mirror of
https://github.com/intel/llvm.git
synced 2026-01-14 03:50:17 +08:00
Summary: While reading debug info the function findSubprograms runs on each compilation unit. This diff parallelize that loop reducing its runtime duration by 70%. (cherry picked from FBD16362867)
1775 lines
62 KiB
C++
1775 lines
62 KiB
C++
//===--- BinaryContext.cpp - Interface for machine-level context ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "BinaryContext.h"
|
|
#include "BinaryFunction.h"
|
|
#include "DataReader.h"
|
|
#include "ParallelUtilities.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFUnit.h"
|
|
#include "llvm/MC/MCAsmLayout.h"
|
|
#include "llvm/MC/MCAssembler.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCELFStreamer.h"
|
|
#include "llvm/MC/MCObjectStreamer.h"
|
|
#include "llvm/MC/MCObjectWriter.h"
|
|
#include "llvm/MC/MCSectionELF.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include <iterator>
|
|
|
|
using namespace llvm;
|
|
using namespace bolt;
|
|
|
|
#undef DEBUG_TYPE
|
|
#define DEBUG_TYPE "bolt"
|
|
|
|
namespace opts {
|
|
|
|
extern cl::OptionCategory BoltCategory;
|
|
|
|
extern cl::opt<bool> AggregateOnly;
|
|
extern cl::opt<bool> StrictMode;
|
|
extern cl::opt<unsigned> Verbosity;
|
|
|
|
cl::opt<bool>
|
|
NoHugePages("no-huge-pages",
|
|
cl::desc("use regular size pages for code alignment"),
|
|
cl::ZeroOrMore,
|
|
cl::Hidden,
|
|
cl::cat(BoltCategory));
|
|
|
|
static cl::opt<bool>
|
|
PrintDebugInfo("print-debug-info",
|
|
cl::desc("print debug info when printing functions"),
|
|
cl::Hidden,
|
|
cl::ZeroOrMore,
|
|
cl::cat(BoltCategory));
|
|
|
|
cl::opt<bool>
|
|
PrintRelocations("print-relocations",
|
|
cl::desc("print relocations when printing functions/objects"),
|
|
cl::Hidden,
|
|
cl::ZeroOrMore,
|
|
cl::cat(BoltCategory));
|
|
|
|
static cl::opt<bool>
|
|
PrintMemData("print-mem-data",
|
|
cl::desc("print memory data annotations when printing functions"),
|
|
cl::Hidden,
|
|
cl::ZeroOrMore,
|
|
cl::cat(BoltCategory));
|
|
|
|
} // namespace opts
|
|
|
|
BinaryContext::BinaryContext(std::unique_ptr<MCContext> Ctx,
|
|
std::unique_ptr<DWARFContext> DwCtx,
|
|
std::unique_ptr<Triple> TheTriple,
|
|
const Target *TheTarget,
|
|
std::string TripleName,
|
|
std::unique_ptr<MCCodeEmitter> MCE,
|
|
std::unique_ptr<MCObjectFileInfo> MOFI,
|
|
std::unique_ptr<const MCAsmInfo> AsmInfo,
|
|
std::unique_ptr<const MCInstrInfo> MII,
|
|
std::unique_ptr<const MCSubtargetInfo> STI,
|
|
std::unique_ptr<MCInstPrinter> InstPrinter,
|
|
std::unique_ptr<const MCInstrAnalysis> MIA,
|
|
std::unique_ptr<MCPlusBuilder> MIB,
|
|
std::unique_ptr<const MCRegisterInfo> MRI,
|
|
std::unique_ptr<MCDisassembler> DisAsm,
|
|
DataReader &DR)
|
|
: Ctx(std::move(Ctx)),
|
|
DwCtx(std::move(DwCtx)),
|
|
TheTriple(std::move(TheTriple)),
|
|
TheTarget(TheTarget),
|
|
TripleName(TripleName),
|
|
MCE(std::move(MCE)),
|
|
MOFI(std::move(MOFI)),
|
|
AsmInfo(std::move(AsmInfo)),
|
|
MII(std::move(MII)),
|
|
STI(std::move(STI)),
|
|
InstPrinter(std::move(InstPrinter)),
|
|
MIA(std::move(MIA)),
|
|
MIB(std::move(MIB)),
|
|
MRI(std::move(MRI)),
|
|
DisAsm(std::move(DisAsm)),
|
|
DR(DR) {
|
|
Relocation::Arch = this->TheTriple->getArch();
|
|
PageAlign = opts::NoHugePages ? RegularPageSize : HugePageSize;
|
|
}
|
|
|
|
BinaryContext::~BinaryContext() {
|
|
for (auto *Section : Sections) {
|
|
delete Section;
|
|
}
|
|
for (auto *InjectedFunction : InjectedBinaryFunctions) {
|
|
delete InjectedFunction;
|
|
}
|
|
for (auto JTI : JumpTables) {
|
|
delete JTI.second;
|
|
}
|
|
clearBinaryData();
|
|
}
|
|
|
|
std::unique_ptr<MCObjectWriter>
|
|
BinaryContext::createObjectWriter(raw_pwrite_stream &OS) {
|
|
if (!MAB) {
|
|
MAB = std::unique_ptr<MCAsmBackend>(
|
|
TheTarget->createMCAsmBackend(*STI, *MRI, MCTargetOptions()));
|
|
}
|
|
|
|
return MAB->createObjectWriter(OS);
|
|
}
|
|
|
|
bool BinaryContext::validateObjectNesting() const {
|
|
auto Itr = BinaryDataMap.begin();
|
|
auto End = BinaryDataMap.end();
|
|
bool Valid = true;
|
|
while (Itr != End) {
|
|
auto Next = std::next(Itr);
|
|
while (Next != End &&
|
|
Itr->second->getSection() == Next->second->getSection() &&
|
|
Itr->second->containsRange(Next->second->getAddress(),
|
|
Next->second->getSize())) {
|
|
if (Next->second->Parent != Itr->second) {
|
|
errs() << "BOLT-WARNING: object nesting incorrect for:\n"
|
|
<< "BOLT-WARNING: " << *Itr->second << "\n"
|
|
<< "BOLT-WARNING: " << *Next->second << "\n";
|
|
Valid = false;
|
|
}
|
|
++Next;
|
|
}
|
|
Itr = Next;
|
|
}
|
|
return Valid;
|
|
}
|
|
|
|
bool BinaryContext::validateHoles() const {
|
|
bool Valid = true;
|
|
for (auto &Section : sections()) {
|
|
for (const auto &Rel : Section.relocations()) {
|
|
auto RelAddr = Rel.Offset + Section.getAddress();
|
|
auto *BD = getBinaryDataContainingAddress(RelAddr);
|
|
if (!BD) {
|
|
errs() << "BOLT-WARNING: no BinaryData found for relocation at address"
|
|
<< " 0x" << Twine::utohexstr(RelAddr) << " in "
|
|
<< Section.getName() << "\n";
|
|
Valid = false;
|
|
} else if (!BD->getAtomicRoot()) {
|
|
errs() << "BOLT-WARNING: no atomic BinaryData found for relocation at "
|
|
<< "address 0x" << Twine::utohexstr(RelAddr) << " in "
|
|
<< Section.getName() << "\n";
|
|
Valid = false;
|
|
}
|
|
}
|
|
}
|
|
return Valid;
|
|
}
|
|
|
|
void BinaryContext::updateObjectNesting(BinaryDataMapType::iterator GAI) {
|
|
const auto Address = GAI->second->getAddress();
|
|
const auto Size = GAI->second->getSize();
|
|
|
|
auto fixParents =
|
|
[&](BinaryDataMapType::iterator Itr, BinaryData *NewParent) {
|
|
auto *OldParent = Itr->second->Parent;
|
|
Itr->second->Parent = NewParent;
|
|
++Itr;
|
|
while (Itr != BinaryDataMap.end() && OldParent &&
|
|
Itr->second->Parent == OldParent) {
|
|
Itr->second->Parent = NewParent;
|
|
++Itr;
|
|
}
|
|
};
|
|
|
|
// Check if the previous symbol contains the newly added symbol.
|
|
if (GAI != BinaryDataMap.begin()) {
|
|
auto *Prev = std::prev(GAI)->second;
|
|
while (Prev) {
|
|
if (Prev->getSection() == GAI->second->getSection() &&
|
|
Prev->containsRange(Address, Size)) {
|
|
fixParents(GAI, Prev);
|
|
} else {
|
|
fixParents(GAI, nullptr);
|
|
}
|
|
Prev = Prev->Parent;
|
|
}
|
|
}
|
|
|
|
// Check if the newly added symbol contains any subsequent symbols.
|
|
if (Size != 0) {
|
|
auto *BD = GAI->second->Parent ? GAI->second->Parent : GAI->second;
|
|
auto Itr = std::next(GAI);
|
|
while (Itr != BinaryDataMap.end() &&
|
|
BD->containsRange(Itr->second->getAddress(),
|
|
Itr->second->getSize())) {
|
|
Itr->second->Parent = BD;
|
|
++Itr;
|
|
}
|
|
}
|
|
}
|
|
|
|
iterator_range<BinaryContext::binary_data_iterator>
|
|
BinaryContext::getSubBinaryData(BinaryData *BD) {
|
|
auto Start = std::next(BinaryDataMap.find(BD->getAddress()));
|
|
auto End = Start;
|
|
while (End != BinaryDataMap.end() &&
|
|
BD->isAncestorOf(End->second)) {
|
|
++End;
|
|
}
|
|
return make_range(Start, End);
|
|
}
|
|
|
|
std::pair<const MCSymbol *, uint64_t>
|
|
BinaryContext::handleAddressRef(uint64_t Address, BinaryFunction &BF,
|
|
bool IsPCRel) {
|
|
uint64_t Addend{0};
|
|
|
|
if (isAArch64()) {
|
|
// Check if this is an access to a constant island and create bookkeeping
|
|
// to keep track of it and emit it later as part of this function.
