Files
llvm/mlir/lib/Transforms/BufferUtils.cpp
Sean Silva 7f2ebde735 [mlir] Split BufferUtils.h out of Bufferize.h
These utilities are more closely associated with the buffer
optimizations and buffer deallocation than with the dialect conversion
stuff in Bufferize.h. So move them out.

This makes Bufferize.h very easy to understand and completely focused on
dialect conversion.

Differential Revision: https://reviews.llvm.org/D91563
2020-11-19 12:56:36 -08:00

157 lines
6.5 KiB
C++

//===- BufferUtils.cpp - buffer transformation utilities ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements utilties for buffer optimization passes.
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/BufferUtils.h"
#include "PassDetail.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/Operation.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "mlir/Interfaces/LoopLikeInterface.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/SetOperations.h"
using namespace mlir;
//===----------------------------------------------------------------------===//
// BufferPlacementAllocs
//===----------------------------------------------------------------------===//
/// Get the start operation to place the given alloc value withing the
// specified placement block.
Operation *BufferPlacementAllocs::getStartOperation(Value allocValue,
Block *placementBlock,
const Liveness &liveness) {
// We have to ensure that we place the alloc before its first use in this
// block.
const LivenessBlockInfo &livenessInfo = *liveness.getLiveness(placementBlock);
Operation *startOperation = livenessInfo.getStartOperation(allocValue);
// Check whether the start operation lies in the desired placement block.
// If not, we will use the terminator as this is the last operation in
// this block.
if (startOperation->getBlock() != placementBlock) {
Operation *opInPlacementBlock =
placementBlock->findAncestorOpInBlock(*startOperation);
startOperation = opInPlacementBlock ? opInPlacementBlock
: placementBlock->getTerminator();
}
return startOperation;
}
/// Finds associated deallocs that can be linked to our allocation nodes (if
/// any).
Operation *BufferPlacementAllocs::findDealloc(Value allocValue) {
auto userIt = llvm::find_if(allocValue.getUsers(), [&](Operation *user) {
auto effectInterface = dyn_cast<MemoryEffectOpInterface>(user);
if (!effectInterface)
return false;
// Try to find a free effect that is applied to one of our values
// that will be automatically freed by our pass.
SmallVector<MemoryEffects::EffectInstance, 2> effects;
effectInterface.getEffectsOnValue(allocValue, effects);
return llvm::any_of(effects, [&](MemoryEffects::EffectInstance &it) {
return isa<MemoryEffects::Free>(it.getEffect());
});
});
// Assign the associated dealloc operation (if any).
return userIt != allocValue.user_end() ? *userIt : nullptr;
}
/// Initializes the internal list by discovering all supported allocation
/// nodes.
BufferPlacementAllocs::BufferPlacementAllocs(Operation *op) { build(op); }
/// Searches for and registers all supported allocation entries.
void BufferPlacementAllocs::build(Operation *op) {
op->walk([&](MemoryEffectOpInterface opInterface) {
// Try to find a single allocation result.
SmallVector<MemoryEffects::EffectInstance, 2> effects;
opInterface.getEffects(effects);
SmallVector<MemoryEffects::EffectInstance, 2> allocateResultEffects;
llvm::copy_if(
effects, std::back_inserter(allocateResultEffects),
[=](MemoryEffects::EffectInstance &it) {
Value value = it.getValue();
return isa<MemoryEffects::Allocate>(it.getEffect()) && value &&
value.isa<OpResult>() &&
it.getResource() !=
SideEffects::AutomaticAllocationScopeResource::get();
});
// If there is one result only, we will be able to move the allocation and
// (possibly existing) deallocation ops.
if (allocateResultEffects.size() != 1)
return;
// Get allocation result.
Value allocValue = allocateResultEffects[0].getValue();
// Find the associated dealloc value and register the allocation entry.
allocs.push_back(std::make_tuple(allocValue, findDealloc(allocValue)));
});
}
//===----------------------------------------------------------------------===//
// BufferPlacementTransformationBase
//===----------------------------------------------------------------------===//
/// Constructs a new transformation base using the given root operation.
BufferPlacementTransformationBase::BufferPlacementTransformationBase(
Operation *op)
: aliases(op), allocs(op), liveness(op) {}
/// Returns true if the given operation represents a loop by testing whether it
/// implements the `LoopLikeOpInterface` or the `RegionBranchOpInterface`. In
/// the case of a `RegionBranchOpInterface`, it checks all region-based control-
/// flow edges for cycles.
bool BufferPlacementTransformationBase::isLoop(Operation *op) {
// If the operation implements the `LoopLikeOpInterface` it can be considered
// a loop.
if (isa<LoopLikeOpInterface>(op))
return true;
// If the operation does not implement the `RegionBranchOpInterface`, it is
// (currently) not possible to detect a loop.
RegionBranchOpInterface regionInterface;
if (!(regionInterface = dyn_cast<RegionBranchOpInterface>(op)))
return false;
// Recurses into a region using the current region interface to find potential
// cycles.
SmallPtrSet<Region *, 4> visitedRegions;
std::function<bool(Region *)> recurse = [&](Region *current) {
if (!current)
return false;
// If we have found a back edge, the parent operation induces a loop.
if (!visitedRegions.insert(current).second)
return true;
// Recurses into all region successors.
SmallVector<RegionSuccessor, 2> successors;
regionInterface.getSuccessorRegions(current->getRegionNumber(), successors);
for (RegionSuccessor &regionEntry : successors)
if (recurse(regionEntry.getSuccessor()))
return true;
return false;
};
// Start with all entry regions and test whether they induce a loop.
SmallVector<RegionSuccessor, 2> successorRegions;
regionInterface.getSuccessorRegions(/*index=*/llvm::None, successorRegions);
for (RegionSuccessor &regionEntry : successorRegions) {
if (recurse(regionEntry.getSuccessor()))
return true;
visitedRegions.clear();
}
return false;
}