLDB::RegisterLocation::eRegisterSavedAtMemoryLocation:
{
Error error (ReadRegisterValueFromMemory(reg_info,
regloc.location.target_memory_location,
reg_info->byte_size,
value));
success = error.Success();
}
break;
default:
assert ("Unknown RegisterLocation type.");
break;
}
return success;
}
bool
RegisterContextLLDB::WriteRegisterValueToRegisterLocation (lldb_private::UnwindLLDB::RegisterLocation regloc,
const RegisterInfo *reg_info,
const RegisterValue &value)
{
if (!IsValid())
return false;
bool success = false;
switch (regloc.type)
{
case UnwindLLDB::RegisterLocation::eRegisterInLiveRegisterContext:
{
const RegisterInfo *other_reg_info = GetRegisterInfoAtIndex(regloc.location.register_number);
success = m_thread.GetRegisterContext()->WriteRegister (other_reg_info, value);
}
break;
case UnwindLLDB::RegisterLocation::eRegisterInRegister:
{
const RegisterInfo *other_reg_info = GetRegisterInfoAtIndex(regloc.location.register_number);
if (IsFrameZero ())
{
success = m_thread.GetRegisterContext()->WriteRegister (other_reg_info, value);
}
else
{
success = GetNextFrame()->WriteRegister (other_reg_info, value);
}
}
break;
case UnwindLLDB::RegisterLocation::eRegisterValueInferred:
case UnwindLLDB::RegisterLocation::eRegisterNotSaved:
break;
case UnwindLLDB::RegisterLocation::eRegisterSavedAtHostMemoryLocation:
assert ("FIXME debugger inferior function call unwind");
break;
case UnwindLLDB::RegisterLocation::eRegisterSavedAtMemoryLocation:
{
Error error (WriteRegisterValueToMemory (reg_info,
regloc.location.target_memory_location,
reg_info->byte_size,
value));
success = error.Success();
}
break;
default:
assert ("Unknown RegisterLocation type.");
break;
}
return success;
}
bool
RegisterContextLLDB::IsValid () const
{
return m_frame_type != eNotAValidFrame;
}
// After the final stack frame in a stack walk we'll get one invalid (eNotAValidFrame) stack frame --
// one past the end of the stack walk. But higher-level code will need to tell the differnece between
// "the unwind plan below this frame failed" versus "we successfully completed the stack walk" so
// this method helps to disambiguate that.
bool
RegisterContextLLDB::IsTrapHandlerFrame () const
{
return m_frame_type == eTrapHandlerFrame;
}
// A skip frame is a bogus frame on the stack -- but one where we're likely to find a real frame farther
// up the stack if we keep looking. It's always the second frame in an unwind (i.e. the first frame after
// frame zero) where unwinding can be the trickiest. Ideally we'll mark up this frame in some way so the
// user knows we're displaying bad data and we may have skipped one frame of their real program in the
// process of getting back on track.
bool
RegisterContextLLDB::IsSkipFrame () const
{
return m_frame_type == eSkipFrame;
}
bool
RegisterContextLLDB::IsTrapHandlerSymbol (lldb_private::Process *process, const lldb_private::SymbolContext &m_sym_ctx) const
{
PlatformSP platform_sp (process->GetTarget().GetPlatform());
if (platform_sp)
{
const std::vector<ConstString> trap_handler_names (platform_sp->GetTrapHandlerSymbolNames());
for (ConstString name : trap_handler_names)
{
if ((m_sym_ctx.function && m_sym_ctx.function->GetName() == name) ||
(m_sym_ctx.symbol && m_sym_ctx.symbol->GetName() == name))
{
return true;
}
}
}
const std::vector<ConstString> user_specified_trap_handler_names (m_parent_unwind.GetUserSpecifiedTrapHandlerFunctionNames());
for (ConstString name : user_specified_trap_handler_names)
{
if ((m_sym_ctx.function && m_sym_ctx.function->GetName() == name) ||
(m_sym_ctx.symbol && m_sym_ctx.symbol->GetName() == name))
{
return true;
}
}
return false;
}
// Answer the question: Where did THIS frame save the CALLER frame ("previous" frame)'s register value?
enum UnwindLLDB::RegisterSearchResult
RegisterContextLLDB::SavedLocationForRegister (uint32_t lldb_regnum, lldb_private::UnwindLLDB::RegisterLocation &regloc)
{
RegisterNumber regnum (m_thread, eRegisterKindLLDB, lldb_regnum);
// Have we already found this register location?
if (!m_registers.empty())
{
std::map<uint32_t, lldb_private::UnwindLLDB::RegisterLocation>::const_iterator iterator;
iterator = m_registers.find (regnum.GetAsKind (eRegisterKindLLDB));
if (iterator != m_registers.end())
{
regloc = iterator->second;
UnwindLogMsg ("supplying caller's saved %s (%d)'s location, cached",
regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB));
return UnwindLLDB::RegisterSearchResult::eRegisterFound;
}
}
// Look through the available UnwindPlans for the register location.