|
|
if (MCSymbol *IslandSym = BF.getOrCreateIslandAccess(Address))
|
|
return std::make_pair(IslandSym, Addend);
|
|
|
|
// Detect custom code written in assembly that refers to arbitrary
|
|
// constant islands from other functions. Write this reference so we
|
|
// can pull this constant island and emit it as part of this function
|
|
// too.
|
|
auto IslandIter = AddressToConstantIslandMap.lower_bound(Address);
|
|
if (IslandIter != AddressToConstantIslandMap.end()) {
|
|
if (auto *IslandSym =
|
|
IslandIter->second->getOrCreateProxyIslandAccess(Address, BF)) {
|
|
/// Make this function depend on IslandIter->second because we have
|
|
/// a reference to its constant island. When emitting this function,
|
|
/// we will also emit IslandIter->second's constants. This only
|
|
/// happens in custom AArch64 assembly code.
|
|
BF.IslandDependency.insert(IslandIter->second);
|
|
BF.ProxyIslandSymbols[IslandSym] = IslandIter->second;
|
|
return std::make_pair(IslandSym, Addend);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Note that the address does not necessarily have to reside inside
|
|
// a section, it could be an absolute address too.
|
|
auto Section = getSectionForAddress(Address);
|
|
if (Section && Section->isText()) {
|
|
if (BF.containsAddress(Address, /*UseMaxSize=*/ isAArch64())) {
|
|
if (Address != BF.getAddress()) {
|
|
// The address could potentially escape. Mark it as another entry
|
|
// point into the function.
|
|
if (opts::Verbosity >= 1) {
|
|
outs() << "BOLT-INFO: potentially escaped address 0x"
|
|
<< Twine::utohexstr(Address) << " in function "
|
|
<< BF << '\n';
|
|
}
|
|
BF.HasInternalLabelReference = true;
|
|
return std::make_pair(
|
|
BF.addEntryPointAtOffset(Address - BF.getAddress()),
|
|
Addend);
|
|
}
|
|
} else {
|
|
InterproceduralReferences.insert(std::make_pair(&BF, Address));
|
|
}
|
|
}
|
|
|
|
const auto MemType = analyzeMemoryAt(Address, BF);
|
|
// FIXME: this is too permissive in creating jump tables. This is a random
|
|
// memory access we did not necessarily match against an indirect jump. Only
|
|
// do this for strict mode, for now. We should revisit this and come up with a
|
|
// better heuristic.
|
|
if (opts::StrictMode &&
|
|
MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE && IsPCRel) {
|
|
const MCSymbol *Symbol =
|
|
getOrCreateJumpTable(BF, Address, JumpTable::JTT_PIC);
|
|
|
|
return std::make_pair(Symbol, Addend);
|
|
}
|
|
|
|
if (auto *BD = getBinaryDataContainingAddress(Address)) {
|
|
return std::make_pair(BD->getSymbol(), Address - BD->getAddress());
|
|
}
|
|
|
|
// TODO: use DWARF info to get size/alignment here?
|
|
auto *TargetSymbol = getOrCreateGlobalSymbol(Address, "DATAat");
|
|
DEBUG(dbgs() << "Created symbol " << TargetSymbol->getName());
|
|
return std::make_pair(TargetSymbol, Addend);
|
|
}
|
|
|
|
MemoryContentsType
|
|
BinaryContext::analyzeMemoryAt(uint64_t Address, BinaryFunction &BF) {
|
|
if (!isX86())
|
|
return MemoryContentsType::UNKNOWN;
|
|
|
|
auto Section = getSectionForAddress(Address);
|
|
if (!Section) {
|
|
// No section - possibly an absolute address. Since we don't allow
|
|
// internal function addresses to escape the function scope - we
|
|
// consider it a tail call.
|
|
if (opts::Verbosity > 1) {
|
|
errs() << "BOLT-WARNING: no section for address 0x"
|
|
<< Twine::utohexstr(Address) << " referenced from function "
|
|
<< BF << '\n';
|
|
}
|
|
return MemoryContentsType::UNKNOWN;
|
|
}
|
|
|
|
if (Section->isVirtual()) {
|
|
// The contents are filled at runtime.
|
|
return MemoryContentsType::UNKNOWN;
|
|
}
|
|
|
|
// No support for jump tables in code yet.
|
|
if (Section->isText())
|
|
return MemoryContentsType::UNKNOWN;
|
|
|
|
auto couldBeJumpTable = [&](const uint64_t JTAddress,
|
|
JumpTable::JumpTableType Type) {
|
|
const auto EntrySize =
|
|
Type == JumpTable::JTT_PIC ? 4 : AsmInfo->getCodePointerSize();
|
|
auto ValueAddress = JTAddress;
|
|
auto UpperBound = Section->getEndAddress();
|
|
const auto *JumpTableBD = getBinaryDataAtAddress(JTAddress);
|
|
if (JumpTableBD && JumpTableBD->getSize()) {
|
|
UpperBound = JumpTableBD->getEndAddress();
|
|
assert(UpperBound <= Section->getEndAddress() &&
|
|
"data object cannot cross a section boundary");
|
|
}
|
|
|
|
while (ValueAddress <= UpperBound - EntrySize) {
|
|
DEBUG(dbgs() << "BOLT-DEBUG: analyzing memory at 0x"
|
|
<< Twine::utohexstr(ValueAddress));
|
|
uint64_t Value;
|
|
if (Type == JumpTable::JTT_PIC) {
|
|
Value = JTAddress + *getSignedValueAtAddress(ValueAddress, EntrySize);
|
|
} else {
|
|
Value = *getPointerAtAddress(ValueAddress);
|
|
}
|
|
DEBUG(dbgs() << ", which contains value 0x"
|
|
<< Twine::utohexstr(Value) << '\n');
|
|
|
|
ValueAddress += EntrySize;
|
|
|
|
// We assume that a jump table cannot have function start as an entry.
|
|
if (BF.containsAddress(Value) && Value != BF.getAddress())
|
|
return true;
|
|
|
|
// Potentially a jump table can contain __builtin_unreachable() entry
|
|
// pointing just right after the function. In this case we have to check
|
|
// another entry. Otherwise the entry is outside of this function scope
|
|
// and it's not a jump table.
|
|
if (Value == BF.getAddress() + BF.getSize())
|
|
continue;
|
|
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
// Start with checking for PIC jump table. We expect non-PIC jump tables
|
|
// to have high 32 bits set to 0.
|
|
if (couldBeJumpTable(Address, JumpTable::JTT_PIC))
|
|
return MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE;
|
|
|
|
if (couldBeJumpTable(Address, JumpTable::JTT_NORMAL))
|
|
return MemoryContentsType::POSSIBLE_JUMP_TABLE;
|
|
|
|
return MemoryContentsType::UNKNOWN;
|
|
}
|
|
|
|
void BinaryContext::populateJumpTables() {
|
|
for (auto JTI = JumpTables.begin(), JTE = JumpTables.end(); JTI != JTE;
|
|
++JTI) {
|
|
auto *JT = JTI->second;
|
|
auto &BF = *JT->Parent;
|
|
|
|
DEBUG(dbgs() << "BOLT-DEBUG: populating jump table "
|
|
<< JT->getName() << '\n');
|
|
|
|
// The upper bound is defined by containing object, section limits, and
|
|
// the next jump table in memory.
|
|
auto UpperBound = JT->getSection().getEndAddress();
|
|
const auto *JumpTableBD = getBinaryDataAtAddress(JT->getAddress());
|
|
if (JumpTableBD && JumpTableBD->getSize()) {
|
|
assert(JumpTableBD->getEndAddress() <= UpperBound &&
|
|
"data object cannot cross a section boundary");
|
|
UpperBound = JumpTableBD->getEndAddress();
|
|
}
|
|
auto NextJTI = std::next(JTI);
|
|
if (NextJTI != JTE) {
|
|
assert (UpperBound != JT->getAddress());
|
|
UpperBound = std::min(NextJTI->second->getAddress(), UpperBound);
|
|
}
|
|
|
|
for (auto EntryAddress = JT->getAddress();
|
|
EntryAddress <= UpperBound - JT->EntrySize;
|
|
EntryAddress += JT->EntrySize) {
|
|
uint64_t Value;
|
|
if (JT->Type == JumpTable::JTT_PIC) {
|
|
Value = JT->getAddress() +
|
|
*getSignedValueAtAddress(EntryAddress, JT->EntrySize);
|
|
} else {
|
|
Value = *getPointerAtAddress(EntryAddress);
|
|
}
|
|
|
|
// __builtin_unreachable() case.
|
|
if (Value == BF.getAddress() + BF.getSize()) {
|
|
JT->OffsetEntries.emplace_back(Value - BF.getAddress());
|
|
BF.IgnoredBranches.emplace_back(Value - BF.getAddress(), BF.getSize());
|
|
continue;
|
|
}
|
|
|
|
// We assume that a jump table cannot have function start as an entry.
|
|
if (!BF.containsAddress(Value) || Value == BF.getAddress())
|
|
break;
|
|
|
|
// Check there's an instruction at this offset.
|
|
if (!BF.getInstructionAtOffset(Value - BF.getAddress()))
|
|
break;
|
|
|
|
BF.registerReferencedOffset(Value - BF.getAddress());
|
|
JT->OffsetEntries.emplace_back(Value - BF.getAddress());
|
|
}
|
|
|
|
if (JT->OffsetEntries.size() <= 1) {
|
|
dbgs() << "JT with size " << JT->OffsetEntries.size() << " detected in "
|
|
<< BF << '\n';
|
|
JT->print(dbgs());
|
|
if (NextJTI != JTE) {
|
|
dbgs() << "next jump table at 0x"
|
|
<< Twine::utohexstr(NextJTI->second->getAddress())
|
|
<< " belongs to function " << *NextJTI->second->Parent << '\n';
|
|
NextJTI->second->print(dbgs());
|
|
}
|
|
}
|
|
assert(JT->OffsetEntries.size() > 1 &&
|
|
"expected more than one jump table entry");
|
|
|
|
// Check there are relocations against JT entries.
