mirror of
https://github.com/intel/llvm.git
synced 2026-01-24 00:20:25 +08:00
For exception handling, LSDA call sites have to be emitted for each fragment individually. With this patch, call sites and respective LSDA symbols are generated and associated with each fragment of their function, such that they can be used by the emitter. Reviewed By: maksfb Differential Revision: https://reviews.llvm.org/D132052
528 lines
19 KiB
C++
528 lines
19 KiB
C++
//===- bolt/Passes/SplitFunctions.cpp - Pass for splitting function code --===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the SplitFunctions pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "bolt/Passes/SplitFunctions.h"
|
|
#include "bolt/Core/BinaryBasicBlock.h"
|
|
#include "bolt/Core/BinaryFunction.h"
|
|
#include "bolt/Core/FunctionLayout.h"
|
|
#include "bolt/Core/ParallelUtilities.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Sequence.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
#include <algorithm>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <numeric>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#define DEBUG_TYPE "bolt-opts"
|
|
|
|
using namespace llvm;
|
|
using namespace bolt;
|
|
|
|
namespace {
|
|
class DeprecatedSplitFunctionOptionParser : public cl::parser<bool> {
|
|
public:
|
|
explicit DeprecatedSplitFunctionOptionParser(cl::Option &O)
|
|
: cl::parser<bool>(O) {}
|
|
|
|
bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, bool &Value) {
|
|
if (Arg == "2" || Arg == "3") {
|
|
Value = true;
|
|
errs() << formatv("BOLT-WARNING: specifying non-boolean value \"{0}\" "
|
|
"for option -{1} is deprecated\n",
|
|
Arg, ArgName);
|
|
return false;
|
|
}
|
|
return cl::parser<bool>::parse(O, ArgName, Arg, Value);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace opts {
|
|
|
|
extern cl::OptionCategory BoltOptCategory;
|
|
|
|
extern cl::opt<bool> SplitEH;
|
|
extern cl::opt<unsigned> ExecutionCountThreshold;
|
|
extern cl::opt<uint32_t> RandomSeed;
|
|
|
|
static cl::opt<bool> AggressiveSplitting(
|
|
"split-all-cold", cl::desc("outline as many cold basic blocks as possible"),
|
|
cl::cat(BoltOptCategory));
|
|
|
|
static cl::opt<unsigned> SplitAlignThreshold(
|
|
"split-align-threshold",
|
|
cl::desc("when deciding to split a function, apply this alignment "
|
|
"while doing the size comparison (see -split-threshold). "
|
|
"Default value: 2."),
|
|
cl::init(2),
|
|
|
|
cl::Hidden, cl::cat(BoltOptCategory));
|
|
|
|
static cl::opt<bool, false, DeprecatedSplitFunctionOptionParser>
|
|
SplitFunctions("split-functions",
|
|
cl::desc("split functions into fragments"),
|
|
cl::cat(BoltOptCategory));
|
|
|
|
static cl::opt<unsigned> SplitThreshold(
|
|
"split-threshold",
|
|
cl::desc("split function only if its main size is reduced by more than "
|
|
"given amount of bytes. Default value: 0, i.e. split iff the "
|
|
"size is reduced. Note that on some architectures the size can "
|
|
"increase after splitting."),
|
|
cl::init(0), cl::Hidden, cl::cat(BoltOptCategory));
|
|
|
|
static cl::opt<SplitFunctionsStrategy> SplitStrategy(
|
|
"split-strategy", cl::init(SplitFunctionsStrategy::Profile2),
|
|
cl::values(clEnumValN(SplitFunctionsStrategy::Profile2, "profile2",
|
|
"split each function into a hot and cold fragment "
|
|
"using profiling information")),
|
|
cl::values(clEnumValN(
|
|
SplitFunctionsStrategy::Random2, "random2",
|
|
"split each function into a hot and cold fragment at a randomly chosen "
|
|
"split point (ignoring any available profiling information)")),
|
|
cl::values(clEnumValN(
|
|
SplitFunctionsStrategy::RandomN, "randomN",