UnwindPlan::Row::RegisterLocation unwindplan_regloc;
bool have_unwindplan_regloc = false;
RegisterKind unwindplan_registerkind = kNumRegisterKinds;
if (m_fast_unwind_plan_sp)
{
UnwindPlan::RowSP active_row = m_fast_unwind_plan_sp->GetRowForFunctionOffset (m_current_offset);
unwindplan_registerkind = m_fast_unwind_plan_sp->GetRegisterKind ();
if (regnum.GetAsKind (unwindplan_registerkind) == LLDB_INVALID_REGNUM)
{
UnwindLogMsg ("could not convert lldb regnum %s (%d) into %d RegisterKind reg numbering scheme",
regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB), (int) unwindplan_registerkind);
return UnwindLLDB::RegisterSearchResult::eRegisterNotFound;
}
if (active_row->GetRegisterInfo (regnum.GetAsKind (unwindplan_registerkind), unwindplan_regloc))
{
UnwindLogMsg ("supplying caller's saved %s (%d)'s location using FastUnwindPlan",
regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB));
have_unwindplan_regloc = true;
}
}
if (!have_unwindplan_regloc)
{
// m_full_unwind_plan_sp being NULL means that we haven't tried to find a full UnwindPlan yet
if (!m_full_unwind_plan_sp)
m_full_unwind_plan_sp = GetFullUnwindPlanForFrame ();
if (m_full_unwind_plan_sp)
{
RegisterNumber pc_regnum (m_thread, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
UnwindPlan::RowSP active_row = m_full_unwind_plan_sp->GetRowForFunctionOffset (m_current_offset);
unwindplan_registerkind = m_full_unwind_plan_sp->GetRegisterKind ();
RegisterNumber return_address_reg;
// If we're fetching the saved pc and this UnwindPlan defines a ReturnAddress register (e.g. lr on arm),
// look for the return address register number in the UnwindPlan's row.
if (pc_regnum.IsValid()
&& pc_regnum == regnum
&& m_full_unwind_plan_sp->GetReturnAddressRegister() != LLDB_INVALID_REGNUM)
{
return_address_reg.init (m_thread, m_full_unwind_plan_sp->GetRegisterKind(), m_full_unwind_plan_sp->GetReturnAddressRegister());
regnum = return_address_reg;
UnwindLogMsg ("requested caller's saved PC but this UnwindPlan uses a RA reg; getting %s (%d) instead",
return_address_reg.GetName(), return_address_reg.GetAsKind (eRegisterKindLLDB));
}
else
{
if (regnum.GetAsKind (unwindplan_registerkind) == LLDB_INVALID_REGNUM)
{
if (unwindplan_registerkind == eRegisterKindGeneric)
{
UnwindLogMsg ("could not convert lldb regnum %s (%d) into eRegisterKindGeneric reg numbering scheme",
regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB));
}
else
{
UnwindLogMsg ("could not convert lldb regnum %s (%d) into %d RegisterKind reg numbering scheme",
regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB), (int) unwindplan_registerkind);
}
return UnwindLLDB::RegisterSearchResult::eRegisterNotFound;
}
}
if (regnum.IsValid()
&& active_row->GetRegisterInfo (regnum.GetAsKind (unwindplan_registerkind), unwindplan_regloc))
{
have_unwindplan_regloc = true;
UnwindLogMsg ("supplying caller's saved %s (%d)'s location using %s UnwindPlan",
regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB),
m_full_unwind_plan_sp->GetSourceName().GetCString());
}
// This is frame 0 and we're retrieving the PC and it's saved in a Return Address register and
// it hasn't been saved anywhere yet -- that is, it's still live in the actual register.
// Handle this specially.
if (have_unwindplan_regloc == false
&& return_address_reg.IsValid()
&& IsFrameZero())
{
if (return_address_reg.GetAsKind (eRegisterKindLLDB) != LLDB_INVALID_REGNUM)
{
lldb_private::UnwindLLDB::RegisterLocation new_regloc;
new_regloc.type = UnwindLLDB::RegisterLocation::eRegisterInLiveRegisterContext;
new_regloc.location.register_number = return_address_reg.GetAsKind (eRegisterKindLLDB);
m_registers[regnum.GetAsKind (eRegisterKindLLDB)] = new_regloc;
regloc = new_regloc;
UnwindLogMsg ("supplying caller's register %s (%d) from the live RegisterContext at frame 0, saved in %d",
return_address_reg.GetName(), return_address_reg.GetAsKind (eRegisterKindLLDB),
return_address_reg.GetAsKind (eRegisterKindLLDB));
return UnwindLLDB::RegisterSearchResult::eRegisterFound;
}
}
// If this architecture stores the return address in a register (it defines a Return Address register)
// and we're on a non-zero stack frame and the Full UnwindPlan says that the pc is stored in the
// RA registers (e.g. lr on arm), then we know that the full unwindplan is not trustworthy -- this
// is an impossible situation and the instruction emulation code has likely been misled.