|
|
if (opts::StrictMode) {
|
|
for (auto Address = JT->getAddress();
|
|
Address < JT->getAddress() + JT->getSize();
|
|
Address += JT->EntrySize) {
|
|
if (JT->Type == JumpTable::JTT_PIC) {
|
|
assert(PCRelocation.count(Address) && "no matching relocation");
|
|
PCRelocation.erase(PCRelocation.find(Address));
|
|
} else {
|
|
assert(getRelocationAt(Address) && "missing relocation");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
assert((!opts::StrictMode || !PCRelocation.size()) &&
|
|
"unclaimed PC-relative relocations left in data\n");
|
|
clearList(PCRelocation);
|
|
}
|
|
|
|
MCSymbol *BinaryContext::getOrCreateGlobalSymbol(uint64_t Address,
|
|
Twine Prefix,
|
|
uint64_t Size,
|
|
uint16_t Alignment,
|
|
unsigned Flags) {
|
|
auto Itr = BinaryDataMap.find(Address);
|
|
if (Itr != BinaryDataMap.end()) {
|
|
assert(Itr->second->getSize() == Size || !Size);
|
|
return Itr->second->getSymbol();
|
|
}
|
|
|
|
std::string Name = (Prefix + "0x" + Twine::utohexstr(Address)).str();
|
|
assert(!GlobalSymbols.count(Name) && "created name is not unique");
|
|
return registerNameAtAddress(Name, Address, Size, Alignment, Flags);
|
|
}
|
|
|
|
BinaryFunction *BinaryContext::createBinaryFunction(
|
|
const std::string &Name, BinarySection &Section, uint64_t Address,
|
|
uint64_t Size, bool IsSimple, uint64_t SymbolSize, uint16_t Alignment) {
|
|
auto Result = BinaryFunctions.emplace(
|
|
Address, BinaryFunction(Name, Section, Address, Size, *this, IsSimple));
|
|
assert(Result.second == true && "unexpected duplicate function");
|
|
auto *BF = &Result.first->second;
|
|
registerNameAtAddress(Name, Address, SymbolSize ? SymbolSize : Size,
|
|
Alignment);
|
|
setSymbolToFunctionMap(BF->getSymbol(), BF);
|
|
return BF;
|
|
}
|
|
|
|
const MCSymbol *
|
|
BinaryContext::getOrCreateJumpTable(BinaryFunction &Function, uint64_t Address,
|
|
JumpTable::JumpTableType Type) {
|
|
if (auto *JT = getJumpTableContainingAddress(Address)) {
|
|
assert(JT->Type == Type && "jump table types have to match");
|
|
assert(JT->Parent == &Function &&
|
|
"cannot re-use jump table of a different function");
|
|
assert(Address == JT->getAddress() && "unexpected non-empty jump table");
|
|
|
|
return JT->getFirstLabel();
|
|
}
|
|
|
|
const auto EntrySize =
|
|
Type == JumpTable::JTT_PIC ? 4 : AsmInfo->getCodePointerSize();
|
|
|
|
// Re-use the existing symbol if possible.
|
|
MCSymbol *JTLabel{nullptr};
|
|
if (auto *Object = getBinaryDataAtAddress(Address)) {
|
|
if (!isInternalSymbolName(Object->getSymbol()->getName()))
|
|
JTLabel = Object->getSymbol();
|
|
}
|
|
if (!JTLabel) {
|
|
const auto JumpTableName = generateJumpTableName(Function, Address);
|
|
JTLabel = Ctx->getOrCreateSymbol(JumpTableName);
|
|
registerNameAtAddress(JTLabel->getName(), Address, 0, EntrySize);
|
|
}
|
|
|
|
DEBUG(dbgs() << "BOLT-DEBUG: creating jump table "
|
|
<< JTLabel->getName()
|
|
<< " in function " << Function << 'n');
|
|
|
|
auto *JT = new JumpTable(JTLabel->getName(),
|
|
Address,
|
|
EntrySize,
|
|
Type,
|
|
{},
|
|
JumpTable::LabelMapType{{0, JTLabel}},
|
|
Function,
|
|
*getSectionForAddress(Address));
|
|
JumpTables.emplace(Address, JT);
|
|
|
|
// Duplicate the entry for the parent function for easy access.
|
|
Function.JumpTables.emplace(Address, JT);
|
|
|
|
return JTLabel;
|
|
}
|
|
|
|
std::pair<uint64_t, const MCSymbol *>
|
|
BinaryContext::duplicateJumpTable(BinaryFunction &Function, JumpTable *JT,
|
|
const MCSymbol *OldLabel) {
|
|
unsigned Offset = 0;
|
|
bool Found = false;
|
|
for (auto Elmt : JT->Labels) {
|
|
if (Elmt.second != OldLabel)
|
|
continue;
|
|
Offset = Elmt.first;
|
|
Found = true;
|
|
break;
|
|
}
|
|
assert(Found && "Label not found");
|
|
auto *NewLabel = Ctx->createTempSymbol("duplicatedJT", true);
|
|
auto *NewJT = new JumpTable(NewLabel->getName(),
|
|
JT->getAddress(),
|
|
JT->EntrySize,
|
|
JT->Type,
|
|
{},
|
|
JumpTable::LabelMapType{{Offset, NewLabel}},
|
|
Function,
|
|
*getSectionForAddress(JT->getAddress()));
|
|
NewJT->Entries = JT->Entries;
|
|
NewJT->Counts = JT->Counts;
|
|
uint64_t JumpTableID = ++DuplicatedJumpTables;
|
|
// Invert it to differentiate from regular jump tables whose IDs are their
|
|
// addresses in the input binary memory space
|
|
JumpTableID = ~JumpTableID;
|
|
JumpTables.emplace(JumpTableID, NewJT);
|
|
Function.JumpTables.emplace(JumpTableID, NewJT);
|
|
return std::make_pair(JumpTableID, NewLabel);
|
|
}
|
|
|
|
std::string BinaryContext::generateJumpTableName(const BinaryFunction &BF,
|
|
uint64_t Address) {
|
|
size_t Id;
|
|
uint64_t Offset = 0;
|
|
if (const auto *JT = BF.getJumpTableContainingAddress(Address)) {
|
|
Offset = Address - JT->getAddress();
|
|
auto Itr = JT->Labels.find(Offset);
|
|
if (Itr != JT->Labels.end()) {
|
|
return Itr->second->getName();
|
|
}
|
|
Id = JumpTableIds.at(JT->getAddress());
|
|
} else {
|
|
Id = JumpTableIds[Address] = BF.JumpTables.size();
|
|
}
|
|
return ("JUMP_TABLE/" + BF.Names[0] + "." + std::to_string(Id) +
|
|
(Offset ? ("." + std::to_string(Offset)) : ""));
|
|
}
|
|
|
|
MCSymbol *BinaryContext::registerNameAtAddress(StringRef Name,
|
|
uint64_t Address,
|
|
uint64_t Size,
|
|
uint16_t Alignment,
|
|
unsigned Flags) {
|
|
auto SectionOrErr = getSectionForAddress(Address);
|
|
auto &Section = SectionOrErr ? SectionOrErr.get() : absoluteSection();
|
|
auto GAI = BinaryDataMap.find(Address);
|
|
BinaryData *BD;
|
|
if (GAI == BinaryDataMap.end()) {
|
|
BD = new BinaryData(Name,
|
|
Address,
|
|
Size,
|
|
Alignment ? Alignment : 1,
|
|
Section,
|
|
Flags);
|
|
} else {
|
|
BD = GAI->second;
|
|
}
|
|
return registerNameAtAddress(Name, Address, BD);
|
|
}
|
|
|
|
MCSymbol *BinaryContext::registerNameAtAddress(StringRef Name,
|
|
uint64_t Address,
|
|
BinaryData *BD) {
|
|
auto GAI = BinaryDataMap.find(Address);
|
|
if (GAI != BinaryDataMap.end()) {
|
|
if (BD != GAI->second) {
|
|
// Note: this could be a source of bugs if client code holds
|
|
// on to BinaryData*'s in data structures for any length of time.
|
|
auto *OldBD = GAI->second;
|
|
BD->merge(GAI->second);
|
|
delete OldBD;
|
|
GAI->second = BD;
|
|
for (auto &Name : BD->names()) {
|
|
GlobalSymbols[Name] = BD;
|
|
}
|
|
updateObjectNesting(GAI);
|
|
BD = nullptr;
|
|
} else if (!GAI->second->hasName(Name)) {
|
|
GAI->second->Names.push_back(Name);
|
|
GlobalSymbols[Name] = GAI->second;
|
|
} else {
|
|
BD = nullptr;
|
|
}
|
|
} else {
|
|
GAI = BinaryDataMap.emplace(Address, BD).first;
|
|
GlobalSymbols[Name] = BD;
|
|
updateObjectNesting(GAI);
|
|
}
|
|
|
|
// Register the name with MCContext.