|
|
"split each function into N fragments at a randomly chosen split "
|
|
"points (ignoring any available profiling information)")),
|
|
cl::values(clEnumValN(
|
|
SplitFunctionsStrategy::All, "all",
|
|
"split all basic blocks of each function into fragments such that each "
|
|
"fragment contains exactly a single basic block")),
|
|
cl::desc("strategy used to partition blocks into fragments"),
|
|
cl::cat(BoltOptCategory));
|
|
} // namespace opts
|
|
|
|
namespace {
|
|
bool hasFullProfile(const BinaryFunction &BF) {
|
|
return llvm::all_of(BF.blocks(), [](const BinaryBasicBlock &BB) {
|
|
return BB.getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE;
|
|
});
|
|
}
|
|
|
|
bool allBlocksCold(const BinaryFunction &BF) {
|
|
return llvm::all_of(BF.blocks(), [](const BinaryBasicBlock &BB) {
|
|
return BB.getExecutionCount() == 0;
|
|
});
|
|
}
|
|
|
|
struct SplitProfile2 final : public SplitStrategy {
|
|
bool canSplit(const BinaryFunction &BF) override {
|
|
return BF.hasValidProfile() && hasFullProfile(BF) && !allBlocksCold(BF);
|
|
}
|
|
|
|
bool keepEmpty() override { return false; }
|
|
|
|
void fragment(const BlockIt Start, const BlockIt End) override {
|
|
for (BinaryBasicBlock *const BB : llvm::make_range(Start, End)) {
|
|
if (BB->getExecutionCount() == 0)
|
|
BB->setFragmentNum(FragmentNum::cold());
|
|
}
|
|
}
|
|
};
|
|
|
|
struct SplitRandom2 final : public SplitStrategy {
|
|
std::minstd_rand0 Gen;
|
|
|
|
SplitRandom2() : Gen(opts::RandomSeed.getValue()) {}
|
|
|
|
bool canSplit(const BinaryFunction &BF) override { return true; }
|
|
|
|
bool keepEmpty() override { return false; }
|
|
|
|
void fragment(const BlockIt Start, const BlockIt End) override {
|
|
using DiffT = typename std::iterator_traits<BlockIt>::difference_type;
|
|
const DiffT NumBlocks = End - Start;
|
|
assert(NumBlocks > 0 && "Cannot fragment empty function");
|
|
|
|
// We want to split at least one block
|
|
const auto LastSplitPoint = std::max<DiffT>(NumBlocks - 1, 1);
|
|
std::uniform_int_distribution<DiffT> Dist(1, LastSplitPoint);
|
|
const DiffT SplitPoint = Dist(Gen);
|
|
for (BinaryBasicBlock *BB : llvm::make_range(Start + SplitPoint, End))
|
|
BB->setFragmentNum(FragmentNum::cold());
|
|
|
|
LLVM_DEBUG(dbgs() << formatv("BOLT-DEBUG: randomly chose last {0} (out of "
|
|
"{1} possible) blocks to split\n",
|
|
NumBlocks - SplitPoint, End - Start));
|
|
}
|
|
};
|
|
|
|
struct SplitRandomN final : public SplitStrategy {
|
|
std::minstd_rand0 Gen;
|
|
|
|
SplitRandomN() : Gen(opts::RandomSeed.getValue()) {}
|
|
|
|
bool canSplit(const BinaryFunction &BF) override { return true; }
|
|
|
|
bool keepEmpty() override { return false; }
|
|
|
|
void fragment(const BlockIt Start, const BlockIt End) override {
|
|
using DiffT = typename std::iterator_traits<BlockIt>::difference_type;
|
|
const DiffT NumBlocks = End - Start;
|
|
assert(NumBlocks > 0 && "Cannot fragment empty function");
|
|
|
|
// With n blocks, there are n-1 places to split them.
|
|
const DiffT MaximumSplits = NumBlocks - 1;
|
|
// We want to generate at least two fragment if possible, but if there is
|
|
// only one block, no splits are possible.
|
|
const auto MinimumSplits = std::min<DiffT>(MaximumSplits, 1);
|
|
std::uniform_int_distribution<DiffT> Dist(MinimumSplits, MaximumSplits);
|
|
// Choose how many splits to perform
|
|
const DiffT NumSplits = Dist(Gen);
|
|
|
|
// Draw split points from a lottery
|
|
SmallVector<unsigned, 0> Lottery(MaximumSplits);
|
|
// Start lottery at 1, because there is no meaningful splitpoint before the
|
|
// first block.