// If this stack frame meets those criteria, we need to throw away the Full UnwindPlan that the
// instruction emulation came up with and fall back to the architecture's Default UnwindPlan so
// the stack walk can get past this point.
// Special note: If the Full UnwindPlan was generated from the compiler, don't second-guess it
// when we're at a call site location.
// arch_default_ra_regnum is the return address register # in the Full UnwindPlan register numbering
RegisterNumber arch_default_ra_regnum (m_thread, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA);
if (arch_default_ra_regnum.GetAsKind (unwindplan_registerkind) != LLDB_INVALID_REGNUM
&& pc_regnum == regnum
&& unwindplan_regloc.IsInOtherRegister()
&& unwindplan_regloc.GetRegisterNumber() == arch_default_ra_regnum.GetAsKind (unwindplan_registerkind)
&& m_full_unwind_plan_sp->GetSourcedFromCompiler() != eLazyBoolYes
&& !m_all_registers_available)
{
UnwindLogMsg ("%s UnwindPlan tried to restore the pc from the link register but this is a non-zero frame",
m_full_unwind_plan_sp->GetSourceName().GetCString());
// Throw away the full unwindplan; install the arch default unwindplan
if (ForceSwitchToFallbackUnwindPlan())
{
// Update for the possibly new unwind plan
unwindplan_registerkind = m_full_unwind_plan_sp->GetRegisterKind ();
UnwindPlan::RowSP active_row = m_full_unwind_plan_sp->GetRowForFunctionOffset (m_current_offset);
// Sanity check: Verify that we can fetch a pc value and CFA value with this unwind plan
RegisterNumber arch_default_pc_reg (m_thread, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
bool can_fetch_pc_value = false;
bool can_fetch_cfa = false;
addr_t cfa_value;
if (active_row)
{
if (arch_default_pc_reg.GetAsKind (unwindplan_registerkind) != LLDB_INVALID_REGNUM
&& active_row->GetRegisterInfo (arch_default_pc_reg.GetAsKind (unwindplan_registerkind), unwindplan_regloc))
{
can_fetch_pc_value = true;
}
if (ReadCFAValueForRow (unwindplan_registerkind, active_row, cfa_value))
{
can_fetch_cfa = true;
}
}
if (can_fetch_pc_value && can_fetch_cfa)
{
have_unwindplan_regloc = true;
}
else
{
have_unwindplan_regloc = false;
}
}
else
{
// We were unable to fall back to another unwind plan
have_unwindplan_regloc = false;
}
}
}
}
ExecutionContext exe_ctx(m_thread.shared_from_this());
Process *process = exe_ctx.GetProcessPtr();
if (have_unwindplan_regloc == false)
{
// If the UnwindPlan failed to give us an unwind location for this register, we may be able to fall back
// to some ABI-defined default. For example, some ABIs allow to determine the caller's SP via the CFA.
// Also, the ABI may set volatile registers to the undefined state.
ABI *abi = process ? process->GetABI().get() : NULL;
if (abi)
{
const RegisterInfo *reg_info = GetRegisterInfoAtIndex(regnum.GetAsKind (eRegisterKindLLDB));
if (reg_info && abi->GetFallbackRegisterLocation (reg_info, unwindplan_regloc))
{
UnwindLogMsg ("supplying caller's saved %s (%d)'s location using ABI default",
regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB));
have_unwindplan_regloc = true;
}
}
}
if (have_unwindplan_regloc == false)
{
if (IsFrameZero ())
{
// This is frame 0 - we should return the actual live register context value
lldb_private::UnwindLLDB::RegisterLocation new_regloc;
new_regloc.type = UnwindLLDB::RegisterLocation::eRegisterInLiveRegisterContext;
new_regloc.location.register_number = regnum.GetAsKind (eRegisterKindLLDB);
m_registers[regnum.GetAsKind (eRegisterKindLLDB)] = new_regloc;
regloc = new_regloc;
UnwindLogMsg ("supplying caller's register %s (%d) from the live RegisterContext at frame 0",
regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB));
return UnwindLLDB::RegisterSearchResult::eRegisterFound;
}
else
{
std::string unwindplan_name ("");
if (m_full_unwind_plan_sp)
{
unwindplan_name += "via '";
unwindplan_name += m_full_unwind_plan_sp->GetSourceName().AsCString();
unwindplan_name += "'";
}
UnwindLogMsg ("no save location for %s (%d) %s",
regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB),
unwindplan_name.c_str());
}
return UnwindLLDB::RegisterSearchResult::eRegisterNotFound;
}
// unwindplan_regloc has valid contents about where to retrieve the register
if (unwindplan_regloc.IsUnspecified())
{
lldb_private::UnwindLLDB::RegisterLocation new_regloc;
new_regloc.type = UnwindLLDB::RegisterLocation::eRegisterNotSaved;
m_registers[regnum.GetAsKind (eRegisterKindLLDB)] = new_regloc;
UnwindLogMsg ("save location for %s (%d) is unspecified, continue searching",
regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB));
return UnwindLLDB::RegisterSearchResult::eRegisterNotFound;
}
if (unwindplan_regloc.IsUndefined())
{
UnwindLogMsg ("did not supply reg location for %s (%d) because it is volatile",
regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB));
return UnwindLLDB::RegisterSearchResult::eRegisterIsVolatile;
}
if (unwindplan_regloc.IsSame())
{
regloc.type = UnwindLLDB::RegisterLocation::eRegisterInRegister;
regloc.location.register_number = regnum.GetAsKind (eRegisterKindLLDB);
m_registers[regnum.GetAsKind (eRegisterKindLLDB)] = regloc;
UnwindLogMsg ("supplying caller's register %s (%d), saved in register %s (%d)",
regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB),
regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB));
return UnwindLLDB::RegisterSearchResult::eRegisterFound;
}
if (unwindplan_regloc.IsCFAPlusOffset())
{
int offset = unwindplan_regloc.GetOffset();
regloc.type = UnwindLLDB::RegisterLocation::eRegisterValueInferred;
regloc.location.inferred_value = m_cfa + offset;
m_registers[regnum.GetAsKind (eRegisterKindLLDB)] = regloc;
UnwindLogMsg ("supplying caller's register %s (%d), value is CFA plus offset %d [value is 0x%" PRIx64 "]",
regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB),
offset, regloc.location.inferred_value);
return UnwindLLDB::RegisterSearchResult::eRegisterFound;
}
if (unwindplan_regloc.IsAtCFAPlusOffset())
{
int offset = unwindplan_regloc.GetOffset();
regloc.type = UnwindLLDB::RegisterLocation::eRegisterSavedAtMemoryLocation;
regloc.location.target_memory_location = m_cfa + offset;
m_registers[regnum.GetAsKind (eRegisterKindLLDB)] = regloc;
UnwindLogMsg ("supplying caller's register %s (%d) from the stack, saved at CFA plus offset %d [saved at 0x%" PRIx64 "]",
regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB),
offset, regloc.location.target_memory_location);
return UnwindLLDB::RegisterSearchResult::eRegisterFound;
}
if (unwindplan_regloc.IsInOtherRegister())
{
uint32_t unwindplan_regnum = unwindplan_regloc.GetRegisterNumber();
RegisterNumber row_regnum (m_thread, unwindplan_registerkind, unwindplan_regnum);
if (row_regnum.GetAsKind (eRegisterKindLLDB) == LLDB_INVALID_REGNUM)
{
UnwindLogMsg ("could not supply caller's %s (%d) location - was saved in another reg but couldn't convert that regnum",
regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB));
return UnwindLLDB::RegisterSearchResult::eRegisterNotFound;
}
regloc.type = UnwindLLDB::RegisterLocation::eRegisterInRegister;
regloc.location.register_number = row_regnum.GetAsKind (eRegisterKindLLDB);
m_registers[regnum.GetAsKind (eRegisterKindLLDB)] = regloc;
UnwindLogMsg ("supplying caller's register %s (%d), saved in register %s (%d)",
regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB),
row_regnum.GetName(), row_regnum.GetAsKind (eRegisterKindLLDB));
return UnwindLLDB::RegisterSearchResult::eRegisterFound;
}
if (unwindplan_regloc.IsDWARFExpression() || unwindplan_regloc.IsAtDWARFExpression())
{
DataExtractor dwarfdata (unwindplan_regloc.GetDWARFExpressionBytes(),
unwindplan_regloc.GetDWARFExpressionLength(),
process->GetByteOrder(), process->GetAddressByteSize());
ModuleSP opcode_ctx;
DWARFExpression dwarfexpr (opcode_ctx,
dwarfdata,
nullptr,
0,
unwindplan_regloc.GetDWARFExpressionLength());
dwarfexpr.SetRegisterKind (unwindplan_registerkind);
Value result;
Error error;
if (dwarfexpr.Evaluate (&exe_ctx, nullptr, nullptr, this, 0, nullptr, nullptr, result, &error))
{
addr_t val;
val = result.GetScalar().ULongLong();
if (unwindplan_regloc.IsDWARFExpression())
{
regloc.type = UnwindLLDB::RegisterLocation::eRegisterValueInferred;
regloc.location.inferred_value = val;
m_registers[regnum.GetAsKind (eRegisterKindLLDB)] = regloc;
UnwindLogMsg ("supplying caller's register %s (%d) via DWARF expression (IsDWARFExpression)",
regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB));
return UnwindLLDB::RegisterSearchResult::eRegisterFound;
}
else
{
regloc.type = UnwindLLDB::RegisterLocation::eRegisterSavedAtMemoryLocation;
regloc.location.target_memory_location = val;
m_registers[regnum.GetAsKind (eRegisterKindLLDB)] = regloc;
UnwindLogMsg ("supplying caller's register %s (%d) via DWARF expression (IsAtDWARFExpression)",
regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB));
return UnwindLLDB::RegisterSearchResult::eRegisterFound;
}
}
UnwindLogMsg ("tried to use IsDWARFExpression or IsAtDWARFExpression for %s (%d) but failed",
regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB));
return UnwindLLDB::RegisterSearchResult::eRegisterNotFound;
}
UnwindLogMsg ("no save location for %s (%d) in this stack frame",
regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB));
// FIXME UnwindPlan::Row types atDWARFExpression and isDWARFExpression are unsupported.
return UnwindLLDB::RegisterSearchResult::eRegisterNotFound;
}
// TryFallbackUnwindPlan() -- this method is a little tricky.