|
|
auto *Symbol = Ctx->getOrCreateSymbol(Name);
|
|
if (BD) {
|
|
BD->Symbols.push_back(Symbol);
|
|
assert(BD->Symbols.size() == BD->Names.size() &&
|
|
"there should be a 1:1 mapping between names and symbols");
|
|
}
|
|
return Symbol;
|
|
}
|
|
|
|
const BinaryData *
|
|
BinaryContext::getBinaryDataContainingAddressImpl(uint64_t Address,
|
|
bool IncludeEnd,
|
|
bool BestFit) const {
|
|
auto NI = BinaryDataMap.lower_bound(Address);
|
|
auto End = BinaryDataMap.end();
|
|
if ((NI != End && Address == NI->first && !IncludeEnd) ||
|
|
(NI-- != BinaryDataMap.begin())) {
|
|
if (NI->second->containsAddress(Address) ||
|
|
(IncludeEnd && NI->second->getEndAddress() == Address)) {
|
|
while (BestFit &&
|
|
std::next(NI) != End &&
|
|
(std::next(NI)->second->containsAddress(Address) ||
|
|
(IncludeEnd && std::next(NI)->second->getEndAddress() == Address))) {
|
|
++NI;
|
|
}
|
|
return NI->second;
|
|
}
|
|
|
|
// If this is a sub-symbol, see if a parent data contains the address.
|
|
auto *BD = NI->second->getParent();
|
|
while (BD) {
|
|
if (BD->containsAddress(Address) ||
|
|
(IncludeEnd && NI->second->getEndAddress() == Address))
|
|
return BD;
|
|
BD = BD->getParent();
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool BinaryContext::setBinaryDataSize(uint64_t Address, uint64_t Size) {
|
|
auto NI = BinaryDataMap.find(Address);
|
|
assert(NI != BinaryDataMap.end());
|
|
if (NI == BinaryDataMap.end())
|
|
return false;
|
|
// TODO: it's possible that a jump table starts at the same address
|
|
// as a larger blob of private data. When we set the size of the
|
|
// jump table, it might be smaller than the total blob size. In this
|
|
// case we just leave the original size since (currently) it won't really
|
|
// affect anything. See T26915981.
|
|
assert((!NI->second->Size || NI->second->Size == Size ||
|
|
(NI->second->isJumpTable() && NI->second->Size > Size)) &&
|
|
"can't change the size of a symbol that has already had its "
|
|
"size set");
|
|
if (!NI->second->Size) {
|
|
NI->second->Size = Size;
|
|
updateObjectNesting(NI);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void BinaryContext::generateSymbolHashes() {
|
|
auto isPadding = [](const BinaryData &BD) {
|
|
auto Contents = BD.getSection().getContents();
|
|
auto SymData = Contents.substr(BD.getOffset(), BD.getSize());
|
|
return (BD.getName().startswith("HOLEat") ||
|
|
SymData.find_first_not_of(0) == StringRef::npos);
|
|
};
|
|
|
|
uint64_t NumCollisions = 0;
|
|
for (auto &Entry : BinaryDataMap) {
|
|
auto &BD = *Entry.second;
|
|
auto Name = BD.getName();
|
|
|
|
if (!isInternalSymbolName(Name))
|
|
continue;
|
|
|
|
// First check if a non-anonymous alias exists and move it to the front.
|
|
if (BD.getNames().size() > 1) {
|
|
auto Itr = std::find_if(BD.Names.begin(),
|
|
BD.Names.end(),
|
|
[&](const StringRef Name) {
|
|
return !isInternalSymbolName(Name);
|
|
});
|
|
if (Itr != BD.Names.end()) {
|
|
assert(BD.Names.size() == BD.Symbols.size() &&
|
|
"there should be a 1:1 mapping between names and symbols");
|
|
auto Idx = std::distance(BD.Names.begin(), Itr);
|
|
std::swap(BD.Names[0], *Itr);
|
|
std::swap(BD.Symbols[0], BD.Symbols[Idx]);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// We have to skip 0 size symbols since they will all collide.
|
|
if (BD.getSize() == 0) {
|
|
continue;
|
|
}
|
|
|
|
const auto Hash = BD.getSection().hash(BD);
|
|
const auto Idx = Name.find("0x");
|
|
std::string NewName = (Twine(Name.substr(0, Idx)) +
|
|
"_" + Twine::utohexstr(Hash)).str();
|
|
if (getBinaryDataByName(NewName)) {
|
|
// Ignore collisions for symbols that appear to be padding
|
|
// (i.e. all zeros or a "hole")
|
|
if (!isPadding(BD)) {
|
|
if (opts::Verbosity) {
|
|
errs() << "BOLT-WARNING: collision detected when hashing " << BD
|
|
<< " with new name (" << NewName << "), skipping.\n";
|
|
}
|
|
++NumCollisions;
|
|
}
|
|
continue;
|
|
}
|
|
BD.Names.insert(BD.Names.begin(), NewName);
|
|
BD.Symbols.insert(BD.Symbols.begin(),
|
|
Ctx->getOrCreateSymbol(NewName));
|
|
assert(BD.Names.size() == BD.Symbols.size() &&
|
|
"there should be a 1:1 mapping between names and symbols");
|
|
GlobalSymbols[NewName] = &BD;
|
|
}
|
|
if (NumCollisions) {
|
|
errs() << "BOLT-WARNING: " << NumCollisions
|
|
<< " collisions detected while hashing binary objects";
|
|
if (!opts::Verbosity)
|
|
errs() << ". Use -v=1 to see the list.";
|
|
errs() << '\n';
|
|
}
|
|
}
|
|
|
|
void BinaryContext::processInterproceduralReferences() {
|
|
for (auto &Pair : InterproceduralReferences) {
|
|
auto *FromBF = Pair.first;
|
|
auto Addr = Pair.second;
|
|
auto *ContainingFunction = getBinaryFunctionContainingAddress(Addr);
|
|
if (FromBF == ContainingFunction)
|
|
continue;
|
|
|
|
if (ContainingFunction) {
|
|
// Only a parent function (or a sibling) can reach its fragment.
|
|
if (ContainingFunction->IsFragment) {
|
|
assert(!FromBF->IsFragment &&
|
|
"only one cold fragment is supported at this time");
|
|
ContainingFunction->setParentFunction(FromBF);
|
|
FromBF->addFragment(ContainingFunction);
|
|
if (!HasRelocations) {
|
|
ContainingFunction->setSimple(false);
|
|
FromBF->setSimple(false);
|
|
}
|
|
if (opts::Verbosity >= 1) {
|
|
outs() << "BOLT-INFO: marking " << *ContainingFunction
|
|
<< " as a fragment of " << *FromBF << '\n';
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (ContainingFunction->getAddress() != Addr) {
|
|
ContainingFunction->addEntryPoint(Addr);
|
|
if (!HasRelocations) {
|
|
if (opts::Verbosity >= 1) {
|
|
errs() << "BOLT-WARNING: Function " << *ContainingFunction
|
|
<< " has internal BBs that are target of a reference "
|
|
<< "located in another function. Skipping the function.\n";
|
|
}
|
|
ContainingFunction->setSimple(false);
|
|
}
|
|
}
|
|
} else if (Addr) {
|
|
// Check if address falls in function padding space - this could be
|
|
// unmarked data in code. In this case adjust the padding space size.
|
|
auto Section = getSectionForAddress(Addr);
|
|
assert(Section && "cannot get section for referenced address");
|
|
|
|
if (!Section->isText())
|
|
continue;
|
|
|
|
// PLT requires special handling and could be ignored in this context.
|
|
StringRef SectionName = Section->getName();
|
|
if (SectionName == ".plt" || SectionName == ".plt.got")
|
|
continue;
|
|
|
|
if (HasRelocations) {
|
|
errs() << "BOLT-ERROR: cannot process binaries with unmarked "
|
|
<< "object in code at address 0x"
|
|
<< Twine::utohexstr(Addr) << " belonging to section "
|
|
<< SectionName << " in relocation mode.\n";
|
|
exit(1);
|
|
}
|
|
|
|
ContainingFunction =
|
|
getBinaryFunctionContainingAddress(Addr,
|
|
/*CheckPastEnd=*/false,
|
|
/*UseMaxSize=*/true);
|
|
// We are not going to overwrite non-simple functions, but for simple
|
|
// ones - adjust the padding size.
|
|
if (ContainingFunction && ContainingFunction->isSimple()) {
|
|
errs() << "BOLT-WARNING: function " << *ContainingFunction
|
|
<< " has an object detected in a padding region at address 0x"
|
|
<< Twine::utohexstr(Addr) << '\n';
|
|
ContainingFunction->setMaxSize(Addr -
|
|
ContainingFunction->getAddress());
|
|
}
|
|
}
|
|
}
|
|
|
|
InterproceduralReferences.clear();
|
|
}
|
|
|
|
void BinaryContext::postProcessSymbolTable() {
|
|
fixBinaryDataHoles();
|
|
bool Valid = true;
|
|
for (auto &Entry : BinaryDataMap) {
|
|
auto *BD = Entry.second;
|
|
if ((BD->getName().startswith("SYMBOLat") ||
|
|
BD->getName().startswith("DATAat")) &&
|
|
!BD->getParent() &&
|
|
!BD->getSize() &&
|
|
!BD->isAbsolute() &&
|
|
BD->getSection()) {
|
|
errs() << "BOLT-WARNING: zero-sized top level symbol: " << *BD << "\n";
|
|
Valid = false;
|
|
}
|
|
}
|
|
assert(Valid);
|
|
assignMemData();
|
|
generateSymbolHashes();
|
|
}
|
|
|
|
void BinaryContext::foldFunction(BinaryFunction &ChildBF,
|
|
BinaryFunction &ParentBF) {
|
|
std::shared_lock<std::shared_timed_mutex> ReadCtxLock(CtxMutex,
|
|
std::defer_lock);
|
|
std::unique_lock<std::shared_timed_mutex> WriteCtxLock(CtxMutex,
|
|
std::defer_lock);
|
|
std::unique_lock<std::shared_timed_mutex> WriteSymbolMapLock(
|
|
SymbolToFunctionMapMutex, std::defer_lock);
|
|
|
|
// Copy name list.