|
|
std::iota(Lottery.begin(), Lottery.end(), 1u);
|
|
std::shuffle(Lottery.begin(), Lottery.end(), Gen);
|
|
Lottery.resize(NumSplits);
|
|
llvm::sort(Lottery);
|
|
|
|
// Add one past the end entry to lottery
|
|
Lottery.push_back(NumBlocks);
|
|
|
|
unsigned LotteryIndex = 0;
|
|
unsigned BBPos = 0;
|
|
for (BinaryBasicBlock *const BB : make_range(Start, End)) {
|
|
// Check whether to start new fragment
|
|
if (BBPos >= Lottery[LotteryIndex])
|
|
++LotteryIndex;
|
|
|
|
// Because LotteryIndex is 0 based and cold fragments are 1 based, we can
|
|
// use the index to assign fragments.
|
|
BB->setFragmentNum(FragmentNum(LotteryIndex));
|
|
|
|
++BBPos;
|
|
}
|
|
}
|
|
};
|
|
|
|
struct SplitAll final : public SplitStrategy {
|
|
bool canSplit(const BinaryFunction &BF) override { return true; }
|
|
|
|
bool keepEmpty() override {
|
|
// Keeping empty fragments allows us to test, that empty fragments do not
|
|
// generate symbols.
|
|
return true;
|
|
}
|
|
|
|
void fragment(const BlockIt Start, const BlockIt End) override {
|
|
unsigned Fragment = 0;
|
|
for (BinaryBasicBlock *const BB : llvm::make_range(Start, End))
|
|
BB->setFragmentNum(FragmentNum(Fragment++));
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace llvm {
|
|
namespace bolt {
|
|
|
|
bool SplitFunctions::shouldOptimize(const BinaryFunction &BF) const {
|
|
// Apply execution count threshold
|
|
if (BF.getKnownExecutionCount() < opts::ExecutionCountThreshold)
|
|
return false;
|
|
|
|
return BinaryFunctionPass::shouldOptimize(BF);
|
|
}
|
|
|
|
void SplitFunctions::runOnFunctions(BinaryContext &BC) {
|
|
if (!opts::SplitFunctions)
|
|
return;
|
|
|
|
std::unique_ptr<SplitStrategy> Strategy;
|
|
bool ForceSequential = false;
|
|
|
|
switch (opts::SplitStrategy) {
|
|
case SplitFunctionsStrategy::Profile2:
|
|
Strategy = std::make_unique<SplitProfile2>();
|
|
break;
|
|
case SplitFunctionsStrategy::Random2:
|
|
Strategy = std::make_unique<SplitRandom2>();
|
|
// If we split functions randomly, we need to ensure that across runs with
|
|
// the same input, we generate random numbers for each function in the same
|
|
// order.
|
|
ForceSequential = true;
|
|
break;
|
|
case SplitFunctionsStrategy::RandomN:
|
|
Strategy = std::make_unique<SplitRandomN>();
|
|
ForceSequential = true;
|
|
break;
|
|
case SplitFunctionsStrategy::All:
|
|
Strategy = std::make_unique<SplitAll>();
|
|
break;
|
|
}
|
|
|
|
ParallelUtilities::PredicateTy SkipFunc = [&](const BinaryFunction &BF) {
|
|
return !shouldOptimize(BF);
|
|
};
|
|
|
|
ParallelUtilities::runOnEachFunction(
|
|
BC, ParallelUtilities::SchedulingPolicy::SP_BB_LINEAR,
|
|
[&](BinaryFunction &BF) { splitFunction(BF, *Strategy); }, SkipFunc,
|
|
"SplitFunctions", ForceSequential);
|
|
|
|
if (SplitBytesHot + SplitBytesCold > 0)
|
|
outs() << "BOLT-INFO: splitting separates " << SplitBytesHot
|
|
<< " hot bytes from " << SplitBytesCold << " cold bytes "
|
|
<< format("(%.2lf%% of split functions is hot).\n",
|
|
100.0 * SplitBytesHot / (SplitBytesHot + SplitBytesCold));
|
|
}
|
|
|
|
void SplitFunctions::splitFunction(BinaryFunction &BF, SplitStrategy &S) {
|
|
if (BF.empty())
|
|
return;
|
|
|
|
if (!S.canSplit(BF))
|
|
return;
|
|
|
|
FunctionLayout &Layout = BF.getLayout();
|
|
BinaryFunction::BasicBlockOrderType PreSplitLayout(Layout.block_begin(),
|
|
Layout.block_end());
|
|
|
|
BinaryContext &BC = BF.getBinaryContext();
|
|
size_t OriginalHotSize;
|
|
size_t HotSize;
|
|
size_t ColdSize;
|
|
if (BC.isX86()) {
|
|
std::tie(OriginalHotSize, ColdSize) = BC.calculateEmittedSize(BF);
|
|
LLVM_DEBUG(dbgs() << "Estimated size for function " << BF
|
|
<< " pre-split is <0x"
|
|
<< Twine::utohexstr(OriginalHotSize) << ", 0x"
|
|
<< Twine::utohexstr(ColdSize) << ">\n");
|
|
}
|
|
|
|
BinaryFunction::BasicBlockOrderType NewLayout(Layout.block_begin(),
|
|
Layout.block_end());
|
|
// Never outline the first basic block.