//
// When this is called, the frame above -- the caller frame, the "previous" frame --
// is invalid or bad.
//
// Instead of stopping the stack walk here, we'll try a different UnwindPlan and see
// if we can get a valid frame above us.
//
// This most often happens when an unwind plan based on assembly instruction inspection
// is not correct -- mostly with hand-written assembly functions or functions where the
// stack frame is set up "out of band", e.g. the kernel saved the register context and
// then called an asynchronous trap handler like _sigtramp.
//
// Often in these cases, if we just do a dumb stack walk we'll get past this tricky
// frame and our usual techniques can continue to be used.
bool
RegisterContextLLDB::TryFallbackUnwindPlan ()
{
if (m_fallback_unwind_plan_sp.get() == nullptr)
return false;
if (m_full_unwind_plan_sp.get() == nullptr)
return false;
if (m_full_unwind_plan_sp.get() == m_fallback_unwind_plan_sp.get()
|| m_full_unwind_plan_sp->GetSourceName() == m_fallback_unwind_plan_sp->GetSourceName())
{
return false;
}
// If a compiler generated unwind plan failed, trying the arch default unwindplan
// isn't going to do any better.
if (m_full_unwind_plan_sp->GetSourcedFromCompiler() == eLazyBoolYes)
return false;
// Get the caller's pc value and our own CFA value.
// Swap in the fallback unwind plan, re-fetch the caller's pc value and CFA value.
// If they're the same, then the fallback unwind plan provides no benefit.
RegisterNumber pc_regnum (m_thread, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
addr_t old_caller_pc_value = LLDB_INVALID_ADDRESS;
addr_t new_caller_pc_value = LLDB_INVALID_ADDRESS;
addr_t old_this_frame_cfa_value = m_cfa;
UnwindLLDB::RegisterLocation regloc;
if (SavedLocationForRegister (pc_regnum.GetAsKind (eRegisterKindLLDB), regloc) == UnwindLLDB::RegisterSearchResult::eRegisterFound)
{
const RegisterInfo *reg_info = GetRegisterInfoAtIndex(pc_regnum.GetAsKind (eRegisterKindLLDB));
if (reg_info)
{
RegisterValue reg_value;
if (ReadRegisterValueFromRegisterLocation (regloc, reg_info, reg_value))
{
old_caller_pc_value = reg_value.GetAsUInt64();
}
}
}
// This is a tricky wrinkle! If SavedLocationForRegister() detects a really impossible
// register location for the full unwind plan, it may call ForceSwitchToFallbackUnwindPlan()
// which in turn replaces the full unwindplan with the fallback... in short, we're done,
// we're using the fallback UnwindPlan.
// We checked if m_fallback_unwind_plan_sp was nullptr at the top -- the only way it
// became nullptr since then is via SavedLocationForRegister().
if (m_fallback_unwind_plan_sp.get() == nullptr)
return true;
// Switch the full UnwindPlan to be the fallback UnwindPlan. If we decide this isn't
// working, we need to restore.
// We'll also need to save & restore the value of the m_cfa ivar. Save is down below a bit in 'old_cfa'.
