Files
llvm/lld/COFF/LTO.cpp
Ivan Tadeu Ferreira Antunes Filho 73fd9d310f [lld] Support separate native object file path in --thinlto-prefix-replace
Currently, the --thinlto-prefix-replace="oldpath;newpath" option is used during
distributed ThinLTO thin links to specify the mapping of the input bitcode object
files' directory tree (oldpath) to the directory tree (newpath) used for both:

1) the output files of the thin link itself (the .thinlto.bc index files and the
optional .imports files)
2) the specified object file paths written to the response file given in the
--thinlto-index-only=${response} option, which is used by the final native
link and must match the paths of the native object files that will be
produced by ThinLTO backend compiles.
This patch expands the --thinlto-prefix-replace option to allow a separate directory
tree mapping to be specified for the object file paths written to the response file
(number 2 above). This is important to support builds and build systems where the
same output directory may not be written by multiple build actions (e.g. the thin link
and the ThinLTO backend compiles).

The new format is: --thinlto-prefix-replace="origpath;outpath[;objpath]"

This replaces the origpath directory tree of the thin link input files with
outpath when writing the thin link index and imports outputs (number 1
above). If objpath is specified it replaces origpath of the input files with
objpath when writing the response file (number 2 above), otherwise it
falls back to the old behavior of using outpath for this as well.

Reviewed By: tejohnson, MaskRay

Differential Revision: https://reviews.llvm.org/D144596
2023-04-04 11:24:51 -07:00