|
|
NewLayout.front()->setCanOutline(false);
|
|
for (BinaryBasicBlock *const BB : NewLayout) {
|
|
if (!BB->canOutline())
|
|
continue;
|
|
|
|
// Do not split extra entry points in aarch64. They can be referred by
|
|
// using ADRs and when this happens, these blocks cannot be placed far
|
|
// away due to the limited range in ADR instruction.
|
|
if (BC.isAArch64() && BB->isEntryPoint()) {
|
|
BB->setCanOutline(false);
|
|
continue;
|
|
}
|
|
|
|
if (BF.hasEHRanges() && !opts::SplitEH) {
|
|
// We cannot move landing pads (or rather entry points for landing pads).
|
|
if (BB->isLandingPad()) {
|
|
BB->setCanOutline(false);
|
|
continue;
|
|
}
|
|
// We cannot move a block that can throw since exception-handling
|
|
// runtime cannot deal with split functions. However, if we can guarantee
|
|
// that the block never throws, it is safe to move the block to
|
|
// decrease the size of the function.
|
|
for (MCInst &Instr : *BB) {
|
|
if (BC.MIB->isInvoke(Instr)) {
|
|
BB->setCanOutline(false);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
BF.getLayout().updateLayoutIndices();
|
|
S.fragment(NewLayout.begin(), NewLayout.end());
|
|
|
|
// Make sure all non-outlineable blocks are in the main-fragment.
|
|
for (BinaryBasicBlock *const BB : NewLayout) {
|
|
if (!BB->canOutline())
|
|
BB->setFragmentNum(FragmentNum::main());
|
|
}
|
|
|
|
if (opts::AggressiveSplitting) {
|
|
// All blocks with 0 count that we can move go to the end of the function.
|
|
// Even if they were natural to cluster formation and were seen in-between
|
|
// hot basic blocks.
|
|
llvm::stable_sort(NewLayout, [&](const BinaryBasicBlock *const A,
|
|
const BinaryBasicBlock *const B) {
|
|
return A->getFragmentNum() < B->getFragmentNum();
|
|
});
|
|
} else if (BF.hasEHRanges() && !opts::SplitEH) {
|
|
// Typically functions with exception handling have landing pads at the end.
|
|
// We cannot move beginning of landing pads, but we can move 0-count blocks
|
|
// comprising landing pads to the end and thus facilitate splitting.
|
|
auto FirstLP = NewLayout.begin();
|
|
while ((*FirstLP)->isLandingPad())
|
|
++FirstLP;
|
|
|
|
std::stable_sort(FirstLP, NewLayout.end(),
|
|
[&](BinaryBasicBlock *A, BinaryBasicBlock *B) {
|
|
return A->getFragmentNum() < B->getFragmentNum();
|
|
});
|
|
}
|
|
|
|
// Make sure that fragments are increasing.
|
|
FragmentNum CurrentFragment = NewLayout.back()->getFragmentNum();
|
|
for (BinaryBasicBlock *const BB : reverse(NewLayout)) {
|
|
if (BB->getFragmentNum() > CurrentFragment)
|
|
BB->setFragmentNum(CurrentFragment);
|
|
CurrentFragment = BB->getFragmentNum();
|
|
}
|
|
|
|
if (!S.keepEmpty()) {
|
|
FragmentNum CurrentFragment = FragmentNum::main();
|
|
FragmentNum NewFragment = FragmentNum::main();
|
|
for (BinaryBasicBlock *const BB : NewLayout) {
|
|
if (BB->getFragmentNum() > CurrentFragment) {
|
|
CurrentFragment = BB->getFragmentNum();
|
|
NewFragment = FragmentNum(NewFragment.get() + 1);
|
|
}
|
|
BB->setFragmentNum(NewFragment);
|
|
}
|
|
}
|
|
|
|
BF.getLayout().update(NewLayout);
|
|
|
|
// For shared objects, invoke instructions and corresponding landing pads
|
|
// have to be placed in the same fragment. When we split them, create
|
|
// trampoline landing pads that will redirect the execution to real LPs.