UnwindPlanSP original_full_unwind_plan_sp = m_full_unwind_plan_sp;
addr_t old_cfa = m_cfa;
m_registers.clear();
m_full_unwind_plan_sp = m_fallback_unwind_plan_sp;
UnwindPlan::RowSP active_row = m_fallback_unwind_plan_sp->GetRowForFunctionOffset (m_current_offset);
if (active_row && active_row->GetCFAValue().GetValueType() != UnwindPlan::Row::CFAValue::unspecified)
{
addr_t new_cfa;
if (!ReadCFAValueForRow (m_fallback_unwind_plan_sp->GetRegisterKind(), active_row, new_cfa)
|| new_cfa == 0 || new_cfa == 1 || new_cfa == LLDB_INVALID_ADDRESS)
{
UnwindLogMsg ("failed to get cfa with fallback unwindplan");
m_fallback_unwind_plan_sp.reset();
m_full_unwind_plan_sp = original_full_unwind_plan_sp;
m_cfa = old_cfa;
return false;
}
m_cfa = new_cfa;
if (SavedLocationForRegister (pc_regnum.GetAsKind (eRegisterKindLLDB), regloc) == UnwindLLDB::RegisterSearchResult::eRegisterFound)
{
const RegisterInfo *reg_info = GetRegisterInfoAtIndex(pc_regnum.GetAsKind (eRegisterKindLLDB));
if (reg_info)
{
RegisterValue reg_value;
if (ReadRegisterValueFromRegisterLocation (regloc, reg_info, reg_value))
{
new_caller_pc_value = reg_value.GetAsUInt64();
}
}
}
if (new_caller_pc_value == LLDB_INVALID_ADDRESS)
{
UnwindLogMsg ("failed to get a pc value for the caller frame with the fallback unwind plan");
m_fallback_unwind_plan_sp.reset();
m_full_unwind_plan_sp = original_full_unwind_plan_sp;
m_cfa = old_cfa;
return false;
}
if (old_caller_pc_value != LLDB_INVALID_ADDRESS)
{
if (old_caller_pc_value == new_caller_pc_value && new_cfa == old_this_frame_cfa_value)
{
UnwindLogMsg ("fallback unwind plan got the same values for this frame CFA and caller frame pc, not using");
m_fallback_unwind_plan_sp.reset();
m_full_unwind_plan_sp = original_full_unwind_plan_sp;
m_cfa = old_cfa;
return false;
}
}
UnwindLogMsg ("trying to unwind from this function with the UnwindPlan '%s' because UnwindPlan '%s' failed.",
m_fallback_unwind_plan_sp->GetSourceName().GetCString(),
original_full_unwind_plan_sp->GetSourceName().GetCString());
// We've copied the fallback unwind plan into the full - now clear the fallback.
m_fallback_unwind_plan_sp.reset();
}
return true;
}
bool
RegisterContextLLDB::ForceSwitchToFallbackUnwindPlan ()
{
if (m_fallback_unwind_plan_sp.get() == NULL)
return false;
if (m_full_unwind_plan_sp.get() == NULL)
return false;
if (m_full_unwind_plan_sp.get() == m_fallback_unwind_plan_sp.get()
|| m_full_unwind_plan_sp->GetSourceName() == m_fallback_unwind_plan_sp->GetSourceName())
{
return false;
}
UnwindPlan::RowSP active_row = m_fallback_unwind_plan_sp->GetRowForFunctionOffset (m_current_offset);
if (active_row && active_row->GetCFAValue().GetValueType() != UnwindPlan::Row::CFAValue::unspecified)
{
addr_t new_cfa;
if (!ReadCFAValueForRow (m_fallback_unwind_plan_sp->GetRegisterKind(), active_row, new_cfa)
|| new_cfa == 0 || new_cfa == 1 || new_cfa == LLDB_INVALID_ADDRESS)
{
UnwindLogMsg ("failed to get cfa with fallback unwindplan");
m_fallback_unwind_plan_sp.reset();
return false;
}
m_full_unwind_plan_sp = m_fallback_unwind_plan_sp;
m_fallback_unwind_plan_sp.reset();
m_registers.clear();
m_cfa = new_cfa;
UnwindLogMsg ("switched unconditionally to the fallback unwindplan %s", m_full_unwind_plan_sp->GetSourceName().GetCString());
return true;
}
return false;
}
bool
RegisterContextLLDB::ReadCFAValueForRow (lldb::RegisterKind row_register_kind,
const UnwindPlan::RowSP &row,
addr_t &cfa_value)
{
RegisterValue reg_value;
cfa_value = LLDB_INVALID_ADDRESS;
addr_t cfa_reg_contents;
switch (row->GetCFAValue().GetValueType())
{
case UnwindPlan::Row::CFAValue::isRegisterDereferenced:
{
RegisterNumber cfa_reg (m_thread, row_register_kind, row->GetCFAValue().GetRegisterNumber());
if (ReadGPRValue (cfa_reg, cfa_reg_contents))
{
const RegisterInfo *reg_info = GetRegisterInfoAtIndex (cfa_reg.GetAsKind (eRegisterKindLLDB));
RegisterValue reg_value;
if (reg_info)
{
Error error = ReadRegisterValueFromMemory(reg_info,
cfa_reg_contents,
reg_info->byte_size,
reg_value);
if (error.Success ())
{
cfa_value = reg_value.GetAsUInt64();
UnwindLogMsg ("CFA value via dereferencing reg %s (%d): reg has val 0x%" PRIx64 ", CFA value is 0x%" PRIx64,
cfa_reg.GetName(), cfa_reg.GetAsKind (eRegisterKindLLDB),
cfa_reg_contents, cfa_value);
return true;
}
else
{
UnwindLogMsg ("Tried to deref reg %s (%d) [0x%" PRIx64 "] but memory read failed.",