|
|
ParentBF.addNewNames(ChildBF.getNames());
|
|
|
|
// Update internal bookkeeping info.
|
|
for (auto &Name : ChildBF.getNames()) {
|
|
ReadCtxLock.lock();
|
|
// Calls to functions are handled via symbols, and we keep the lookup table
|
|
// that we need to update.
|
|
auto *Symbol = Ctx->lookupSymbol(Name);
|
|
ReadCtxLock.unlock();
|
|
|
|
assert(Symbol && "symbol cannot be NULL at this point");
|
|
|
|
WriteSymbolMapLock.lock();
|
|
SymbolToFunctionMap[Symbol] = &ParentBF;
|
|
WriteSymbolMapLock.unlock();
|
|
// NB: there's no need to update BinaryDataMap and GlobalSymbols.
|
|
}
|
|
|
|
// Merge execution counts of ChildBF into those of ParentBF.
|
|
ChildBF.mergeProfileDataInto(ParentBF);
|
|
|
|
if (HasRelocations) {
|
|
std::shared_lock<std::shared_timed_mutex> ReadBfsLock(BinaryFunctionsMutex,
|
|
std::defer_lock);
|
|
std::unique_lock<std::shared_timed_mutex> WriteBfsLock(BinaryFunctionsMutex,
|
|
std::defer_lock);
|
|
// Remove ChildBF from the global set of functions in relocs mode.
|
|
ReadBfsLock.lock();
|
|
auto FI = BinaryFunctions.find(ChildBF.getAddress());
|
|
ReadBfsLock.unlock();
|
|
|
|
assert(FI != BinaryFunctions.end() && "function not found");
|
|
assert(&ChildBF == &FI->second && "function mismatch");
|
|
|
|
WriteBfsLock.lock();
|
|
FI = BinaryFunctions.erase(FI);
|
|
WriteBfsLock.unlock();
|
|
|
|
} else {
|
|
// In non-relocation mode we keep the function, but rename it.
|
|
std::string NewName = "__ICF_" + ChildBF.getSymbol()->getName().str();
|
|
ChildBF.Names.clear();
|
|
ChildBF.Names.push_back(NewName);
|
|
|
|
WriteCtxLock.lock();
|
|
ChildBF.OutputSymbol = Ctx->getOrCreateSymbol(NewName);
|
|
WriteCtxLock.unlock();
|
|
|
|
ChildBF.setFolded();
|
|
}
|
|
}
|
|
|
|
void BinaryContext::fixBinaryDataHoles() {
|
|
assert(validateObjectNesting() && "object nesting inconsitency detected");
|
|
|
|
for (auto &Section : allocatableSections()) {
|
|
std::vector<std::pair<uint64_t, uint64_t>> Holes;
|
|
|
|
auto isNotHole = [&Section](const binary_data_iterator &Itr) {
|
|
auto *BD = Itr->second;
|
|
bool isHole = (!BD->getParent() &&
|
|
!BD->getSize() &&
|
|
BD->isObject() &&
|
|
(BD->getName().startswith("SYMBOLat0x") ||
|
|
BD->getName().startswith("DATAat0x") ||
|
|
BD->getName().startswith("ANONYMOUS")));
|
|
return !isHole && BD->getSection() == Section && !BD->getParent();
|
|
};
|
|
|
|
auto BDStart = BinaryDataMap.begin();
|
|
auto BDEnd = BinaryDataMap.end();
|
|
auto Itr = FilteredBinaryDataIterator(isNotHole, BDStart, BDEnd);
|
|
auto End = FilteredBinaryDataIterator(isNotHole, BDEnd, BDEnd);
|
|
|
|
uint64_t EndAddress = Section.getAddress();
|
|
|
|
while (Itr != End) {
|
|
if (Itr->second->getAddress() > EndAddress) {
|
|
auto Gap = Itr->second->getAddress() - EndAddress;
|
|
Holes.push_back(std::make_pair(EndAddress, Gap));
|
|
}
|
|
EndAddress = Itr->second->getEndAddress();
|
|
++Itr;
|
|
}
|
|
|
|
if (EndAddress < Section.getEndAddress()) {
|
|
Holes.push_back(std::make_pair(EndAddress,
|
|
Section.getEndAddress() - EndAddress));
|
|
}
|
|
|
|
// If there is already a symbol at the start of the hole, grow that symbol
|
|
// to cover the rest. Otherwise, create a new symbol to cover the hole.
|
|
for (auto &Hole : Holes) {
|
|
auto *BD = getBinaryDataAtAddress(Hole.first);
|
|
if (BD) {
|
|
// BD->getSection() can be != Section if there are sections that
|
|
// overlap. In this case it is probably safe to just skip the holes
|
|
// since the overlapping section will not(?) have any symbols in it.
|
|
if (BD->getSection() == Section)
|
|
setBinaryDataSize(Hole.first, Hole.second);
|
|
} else {
|
|
getOrCreateGlobalSymbol(Hole.first, "HOLEat", Hole.second, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(validateObjectNesting() && "object nesting inconsitency detected");
|
|
assert(validateHoles() && "top level hole detected in object map");
|
|
}
|
|
|
|
void BinaryContext::printGlobalSymbols(raw_ostream& OS) const {
|
|
const BinarySection* CurrentSection = nullptr;
|
|
bool FirstSection = true;
|
|
|
|
for (auto &Entry : BinaryDataMap) {
|
|
const auto *BD = Entry.second;
|
|
const auto &Section = BD->getSection();
|
|
if (FirstSection || Section != *CurrentSection) {
|
|
uint64_t Address, Size;
|
|
StringRef Name = Section.getName();
|
|
if (Section) {
|
|
Address = Section.getAddress();
|
|
Size = Section.getSize();
|
|
} else {
|
|
Address = BD->getAddress();
|
|
Size = BD->getSize();
|
|
}
|
|
OS << "BOLT-INFO: Section " << Name << ", "
|
|
<< "0x" + Twine::utohexstr(Address) << ":"
|
|
<< "0x" + Twine::utohexstr(Address + Size) << "/"
|
|
<< Size << "\n";
|
|
CurrentSection = &Section;
|
|
FirstSection = false;
|
|
}
|
|
|
|
OS << "BOLT-INFO: ";
|
|
auto *P = BD->getParent();
|
|
while (P) {
|
|
OS << " ";
|
|
P = P->getParent();
|
|
}
|
|
OS << *BD << "\n";
|
|
}
|
|
}
|
|
|
|
void BinaryContext::assignMemData() {
|
|
auto getAddress = [&](const MemInfo &MI) -> uint64_t {
|
|
if (!MI.Addr.IsSymbol)
|
|
return MI.Addr.Offset;
|
|
|
|
if (auto *BD = getBinaryDataByName(MI.Addr.Name))
|
|
return BD->getAddress() + MI.Addr.Offset;
|
|
|
|
return 0;
|
|
};
|
|
|
|
// Map of sections (or heap/stack) to count/size.
|
|
std::map<StringRef, uint64_t> Counts;
|
|
std::map<StringRef, uint64_t> JumpTableCounts;
|
|
|
|
uint64_t TotalCount = 0;
|
|
for (auto &Entry : DR.getAllFuncsMemData()) {
|
|
for (auto &MI : Entry.second.Data) {
|
|
const auto Addr = getAddress(MI);
|
|
auto *BD = getBinaryDataContainingAddress(Addr);
|
|
if (BD) {
|
|
BD->getAtomicRoot()->addMemData(MI);
|
|
Counts[BD->getSectionName()] += MI.Count;
|
|
if (BD->getAtomicRoot()->isJumpTable()) {
|
|
JumpTableCounts[BD->getSectionName()] += MI.Count;
|
|
}
|
|
} else {
|
|
Counts["Heap/stack"] += MI.Count;
|
|
}
|
|
TotalCount += MI.Count;
|
|
}
|
|
}
|
|
|
|
if (!Counts.empty()) {
|
|
outs() << "BOLT-INFO: Memory stats breakdown:\n";
|
|
for (auto &Entry : Counts) {
|
|
const auto Section = Entry.first;
|
|
const auto Count = Entry.second;
|
|
outs() << "BOLT-INFO: " << Section << " = " << Count
|
|
<< format(" (%.1f%%)\n", 100.0*Count/TotalCount);
|
|
if (JumpTableCounts.count(Section) != 0) {
|
|
const auto JTCount = JumpTableCounts[Section];
|
|
outs() << "BOLT-INFO: jump tables = " << JTCount
|
|
<< format(" (%.1f%%)\n", 100.0*JTCount/Count);
|
|
}
|
|
}
|
|
outs() << "BOLT-INFO: Total memory events: " << TotalCount << "\n";
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Recursively finds DWARF DW_TAG_subprogram DIEs and match them with
|
|
/// BinaryFunctions. Record DIEs for unknown subprograms (mostly functions that
|
|
/// are never called and removed from the binary) in Unknown.
|
|
void findSubprograms(const DWARFDie DIE,
|
|
std::map<uint64_t, BinaryFunction> &BinaryFunctions) {
|
|
if (DIE.isSubprogramDIE()) {
|
|
uint64_t LowPC, HighPC, SectionIndex;
|
|
if (DIE.getLowAndHighPC(LowPC, HighPC, SectionIndex)) {
|
|
auto It = BinaryFunctions.find(LowPC);
|
|
if (It != BinaryFunctions.end()) {
|
|
It->second.addSubprogramDIE(DIE);
|
|
} else {
|
|
// The function must have been optimized away by GC.
