mirror of
https://github.com/intel/llvm.git
synced 2026-01-30 05:55:35 +08:00
Also some simplifications: * `outputBufferOperands` was unused. * The condition that the number of operands equals the number of inputs plus the number of inits seemed vacuously true (?). Differential Revision: https://reviews.llvm.org/D150376
71 lines
2.4 KiB
C++
71 lines
2.4 KiB
C++
//===- DestinationStyleOpInterface.cpp -- Destination style ops -----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Interfaces/DestinationStyleOpInterface.h"
|
|
|
|
using namespace mlir;
|
|
|
|
namespace mlir {
|
|
#include "mlir/Interfaces/DestinationStyleOpInterface.cpp.inc"
|
|
} // namespace mlir
|
|
|
|
OpOperandVector::operator SmallVector<Value>() {
|
|
SmallVector<Value> result;
|
|
result.reserve(this->size());
|
|
llvm::transform(*this, std::back_inserter(result),
|
|
[](OpOperand *opOperand) { return opOperand->get(); });
|
|
return result;
|
|
}
|
|
|
|
namespace {
|
|
size_t getNumTensorResults(Operation *op) {
|
|
size_t numTensorResults = 0;
|
|
for (auto t : op->getResultTypes()) {
|
|
if (isa<TensorType>(t)) {
|
|
++numTensorResults;
|
|
}
|
|
}
|
|
return numTensorResults;
|
|
}
|
|
} // namespace
|
|
|
|
LogicalResult detail::verifyDestinationStyleOpInterface(Operation *op) {
|
|
DestinationStyleOpInterface dstStyleOp =
|
|
cast<DestinationStyleOpInterface>(op);
|
|
|
|
SmallVector<OpOperand *> outputTensorOperands;
|
|
for (OpOperand *operand : dstStyleOp.getDpsInitOperands()) {
|
|
Type type = operand->get().getType();
|
|
if (isa<RankedTensorType>(type)) {
|
|
outputTensorOperands.push_back(operand);
|
|
} else if (!isa<MemRefType>(type)) {
|
|
return op->emitOpError("expected that operand #")
|
|
<< operand->getOperandNumber()
|
|
<< " is a ranked tensor or a ranked memref";
|
|
}
|
|
}
|
|
|
|
// Verify the number of tensor results matches the number of output tensors.
|
|
if (getNumTensorResults(op) != outputTensorOperands.size())
|
|
return op->emitOpError("expected the number of tensor results (")
|
|
<< getNumTensorResults(op)
|
|
<< ") to be equal to the number of output tensors ("
|
|
<< outputTensorOperands.size() << ")";
|
|
|
|
for (OpOperand *opOperand : outputTensorOperands) {
|
|
OpResult result = dstStyleOp.getTiedOpResult(opOperand);
|
|
if (result.getType() != opOperand->get().getType())
|
|
return op->emitOpError("expected type of operand #")
|
|
<< opOperand->getOperandNumber() << " ("
|
|
<< opOperand->get().getType() << ")"
|
|
<< " to match type of corresponding result (" << result.getType()
|
|
<< ")";
|
|
}
|
|
return success();
|
|
}
|