258 lines
9.2 KiB
C++

//===- LTO.cpp ------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "LTO.h"
#include "COFFLinkerContext.h"
#include "Config.h"
#include "InputFiles.h"
#include "Symbols.h"
#include "lld/Common/Args.h"
#include "lld/Common/CommonLinkerContext.h"
#include "lld/Common/Strings.h"
#include "lld/Common/TargetOptionsCommandFlags.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/LTO/Config.h"
#include "llvm/LTO/LTO.h"
#include "llvm/Object/SymbolicFile.h"
#include "llvm/Support/Caching.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstddef>
#include <memory>
#include <string>
#include <system_error>
#include <vector>
using namespace llvm;
using namespace llvm::object;
using namespace lld;
using namespace lld::coff;
// Creates an empty file to and returns a raw_fd_ostream to write to it.
static std::unique_ptr<raw_fd_ostream> openFile(StringRef file) {
std::error_code ec;
auto ret =
std::make_unique<raw_fd_ostream>(file, ec, sys::fs::OpenFlags::OF_None);
if (ec) {
error("cannot open " + file + ": " + ec.message());
return nullptr;
}
return ret;
}
std::string BitcodeCompiler::getThinLTOOutputFile(StringRef path) {
return lto::getThinLTOOutputFile(
std::string(path), std::string(ctx.config.thinLTOPrefixReplaceOld),
std::string(ctx.config.thinLTOPrefixReplaceNew));
}
lto::Config BitcodeCompiler::createConfig() {
lto::Config c;
c.Options = initTargetOptionsFromCodeGenFlags();
c.Options.EmitAddrsig = true;
for (StringRef C : ctx.config.mllvmOpts)
c.MllvmArgs.emplace_back(C.str());
// Always emit a section per function/datum with LTO. LLVM LTO should get most
// of the benefit of linker GC, but there are still opportunities for ICF.
c.Options.FunctionSections = true;
c.Options.DataSections = true;
// Use static reloc model on 32-bit x86 because it usually results in more
// compact code, and because there are also known code generation bugs when
// using the PIC model (see PR34306).
if (ctx.config.machine == COFF::IMAGE_FILE_MACHINE_I386)
c.RelocModel = Reloc::Static;
else
c.RelocModel = Reloc::PIC_;
#ifndef NDEBUG
c.DisableVerify = false;
#else
c.DisableVerify = true;
#endif
c.DiagHandler = diagnosticHandler;
c.OptLevel = ctx.config.ltoo;
c.CPU = getCPUStr();
c.MAttrs = getMAttrs();
std::optional<CodeGenOpt::Level> optLevelOrNone = CodeGenOpt::getLevel(
ctx.config.ltoCgo.value_or(args::getCGOptLevel(ctx.config.ltoo)));
assert(optLevelOrNone && "Invalid optimization level!");
c.CGOptLevel = *optLevelOrNone;
c.AlwaysEmitRegularLTOObj = !ctx.config.ltoObjPath.empty();
c.DebugPassManager = ctx.config.ltoDebugPassManager;
c.CSIRProfile = std::string(ctx.config.ltoCSProfileFile);
c.RunCSIRInstr = ctx.config.ltoCSProfileGenerate;
c.PGOWarnMismatch = ctx.config.ltoPGOWarnMismatch;
if (ctx.config.saveTemps)
checkError(c.addSaveTemps(std::string(ctx.config.outputFile) + ".",
/*UseInputModulePath*/ true));
return c;
}
BitcodeCompiler::BitcodeCompiler(COFFLinkerContext &c) : ctx(c) {
// Initialize indexFile.
if (!ctx.config.thinLTOIndexOnlyArg.empty())
indexFile = openFile(ctx.config.thinLTOIndexOnlyArg);
// Initialize ltoObj.
lto::ThinBackend backend;
if (ctx.config.thinLTOIndexOnly) {
auto OnIndexWrite = [&](StringRef S) { thinIndices.erase(S); };
backend = lto::createWriteIndexesThinBackend(
std::string(ctx.config.thinLTOPrefixReplaceOld),
std::string(ctx.config.thinLTOPrefixReplaceNew),
std::string(ctx.config.thinLTOPrefixReplaceNativeObject),
ctx.config.thinLTOEmitImportsFiles, indexFile.get(), OnIndexWrite);
} else {
backend = lto::createInProcessThinBackend(
llvm::heavyweight_hardware_concurrency(ctx.config.thinLTOJobs));
}
ltoObj = std::make_unique<lto::LTO>(createConfig(), backend,
ctx.config.ltoPartitions);
}
BitcodeCompiler::~BitcodeCompiler() = default;
static void undefine(Symbol *s) { replaceSymbol<Undefined>(s, s->getName()); }
void BitcodeCompiler::add(BitcodeFile &f) {
lto::InputFile &obj = *f.obj;
unsigned symNum = 0;
std::vector<Symbol *> symBodies = f.getSymbols();
std::vector<lto::SymbolResolution> resols(symBodies.size());
if (ctx.config.thinLTOIndexOnly)
thinIndices.insert(obj.getName());
// Provide a resolution to the LTO API for each symbol.
for (const lto::InputFile::Symbol &objSym : obj.symbols()) {
Symbol *sym = symBodies[symNum];
lto::SymbolResolution &r = resols[symNum];
++symNum;
// Ideally we shouldn't check for SF_Undefined but currently IRObjectFile
// reports two symbols for module ASM defined. Without this check, lld
// flags an undefined in IR with a definition in ASM as prevailing.
// Once IRObjectFile is fixed to report only one symbol this hack can
// be removed.
r.Prevailing = !objSym.isUndefined() && sym->getFile() == &f;
r.VisibleToRegularObj = sym->isUsedInRegularObj;
if (r.Prevailing)
undefine(sym);
// We tell LTO to not apply interprocedural optimization for wrapped
// (with -wrap) symbols because otherwise LTO would inline them while
// their values are still not final.
r.LinkerRedefined = !sym->canInline;
}
checkError(ltoObj->add(std::move(f.obj), resols));
}
// Merge all the bitcode files we have seen, codegen the result
// and return the resulting objects.
std::vector<InputFile *> BitcodeCompiler::compile() {
unsigned maxTasks = ltoObj->getMaxTasks();
buf.resize(maxTasks);
files.resize(maxTasks);
file_names.resize(maxTasks);
// The /lldltocache option specifies the path to a directory in which to cache
// native object files for ThinLTO incremental builds. If a path was
// specified, configure LTO to use it as the cache directory.
FileCache cache;
if (!ctx.config.ltoCache.empty())
cache = check(localCache("ThinLTO", "Thin", ctx.config.ltoCache,
[&](size_t task, const Twine &moduleName,
std::unique_ptr<MemoryBuffer> mb) {
files[task] = std::move(mb);
file_names[task] = moduleName.str();
}));
checkError(ltoObj->run(
[&](size_t task, const Twine &moduleName) {
buf[task].first = moduleName.str();
return std::make_unique<CachedFileStream>(
std::make_unique<raw_svector_ostream>(buf[task].second));
},
cache));
// Emit empty index files for non-indexed files
for (StringRef s : thinIndices) {
std::string path = getThinLTOOutputFile(s);
openFile(path + ".thinlto.bc");
if (ctx.config.thinLTOEmitImportsFiles)
openFile(path + ".imports");
}
// ThinLTO with index only option is required to generate only the index
// files. After that, we exit from linker and ThinLTO backend runs in a
// distributed environment.
if (ctx.config.thinLTOIndexOnly) {
if (!ctx.config.ltoObjPath.empty())
saveBuffer(buf[0].second, ctx.config.ltoObjPath);
if (indexFile)
indexFile->close();
return {};
}
if (!ctx.config.ltoCache.empty())
pruneCache(ctx.config.ltoCache, ctx.config.ltoCachePolicy, files);
std::vector<InputFile *> ret;
for (unsigned i = 0; i != maxTasks; ++i) {
StringRef bitcodeFilePath;
// Get the native object contents either from the cache or from memory. Do
// not use the cached MemoryBuffer directly, or the PDB will not be
// deterministic.
StringRef objBuf;
if (files[i]) {
objBuf = files[i]->getBuffer();
bitcodeFilePath = file_names[i];
} else {
objBuf = buf[i].second;
bitcodeFilePath = buf[i].first;
}
if (objBuf.empty())
continue;
// If the input bitcode file is path/to/a.obj, then the corresponding lto
// object file name will look something like: path/to/main.exe.lto.a.obj.
StringRef ltoObjName;
if (bitcodeFilePath == "ld-temp.o") {
ltoObjName =
saver().save(Twine(ctx.config.outputFile) + ".lto" +
(i == 0 ? Twine("") : Twine('.') + Twine(i)) + ".obj");
} else {
StringRef directory = sys::path::parent_path(bitcodeFilePath);
StringRef baseName = sys::path::filename(bitcodeFilePath);
StringRef outputFileBaseName = sys::path::filename(ctx.config.outputFile);
SmallString<64> path;
sys::path::append(path, directory,
outputFileBaseName + ".lto." + baseName);
sys::path::remove_dots(path, true);
ltoObjName = saver().save(path.str());
}
if (ctx.config.saveTemps)
saveBuffer(buf[i].second, ltoObjName);
ret.push_back(make<ObjFile>(ctx, MemoryBufferRef(objBuf, ltoObjName)));
}
return ret;
}