|
|
}
|
|
} else {
|
|
const auto RangesVector = DIE.getAddressRanges();
|
|
for (const auto Range : DIE.getAddressRanges()) {
|
|
auto It = BinaryFunctions.find(Range.LowPC);
|
|
if (It != BinaryFunctions.end()) {
|
|
It->second.addSubprogramDIE(DIE);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto ChildDIE = DIE.getFirstChild(); ChildDIE && !ChildDIE.isNULL();
|
|
ChildDIE = ChildDIE.getSibling()) {
|
|
findSubprograms(ChildDIE, BinaryFunctions);
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
unsigned BinaryContext::addDebugFilenameToUnit(const uint32_t DestCUID,
|
|
const uint32_t SrcCUID,
|
|
unsigned FileIndex) {
|
|
auto SrcUnit = DwCtx->getCompileUnitForOffset(SrcCUID);
|
|
auto LineTable = DwCtx->getLineTableForUnit(SrcUnit);
|
|
const auto &FileNames = LineTable->Prologue.FileNames;
|
|
// Dir indexes start at 1, as DWARF file numbers, and a dir index 0
|
|
// means empty dir.
|
|
assert(FileIndex > 0 && FileIndex <= FileNames.size() &&
|
|
"FileIndex out of range for the compilation unit.");
|
|
StringRef Dir = "";
|
|
if (FileNames[FileIndex - 1].DirIdx != 0) {
|
|
if (auto DirName =
|
|
LineTable->Prologue
|
|
.IncludeDirectories[FileNames[FileIndex - 1].DirIdx - 1]
|
|
.getAsCString()) {
|
|
Dir = *DirName;
|
|
}
|
|
}
|
|
StringRef FileName = "";
|
|
if (auto FName = FileNames[FileIndex - 1].Name.getAsCString())
|
|
FileName = *FName;
|
|
assert(FileName != "");
|
|
return cantFail(Ctx->getDwarfFile(Dir, FileName, 0, nullptr, None, DestCUID));
|
|
}
|
|
|
|
std::vector<BinaryFunction *> BinaryContext::getSortedFunctions() {
|
|
std::vector<BinaryFunction *> SortedFunctions(BinaryFunctions.size());
|
|
std::transform(BinaryFunctions.begin(), BinaryFunctions.end(),
|
|
SortedFunctions.begin(),
|
|
[](std::pair<const uint64_t, BinaryFunction> &BFI) {
|
|
return &BFI.second;
|
|
});
|
|
|
|
std::stable_sort(SortedFunctions.begin(), SortedFunctions.end(),
|
|
[] (const BinaryFunction *A, const BinaryFunction *B) {
|
|
if (A->hasValidIndex() && B->hasValidIndex()) {
|
|
return A->getIndex() < B->getIndex();
|
|
}
|
|
return A->hasValidIndex();
|
|
});
|
|
return SortedFunctions;
|
|
}
|
|
|
|
void BinaryContext::preprocessDebugInfo() {
|
|
// Populate MCContext with DWARF files.
|
|
for (const auto &CU : DwCtx->compile_units()) {
|
|
const auto CUID = CU->getOffset();
|
|
auto *LineTable = DwCtx->getLineTableForUnit(CU.get());
|
|
const auto &FileNames = LineTable->Prologue.FileNames;
|
|
// Make sure empty debug line tables are registered too.
|
|
if (FileNames.empty()) {
|
|
cantFail(Ctx->getDwarfFile("", "<unknown>", 0, nullptr, None, CUID));
|
|
continue;
|
|
}
|
|
for (size_t I = 0, Size = FileNames.size(); I != Size; ++I) {
|
|
// Dir indexes start at 1, as DWARF file numbers, and a dir index 0
|
|
// means empty dir.
|
|
StringRef Dir = "";
|
|
if (FileNames[I].DirIdx != 0)
|
|
if (auto DirName =
|
|
LineTable->Prologue.IncludeDirectories[FileNames[I].DirIdx - 1]
|
|
.getAsCString())
|
|
Dir = *DirName;
|
|
StringRef FileName = "";
|
|
if (auto FName = FileNames[I].Name.getAsCString())
|
|
FileName = *FName;
|
|
assert(FileName != "");
|
|
cantFail(Ctx->getDwarfFile(Dir, FileName, 0, nullptr, None, CUID));
|
|
}
|
|
}
|
|
|
|
// For each CU, iterate over its children DIEs and match subprogram DIEs to
|
|
// BinaryFunctions.
|
|
|
|
// Run findSubprograms on a range of compilation units
|
|
auto processBlock = [&](auto BlockBegin, auto BlockEnd) {
|
|
for (auto It = BlockBegin; It != BlockEnd; ++It) {
|
|
findSubprograms((*It)->getUnitDIE(false), BinaryFunctions);
|
|
}
|
|
};
|
|
|
|
if (opts::NoThreads) {
|
|
processBlock(DwCtx->compile_units().begin(), DwCtx->compile_units().end());
|
|
} else {
|
|
auto &ThreadPool = ParallelUtilities::getThreadPool();
|
|
|
|
// Divide compilation units uniformally into tasks.
|
|
unsigned BlockCost =
|
|
DwCtx->getNumCompileUnits() / (opts::TaskCount * opts::ThreadCount);
|
|
if (BlockCost == 0)
|
|
BlockCost = 1;
|
|
|
|
auto BlockBegin = DwCtx->compile_units().begin();
|
|
unsigned CurrentCost = 0;
|
|
for (auto It = DwCtx->compile_units().begin();
|
|
It != DwCtx->compile_units().end(); It++) {
|
|
CurrentCost++;
|
|
if (CurrentCost >= BlockCost) {
|
|
ThreadPool.async(processBlock, BlockBegin, std::next(It));
|
|
BlockBegin = std::next(It);
|
|
CurrentCost = 0;
|
|
}
|
|
}
|
|
|
|
ThreadPool.async(processBlock, BlockBegin, DwCtx->compile_units().end());
|
|
ThreadPool.wait();
|
|
}
|
|
|
|
// Some functions may not have a corresponding subprogram DIE
|
|
// yet they will be included in some CU and will have line number information.
|
|
// Hence we need to associate them with the CU and include in CU ranges.
|
|
for (auto &AddrFunctionPair : BinaryFunctions) {
|
|
auto FunctionAddress = AddrFunctionPair.first;
|
|
auto &Function = AddrFunctionPair.second;
|
|
if (!Function.getSubprogramDIEs().empty())
|
|
continue;
|
|
if (auto DebugAranges = DwCtx->getDebugAranges()) {
|
|
auto CUOffset = DebugAranges->findAddress(FunctionAddress);
|
|
if (CUOffset != -1U) {
|
|
Function.addSubprogramDIE(
|
|
DWARFDie(DwCtx->getCompileUnitForOffset(CUOffset), nullptr));
|
|
continue;
|
|
}
|
|
}
|
|
|
|
#ifdef DWARF_LOOKUP_ALL_RANGES
|
|
// Last resort - iterate over all compile units. This should not happen
|
|
// very often. If it does, we need to create a separate lookup table
|
|
// similar to .debug_aranges internally. This slows down processing
|
|
// considerably.
|
|
for (const auto &CU : DwCtx->compile_units()) {
|
|
const auto *CUDie = CU->getUnitDIE();
|
|
for (const auto &Range : CUDie->getAddressRanges(CU.get())) {
|
|
if (FunctionAddress >= Range.first &&
|
|
FunctionAddress < Range.second) {
|
|
Function.addSubprogramDIE(DWARFDie(CU.get(), nullptr));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void BinaryContext::printCFI(raw_ostream &OS, const MCCFIInstruction &Inst) {
|
|
uint32_t Operation = Inst.getOperation();
|
|
switch (Operation) {
|
|
case MCCFIInstruction::OpSameValue:
|
|
OS << "OpSameValue Reg" << Inst.getRegister();
|
|
break;
|
|
case MCCFIInstruction::OpRememberState:
|
|
OS << "OpRememberState";
|
|
break;
|
|
case MCCFIInstruction::OpRestoreState:
|
|
OS << "OpRestoreState";
|
|
break;
|
|
case MCCFIInstruction::OpOffset:
|
|
OS << "OpOffset Reg" << Inst.getRegister() << " " << Inst.getOffset();
|
|
break;
|
|
case MCCFIInstruction::OpDefCfaRegister:
|
|
OS << "OpDefCfaRegister Reg" << Inst.getRegister();
|
|
break;
|
|
case MCCFIInstruction::OpDefCfaOffset:
|
|
OS << "OpDefCfaOffset " << Inst.getOffset();
|
|
break;
|
|
case MCCFIInstruction::OpDefCfa:
|
|
OS << "OpDefCfa Reg" << Inst.getRegister() << " " << Inst.getOffset();
|
|
break;
|
|
case MCCFIInstruction::OpRelOffset:
|
|
OS << "OpRelOffset Reg" << Inst.getRegister() << " " << Inst.getOffset();
|
|
break;
|
|
case MCCFIInstruction::OpAdjustCfaOffset:
|
|
OS << "OfAdjustCfaOffset " << Inst.getOffset();
|
|
break;
|
|
case MCCFIInstruction::OpEscape:
|
|
OS << "OpEscape";
|
|
break;
|
|
case MCCFIInstruction::OpRestore:
|
|
OS << "OpRestore Reg" << Inst.getRegister();
|
|
break;
|
|
case MCCFIInstruction::OpUndefined:
|
|
OS << "OpUndefined Reg" << Inst.getRegister();
|
|
break;
|
|
case MCCFIInstruction::OpRegister:
|
|
OS << "OpRegister Reg" << Inst.getRegister() << " Reg"
|
|
<< Inst.getRegister2();
|
|
break;
|
|
case MCCFIInstruction::OpWindowSave:
|
|
OS << "OpWindowSave";
|
|
break;
|
|
case MCCFIInstruction::OpGnuArgsSize:
|
|
OS << "OpGnuArgsSize";
|
|
break;
|
|
default:
|
|