cfa_reg.GetName(), cfa_reg.GetAsKind (eRegisterKindLLDB),
cfa_reg_contents);
}
}
}
break;
}
case UnwindPlan::Row::CFAValue::isRegisterPlusOffset:
{
RegisterNumber cfa_reg (m_thread, row_register_kind, row->GetCFAValue().GetRegisterNumber());
if (ReadGPRValue (cfa_reg, cfa_reg_contents))
{
if (cfa_reg_contents == LLDB_INVALID_ADDRESS || cfa_reg_contents == 0 || cfa_reg_contents == 1)
{
UnwindLogMsg ("Got an invalid CFA register value - reg %s (%d), value 0x%" PRIx64,
cfa_reg.GetName(), cfa_reg.GetAsKind (eRegisterKindLLDB),
cfa_reg_contents);
cfa_reg_contents = LLDB_INVALID_ADDRESS;
return false;
}
cfa_value = cfa_reg_contents + row->GetCFAValue().GetOffset();
UnwindLogMsg ("CFA is 0x%" PRIx64 ": Register %s (%d) contents are 0x%" PRIx64 ", offset is %d",
cfa_value,
cfa_reg.GetName(), cfa_reg.GetAsKind (eRegisterKindLLDB),
cfa_reg_contents, row->GetCFAValue().GetOffset());
return true;
}
break;
}
case UnwindPlan::Row::CFAValue::isDWARFExpression:
{
ExecutionContext exe_ctx(m_thread.shared_from_this());
Process *process = exe_ctx.GetProcessPtr();
DataExtractor dwarfdata (row->GetCFAValue().GetDWARFExpressionBytes(),
row->GetCFAValue().GetDWARFExpressionLength(),
process->GetByteOrder(), process->GetAddressByteSize());
ModuleSP opcode_ctx;
DWARFExpression dwarfexpr (opcode_ctx,
dwarfdata,
nullptr,
0,
row->GetCFAValue().GetDWARFExpressionLength());
dwarfexpr.SetRegisterKind (row_register_kind);
Value result;
Error error;
if (dwarfexpr.Evaluate (&exe_ctx, nullptr, nullptr, this, 0, nullptr, nullptr, result, &error))
{
cfa_value = result.GetScalar().ULongLong();
UnwindLogMsg ("CFA value set by DWARF expression is 0x%" PRIx64, cfa_value);
return true;
}
UnwindLogMsg ("Failed to set CFA value via DWARF expression: %s", error.AsCString());
break;
}
default:
return false;
}
return false;
}
// Retrieve a general purpose register value for THIS frame, as saved by the NEXT frame, i.e. the frame that
// this frame called. e.g.
//
// foo () { }
// bar () { foo (); }
// main () { bar (); }
//
// stopped in foo() so
// frame 0 - foo
// frame 1 - bar
// frame 2 - main
// and this RegisterContext is for frame 1 (bar) - if we want to get the pc value for frame 1, we need to ask
// where frame 0 (the "next" frame) saved that and retrieve the value.
bool
RegisterContextLLDB::ReadGPRValue (lldb::RegisterKind register_kind, uint32_t regnum, addr_t &value)
{
if (!IsValid())
return false;
uint32_t lldb_regnum;
if (register_kind == eRegisterKindLLDB)
{
lldb_regnum = regnum;
}
else if (!m_thread.GetRegisterContext()->ConvertBetweenRegisterKinds (register_kind, regnum, eRegisterKindLLDB, lldb_regnum))
{
return false;
}
const RegisterInfo *reg_info = GetRegisterInfoAtIndex(lldb_regnum);
RegisterValue reg_value;
// if this is frame 0 (currently executing frame), get the requested reg contents from the actual thread registers
if (IsFrameZero ())
{
if (m_thread.GetRegisterContext()->ReadRegister (reg_info, reg_value))
{
value = reg_value.GetAsUInt64();
return true;
}
return false;
}
bool pc_register = false;
uint32_t generic_regnum;
if (register_kind == eRegisterKindGeneric && regnum == LLDB_REGNUM_GENERIC_PC)
{
pc_register = true;
}
else if (m_thread.GetRegisterContext()->ConvertBetweenRegisterKinds (register_kind, regnum, eRegisterKindGeneric, generic_regnum)
&& generic_regnum == LLDB_REGNUM_GENERIC_PC)
{
pc_register = true;
}
lldb_private::UnwindLLDB::RegisterLocation regloc;
if (!m_parent_unwind.SearchForSavedLocationForRegister (lldb_regnum, regloc, m_frame_number - 1, pc_register))
{
return false;
}
if (ReadRegisterValueFromRegisterLocation (regloc, reg_info, reg_value))
{
value = reg_value.GetAsUInt64();
return true;
}
return false;
}
bool
RegisterContextLLDB::ReadGPRValue (const RegisterNumber &regnum, addr_t &value)
{
return ReadGPRValue (regnum.GetRegisterKind(), regnum.GetRegisterNumber(), value);
}
// Find the value of a register in THIS frame
bool
RegisterContextLLDB::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value)
{
if (!IsValid())
return false;
const uint32_t lldb_regnum = reg_info->kinds[eRegisterKindLLDB];
UnwindLogMsgVerbose ("looking for register saved location for reg %d", lldb_regnum);
// If this is the 0th frame, hand this over to the live register context
if (IsFrameZero ())
{