OS << "Op#" << Operation;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void BinaryContext::printInstruction(raw_ostream &OS,
|
|
const MCInst &Instruction,
|
|
uint64_t Offset,
|
|
const BinaryFunction* Function,
|
|
bool PrintMCInst,
|
|
bool PrintMemData,
|
|
bool PrintRelocations) const {
|
|
if (MIB->isEHLabel(Instruction)) {
|
|
OS << " EH_LABEL: " << *MIB->getTargetSymbol(Instruction) << '\n';
|
|
return;
|
|
}
|
|
OS << format(" %08" PRIx64 ": ", Offset);
|
|
if (MIB->isCFI(Instruction)) {
|
|
uint32_t Offset = Instruction.getOperand(0).getImm();
|
|
OS << "\t!CFI\t$" << Offset << "\t; ";
|
|
if (Function)
|
|
printCFI(OS, *Function->getCFIFor(Instruction));
|
|
OS << "\n";
|
|
return;
|
|
}
|
|
InstPrinter->printInst(&Instruction, OS, "", *STI);
|
|
if (MIB->isCall(Instruction)) {
|
|
if (MIB->isTailCall(Instruction))
|
|
OS << " # TAILCALL ";
|
|
if (MIB->isInvoke(Instruction)) {
|
|
const auto EHInfo = MIB->getEHInfo(Instruction);
|
|
OS << " # handler: ";
|
|
if (EHInfo->first)
|
|
OS << *EHInfo->first;
|
|
else
|
|
OS << '0';
|
|
OS << "; action: " << EHInfo->second;
|
|
const auto GnuArgsSize = MIB->getGnuArgsSize(Instruction);
|
|
if (GnuArgsSize >= 0)
|
|
OS << "; GNU_args_size = " << GnuArgsSize;
|
|
}
|
|
} else if (MIB->isIndirectBranch(Instruction)) {
|
|
if (auto JTAddress = MIB->getJumpTable(Instruction)) {
|
|
OS << " # JUMPTABLE @0x" << Twine::utohexstr(JTAddress);
|
|
} else {
|
|
OS << " # UNKNOWN CONTROL FLOW";
|
|
}
|
|
}
|
|
|
|
MIB->printAnnotations(Instruction, OS);
|
|
|
|
const DWARFDebugLine::LineTable *LineTable =
|
|
Function && opts::PrintDebugInfo ? Function->getDWARFUnitLineTable().second
|
|
: nullptr;
|
|
|
|
if (LineTable) {
|
|
auto RowRef = DebugLineTableRowRef::fromSMLoc(Instruction.getLoc());
|
|
|
|
if (RowRef != DebugLineTableRowRef::NULL_ROW) {
|
|
const auto &Row = LineTable->Rows[RowRef.RowIndex - 1];
|
|
StringRef FileName = "";
|
|
if (auto FName =
|
|
LineTable->Prologue.FileNames[Row.File - 1].Name.getAsCString())
|
|
FileName = *FName;
|
|
OS << " # debug line " << FileName << ":" << Row.Line;
|
|
|
|
if (Row.Column) {
|
|
OS << ":" << Row.Column;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((opts::PrintMemData || PrintMemData) && Function) {
|
|
const auto *MD = Function->getMemData();
|
|
const auto MemDataOffset =
|
|
MIB->tryGetAnnotationAs<uint64_t>(Instruction, "MemDataOffset");
|
|
if (MD && MemDataOffset) {
|
|
bool DidPrint = false;
|
|
for (auto &MI : MD->getMemInfoRange(MemDataOffset.get())) {
|
|
OS << (DidPrint ? ", " : " # Loads: ");
|
|
OS << MI.Addr << "/" << MI.Count;
|
|
DidPrint = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((opts::PrintRelocations || PrintRelocations) && Function) {
|
|
const auto Size = computeCodeSize(&Instruction, &Instruction + 1);
|
|
Function->printRelocations(OS, Offset, Size);
|
|
}
|
|
|
|
OS << "\n";
|
|
|
|
if (PrintMCInst) {
|
|
Instruction.dump_pretty(OS, InstPrinter.get());
|
|
OS << "\n";
|
|
}
|
|
}
|
|
|
|
ErrorOr<ArrayRef<uint8_t>>
|
|
BinaryContext::getFunctionData(const BinaryFunction &Function) const {
|
|
auto &Section = Function.getSection();
|
|
assert(Section.containsRange(Function.getAddress(), Function.getSize()) &&
|
|
"wrong section for function");
|
|
|
|
if (!Section.isText() || Section.isVirtual() || !Section.getSize()) {
|
|
return std::make_error_code(std::errc::bad_address);
|
|
}
|
|
|
|
StringRef SectionContents = Section.getContents();
|
|
|
|
assert(SectionContents.size() == Section.getSize() &&
|
|
"section size mismatch");
|
|
|
|
// Function offset from the section start.
|
|
auto FunctionOffset = Function.getAddress() - Section.getAddress();
|
|
auto *Bytes = reinterpret_cast<const uint8_t *>(SectionContents.data());
|
|
return ArrayRef<uint8_t>(Bytes + FunctionOffset, Function.getSize());
|
|
}
|
|
|
|
ErrorOr<BinarySection&> BinaryContext::getSectionForAddress(uint64_t Address) {
|
|
auto SI = AddressToSection.upper_bound(Address);
|
|
if (SI != AddressToSection.begin()) {
|
|
--SI;
|
|
auto UpperBound = SI->first + SI->second->getSize();
|
|
if (!SI->second->getSize())
|
|
UpperBound += 1;
|
|
if (UpperBound > Address)
|
|
return *SI->second;
|
|
}
|
|
return std::make_error_code(std::errc::bad_address);
|
|
}
|
|
|
|
ErrorOr<StringRef>
|
|
BinaryContext::getSectionNameForAddress(uint64_t Address) const {
|
|
if (auto Section = getSectionForAddress(Address)) {
|
|
return Section->getName();
|
|
}
|
|
return std::make_error_code(std::errc::bad_address);
|
|
}
|
|
|
|
BinarySection &BinaryContext::registerSection(BinarySection *Section) {
|
|
assert(!Section->getName().empty() &&
|
|
"can't register sections without a name");
|
|
auto Res = Sections.insert(Section);
|
|
assert(Res.second && "can't register the same section twice.");
|
|
// Only register sections with addresses in the AddressToSection map.
|
|
if (Section->getAddress())
|
|
AddressToSection.insert(std::make_pair(Section->getAddress(), Section));
|
|
NameToSection.insert(std::make_pair(Section->getName(), Section));
|
|
DEBUG(dbgs() << "BOLT-DEBUG: registering " << *Section << "\n");
|
|
return *Section;
|
|
}
|
|
|
|
BinarySection &BinaryContext::registerSection(SectionRef Section) {
|
|
return registerSection(new BinarySection(*this, Section));
|
|
}
|
|
|
|
BinarySection &
|
|
BinaryContext::registerSection(StringRef SectionName,
|
|
const BinarySection &OriginalSection) {
|
|
return registerSection(new BinarySection(*this,
|
|
SectionName,
|
|
OriginalSection));
|
|
}
|
|
|
|
BinarySection &BinaryContext::registerOrUpdateSection(StringRef Name,
|
|
unsigned ELFType,
|
|
unsigned ELFFlags,
|
|
uint8_t *Data,
|
|
uint64_t Size,
|
|
unsigned Alignment,
|
|
bool IsLocal) {
|
|
auto NamedSections = getSectionByName(Name);
|
|
if (NamedSections.begin() != NamedSections.end()) {
|
|
assert(std::next(NamedSections.begin()) == NamedSections.end() &&
|
|
"can only update unique sections");
|
|
auto *Section = NamedSections.begin()->second;
|
|
|
|
DEBUG(dbgs() << "BOLT-DEBUG: updating " << *Section << " -> ");
|
|
const auto Flag = Section->isAllocatable();
|
|
Section->update(Data, Size, Alignment, ELFType, ELFFlags, IsLocal);
|
|
DEBUG(dbgs() << *Section << "\n");
|
|
assert(Flag == Section->isAllocatable() &&
|
|
"can't change section allocation status");
|
|
return *Section;
|
|
}
|
|
|
|
return registerSection(new BinarySection(*this, Name, Data, Size, Alignment,
|
|
ELFType, ELFFlags, IsLocal));
|
|
}
|
|
|
|
bool BinaryContext::deregisterSection(BinarySection &Section) {
|
|
auto *SectionPtr = &Section;
|
|
auto Itr = Sections.find(SectionPtr);
|
|
if (Itr != Sections.end()) {
|
|
auto Range = AddressToSection.equal_range(SectionPtr->getAddress());
|
|
while (Range.first != Range.second) {
|
|
if (Range.first->second == SectionPtr) {
|
|
AddressToSection.erase(Range.first);
|
|
break;
|
|
}
|
|
++Range.first;
|
|
}
|
|
|
|
auto NameRange = NameToSection.equal_range(SectionPtr->getName());
|
|
while (NameRange.first != NameRange.second) {
|
|
if (NameRange.first->second == SectionPtr) {
|
|
NameToSection.erase(NameRange.first);
|
|
break;
|
|
}
|
|
++NameRange.first;
|
|
}
|
|
|
|
Sections.erase(Itr);
|
|
delete SectionPtr;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void BinaryContext::printSections(raw_ostream &OS) const {
|
|
for (auto &Section : Sections) {
|
|
OS << "BOLT-INFO: " << *Section << "\n";
|
|
}
|
|
}
|
|
|
|
BinarySection &BinaryContext::absoluteSection() {
|
|
if (auto Section = getUniqueSectionByName("<absolute>"))
|
|
return *Section;
|
|