UnwindLogMsgVerbose ("passing along to the live register context for reg %d", lldb_regnum);
return m_thread.GetRegisterContext()->ReadRegister (reg_info, value);
}
lldb_private::UnwindLLDB::RegisterLocation regloc;
// Find out where the NEXT frame saved THIS frame's register contents
if (!m_parent_unwind.SearchForSavedLocationForRegister (lldb_regnum, regloc, m_frame_number - 1, false))
return false;
return ReadRegisterValueFromRegisterLocation (regloc, reg_info, value);
}
bool
RegisterContextLLDB::WriteRegister (const RegisterInfo *reg_info, const RegisterValue &value)
{
if (!IsValid())
return false;
const uint32_t lldb_regnum = reg_info->kinds[eRegisterKindLLDB];
UnwindLogMsgVerbose ("looking for register saved location for reg %d", lldb_regnum);
// If this is the 0th frame, hand this over to the live register context
if (IsFrameZero ())
{
UnwindLogMsgVerbose ("passing along to the live register context for reg %d", lldb_regnum);
return m_thread.GetRegisterContext()->WriteRegister (reg_info, value);
}
lldb_private::UnwindLLDB::RegisterLocation regloc;
// Find out where the NEXT frame saved THIS frame's register contents
if (!m_parent_unwind.SearchForSavedLocationForRegister (lldb_regnum, regloc, m_frame_number - 1, false))
return false;
return WriteRegisterValueToRegisterLocation (regloc, reg_info, value);
}
// Don't need to implement this one
bool
RegisterContextLLDB::ReadAllRegisterValues (lldb::DataBufferSP &data_sp)
{
return false;
}
// Don't need to implement this one
bool
RegisterContextLLDB::WriteAllRegisterValues (const lldb::DataBufferSP& data_sp)
{
return false;
}
// Retrieve the pc value for THIS from
bool
RegisterContextLLDB::GetCFA (addr_t& cfa)
{
if (!IsValid())
{
return false;
}
if (m_cfa == LLDB_INVALID_ADDRESS)
{
return false;
}
cfa = m_cfa;
return true;
}
RegisterContextLLDB::SharedPtr
RegisterContextLLDB::GetNextFrame () const
{
RegisterContextLLDB::SharedPtr regctx;
if (m_frame_number == 0)
return regctx;
return m_parent_unwind.GetRegisterContextForFrameNum (m_frame_number - 1);
}
RegisterContextLLDB::SharedPtr
RegisterContextLLDB::GetPrevFrame () const
{
RegisterContextLLDB::SharedPtr regctx;
return m_parent_unwind.GetRegisterContextForFrameNum (m_frame_number + 1);
}
// Retrieve the address of the start of the function of THIS frame
bool
RegisterContextLLDB::GetStartPC (addr_t& start_pc)
{
if (!IsValid())
return false;
if (!m_start_pc.IsValid())
{
return ReadPC (start_pc);
}
start_pc = m_start_pc.GetLoadAddress (CalculateTarget().get());
return true;
}
// Retrieve the current pc value for THIS frame, as saved by the NEXT frame.
bool
RegisterContextLLDB::ReadPC (addr_t& pc)
{
if (!IsValid())
return false;
bool above_trap_handler = false;
if (GetNextFrame().get() && GetNextFrame()->IsValid() && GetNextFrame()->IsTrapHandlerFrame())
above_trap_handler = true;
if (ReadGPRValue (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, pc))
{
// A pc value of 0 or 1 is impossible in the middle of the stack -- it indicates the end of a stack walk.
// On the currently executing frame (or such a frame interrupted asynchronously by sigtramp et al) this may
// occur if code has jumped through a NULL pointer -- we want to be able to unwind past that frame to help
// find the bug.
if (m_all_registers_available == false
&& above_trap_handler == false
&& (pc == 0 || pc == 1))
{
return false;
}
else
{
return true;
}
}
else
{
return false;
}
}
void
RegisterContextLLDB::UnwindLogMsg (const char *fmt, ...)
{
Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
if (log)
{
va_list args;
va_start (args, fmt);
char *logmsg;
if (vasprintf (&logmsg, fmt, args) == -1 || logmsg == NULL)
{
if (logmsg)
free (logmsg);
va_end (args);
return;
}
va_end (args);
log->Printf ("%*sth%d/fr%u %s",
m_frame_number < 100 ? m_frame_number : 100, "", m_thread.GetIndexID(), m_frame_number,
logmsg);
free (logmsg);
}
}
void
RegisterContextLLDB::UnwindLogMsgVerbose (const char *fmt, ...)
{
Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
if (log && log->GetVerbose())
{
va_list args;
va_start (args, fmt);
char *logmsg;
if (vasprintf (&logmsg, fmt, args) == -1 || logmsg == NULL)
{
if (logmsg)
free (logmsg);
va_end (args);
return;
}
va_end (args);
log->Printf ("%*sth%d/fr%u %s",
m_frame_number < 100 ? m_frame_number : 100, "", m_thread.GetIndexID(), m_frame_number,
logmsg);
free (logmsg);
}
}