return registerOrUpdateSection("<absolute>", ELF::SHT_NULL, 0u);
|
|
}
|
|
|
|
ErrorOr<uint64_t>
|
|
BinaryContext::getUnsignedValueAtAddress(uint64_t Address,
|
|
size_t Size) const {
|
|
const auto Section = getSectionForAddress(Address);
|
|
if (!Section)
|
|
return std::make_error_code(std::errc::bad_address);
|
|
|
|
if (Section->isVirtual())
|
|
return 0;
|
|
|
|
DataExtractor DE(Section->getContents(), AsmInfo->isLittleEndian(),
|
|
AsmInfo->getCodePointerSize());
|
|
auto ValueOffset = static_cast<uint32_t>(Address - Section->getAddress());
|
|
return DE.getUnsigned(&ValueOffset, Size);
|
|
}
|
|
|
|
ErrorOr<uint64_t>
|
|
BinaryContext::getSignedValueAtAddress(uint64_t Address,
|
|
size_t Size) const {
|
|
const auto Section = getSectionForAddress(Address);
|
|
if (!Section)
|
|
return std::make_error_code(std::errc::bad_address);
|
|
|
|
if (Section->isVirtual())
|
|
return 0;
|
|
|
|
DataExtractor DE(Section->getContents(), AsmInfo->isLittleEndian(),
|
|
AsmInfo->getCodePointerSize());
|
|
auto ValueOffset = static_cast<uint32_t>(Address - Section->getAddress());
|
|
return DE.getSigned(&ValueOffset, Size);
|
|
}
|
|
|
|
void BinaryContext::addRelocation(uint64_t Address,
|
|
MCSymbol *Symbol,
|
|
uint64_t Type,
|
|
uint64_t Addend,
|
|
uint64_t Value) {
|
|
auto Section = getSectionForAddress(Address);
|
|
assert(Section && "cannot find section for address");
|
|
Section->addRelocation(Address - Section->getAddress(),
|
|
Symbol,
|
|
Type,
|
|
Addend,
|
|
Value);
|
|
}
|
|
|
|
bool BinaryContext::removeRelocationAt(uint64_t Address) {
|
|
auto Section = getSectionForAddress(Address);
|
|
assert(Section && "cannot find section for address");
|
|
return Section->removeRelocationAt(Address - Section->getAddress());
|
|
}
|
|
|
|
const Relocation *BinaryContext::getRelocationAt(uint64_t Address) {
|
|
auto Section = getSectionForAddress(Address);
|
|
if (!Section)
|
|
return nullptr;
|
|
|
|
return Section->getRelocationAt(Address - Section->getAddress());
|
|
}
|
|
|
|
void BinaryContext::exitWithBugReport(StringRef Message,
|
|
const BinaryFunction &Function) const {
|
|
errs() << "=======================================\n";
|
|
errs() << "BOLT is unable to proceed because it couldn't properly understand "
|
|
"this function.\n";
|
|
errs() << "If you are running the most recent version of BOLT, you may "
|
|
"want to "
|
|
"report this and paste this dump.\nPlease check that there is no "
|
|
"sensitive contents being shared in this dump.\n";
|
|
errs() << "\nOffending function: " << Function.getPrintName() << "\n\n";
|
|
ScopedPrinter SP(errs());
|
|
SP.printBinaryBlock("Function contents", *getFunctionData(Function));
|
|
errs() << "\n";
|
|
Function.dump();
|
|
errs() << "ERROR: " << Message;
|
|
errs() << "\n=======================================\n";
|
|
exit(1);
|
|
}
|
|
|
|
BinaryFunction *
|
|
BinaryContext::createInjectedBinaryFunction(const std::string &Name,
|
|
bool IsSimple) {
|
|
InjectedBinaryFunctions.push_back(new BinaryFunction(Name, *this, IsSimple));
|
|
auto *BF = InjectedBinaryFunctions.back();
|
|
setSymbolToFunctionMap(BF->getSymbol(), BF);
|
|
return BF;
|
|
}
|
|
|
|
std::pair<size_t, size_t>
|
|
BinaryContext::calculateEmittedSize(BinaryFunction &BF) {
|
|
// Adjust branch instruction to match the current layout.
|
|
BF.fixBranches();
|
|
|
|
// Create local MC context to isolate the effect of ephemeral code emission.
|
|
auto MCEInstance = createIndependentMCCodeEmitter();
|
|
auto *LocalCtx = MCEInstance.LocalCtx.get();
|
|
auto *MAB = TheTarget->createMCAsmBackend(*STI, *MRI, MCTargetOptions());
|
|
|
|
SmallString<256> Code;
|
|
raw_svector_ostream VecOS(Code);
|
|
|
|
std::unique_ptr<MCStreamer> Streamer(TheTarget->createMCObjectStreamer(
|
|
*TheTriple, *LocalCtx, std::unique_ptr<MCAsmBackend>(MAB), VecOS,
|
|
std::unique_ptr<MCCodeEmitter>(MCEInstance.MCE.release()), *STI,
|
|
/* RelaxAll */ false,
|
|
/* IncrementalLinkerCompatible */ false,
|
|
/* DWARFMustBeAtTheEnd */ false));
|
|
|
|
Streamer->InitSections(false);
|
|
|
|
auto *Section = MCEInstance.LocalMOFI->getTextSection();
|
|
Section->setHasInstructions(true);
|
|
|
|
auto *StartLabel = LocalCtx->getOrCreateSymbol("__hstart");
|
|
auto *EndLabel = LocalCtx->getOrCreateSymbol("__hend");
|
|
auto *ColdStartLabel = LocalCtx->getOrCreateSymbol("__cstart");
|
|
auto *ColdEndLabel = LocalCtx->getOrCreateSymbol("__cend");
|
|
|
|
Streamer->SwitchSection(Section);
|
|
Streamer->EmitLabel(StartLabel);
|
|
BF.emitBody(*Streamer, /*EmitColdPart = */false, /*EmitCodeOnly = */true);
|
|
Streamer->EmitLabel(EndLabel);
|
|
|
|
if (BF.isSplit()) {
|
|
auto *ColdSection =
|
|
LocalCtx->getELFSection(BF.getColdCodeSectionName(),
|
|
ELF::SHT_PROGBITS,
|
|
ELF::SHF_EXECINSTR | ELF::SHF_ALLOC);
|
|
ColdSection->setHasInstructions(true);
|
|
|
|
Streamer->SwitchSection(ColdSection);
|
|
Streamer->EmitLabel(ColdStartLabel);
|
|
BF.emitBody(*Streamer, /*EmitColdPart = */true, /*EmitCodeOnly = */true);
|
|
Streamer->EmitLabel(ColdEndLabel);
|
|
}
|
|
|
|
// To avoid calling MCObjectStreamer::flushPendingLabels() which is private.
|
|
Streamer->EmitBytes(StringRef(""));
|
|
|
|
auto &Assembler =
|
|
static_cast<MCObjectStreamer *>(Streamer.get())->getAssembler();
|
|
MCAsmLayout Layout(Assembler);
|
|
Assembler.layout(Layout);
|
|
|
|
const auto HotSize = Layout.getSymbolOffset(*EndLabel) -
|
|
Layout.getSymbolOffset(*StartLabel);
|
|
const auto ColdSize = BF.isSplit() ? Layout.getSymbolOffset(*ColdEndLabel) -
|
|
Layout.getSymbolOffset(*ColdStartLabel)
|
|
: 0ULL;
|
|
|
|
// Clean-up the effect of the code emission.
|
|
for (const auto &Symbol : Assembler.symbols()) {
|
|
auto *MutableSymbol = const_cast<MCSymbol *>(&Symbol);
|
|
MutableSymbol->setUndefined();
|
|
MutableSymbol->setIsRegistered(false);
|
|
}
|
|
|
|
return std::make_pair(HotSize, ColdSize);
|
|
}
|
|
|
|
BinaryFunction *
|
|
BinaryContext::getBinaryFunctionContainingAddress(uint64_t Address,
|
|
bool CheckPastEnd,
|
|
bool UseMaxSize,
|
|
bool Shallow) {
|
|
auto FI = BinaryFunctions.upper_bound(Address);
|
|
if (FI == BinaryFunctions.begin())
|
|
return nullptr;
|
|
--FI;
|
|
|
|
const auto UsedSize = UseMaxSize ? FI->second.getMaxSize()
|
|
: FI->second.getSize();
|
|
|
|
if (Address >= FI->first + UsedSize + (CheckPastEnd ? 1 : 0))
|
|
return nullptr;
|
|
|
|
auto *BF = &FI->second;
|
|
if (Shallow)
|
|
return BF;
|
|
|
|
while (BF->getParentFunction())
|
|
BF = BF->getParentFunction();
|
|
|
|
return BF;
|
|
}
|
|
|
|
BinaryFunction *
|
|
BinaryContext::getBinaryFunctionAtAddress(uint64_t Address, bool Shallow) {
|
|
if (const auto *BD = getBinaryDataAtAddress(Address)) {
|
|
if (auto *BF = getFunctionForSymbol(BD->getSymbol())) {
|
|
while (BF->getParentFunction() && !Shallow) {
|
|
BF = BF->getParentFunction();
|
|
}
|
|
return BF;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
DebugAddressRangesVector BinaryContext::translateModuleAddressRanges(
|
|
const DWARFAddressRangesVector &InputRanges) const {
|
|
DebugAddressRangesVector OutputRanges;
|
|
|
|
for (const auto Range : InputRanges) {
|
|
auto BFI = BinaryFunctions.lower_bound(Range.LowPC);
|
|
while (BFI != BinaryFunctions.end()) {
|
|
const auto &Function = BFI->second;
|
|
if (Function.getAddress() >= Range.HighPC)
|
|
break;
|
|
const auto FunctionRanges = Function.getOutputAddressRanges();
|
|
std::move(std::begin(FunctionRanges),
|
|
std::end(FunctionRanges),
|
|
std::back_inserter(OutputRanges));
|
|
std::advance(BFI, 1);
|
|
}
|
|
}
|
|
|
|
return OutputRanges;
|
|
}
|