|
|
TrampolineSetType Trampolines;
|
|
if (!BC.HasFixedLoadAddress && BF.hasEHRanges() && BF.isSplit())
|
|
Trampolines = createEHTrampolines(BF);
|
|
|
|
// Check the new size to see if it's worth splitting the function.
|
|
if (BC.isX86() && BF.isSplit()) {
|
|
std::tie(HotSize, ColdSize) = BC.calculateEmittedSize(BF);
|
|
LLVM_DEBUG(dbgs() << "Estimated size for function " << BF
|
|
<< " post-split is <0x" << Twine::utohexstr(HotSize)
|
|
<< ", 0x" << Twine::utohexstr(ColdSize) << ">\n");
|
|
if (alignTo(OriginalHotSize, opts::SplitAlignThreshold) <=
|
|
alignTo(HotSize, opts::SplitAlignThreshold) + opts::SplitThreshold) {
|
|
LLVM_DEBUG(dbgs() << "Reversing splitting of function " << BF << ":\n 0x"
|
|
<< Twine::utohexstr(HotSize) << ", 0x"
|
|
<< Twine::utohexstr(ColdSize) << " -> 0x"
|
|
<< Twine::utohexstr(OriginalHotSize) << '\n');
|
|
|
|
// Reverse the action of createEHTrampolines(). The trampolines will be
|
|
// placed immediately before the matching destination resulting in no
|
|
// extra code.
|
|
if (PreSplitLayout.size() != BF.size())
|
|
PreSplitLayout = mergeEHTrampolines(BF, PreSplitLayout, Trampolines);
|
|
|
|
for (BinaryBasicBlock &BB : BF)
|
|
BB.setFragmentNum(FragmentNum::main());
|
|
BF.getLayout().update(PreSplitLayout);
|
|
} else {
|
|
SplitBytesHot += HotSize;
|
|
SplitBytesCold += ColdSize;
|
|
}
|
|
}
|
|
}
|
|
|
|
SplitFunctions::TrampolineSetType
|
|
SplitFunctions::createEHTrampolines(BinaryFunction &BF) const {
|
|
const auto &MIB = BF.getBinaryContext().MIB;
|
|
|
|
// Map real landing pads to the corresponding trampolines.
|
|
TrampolineSetType LPTrampolines;
|
|
|
|
// Iterate over the copy of basic blocks since we are adding new blocks to the
|
|
// function which will invalidate its iterators.
|
|
std::vector<BinaryBasicBlock *> Blocks(BF.pbegin(), BF.pend());
|
|
for (BinaryBasicBlock *BB : Blocks) {
|
|
for (MCInst &Instr : *BB) {
|
|
const Optional<MCPlus::MCLandingPad> EHInfo = MIB->getEHInfo(Instr);
|
|
if (!EHInfo || !EHInfo->first)
|
|
continue;
|
|
|
|
const MCSymbol *LPLabel = EHInfo->first;
|
|
BinaryBasicBlock *LPBlock = BF.getBasicBlockForLabel(LPLabel);
|
|
if (BB->getFragmentNum() == LPBlock->getFragmentNum())
|
|
continue;
|
|
|
|
const MCSymbol *TrampolineLabel = nullptr;
|
|
const TrampolineKey Key(BB->getFragmentNum(), LPLabel);
|
|
auto Iter = LPTrampolines.find(Key);
|
|
if (Iter != LPTrampolines.end()) {
|
|
TrampolineLabel = Iter->second;
|
|
} else {
|
|
// Create a trampoline basic block in the same fragment as the thrower.
|
|
// Note: there's no need to insert the jump instruction, it will be
|
|
// added by fixBranches().
|
|
BinaryBasicBlock *TrampolineBB = BF.addBasicBlock();
|
|
TrampolineBB->setFragmentNum(BB->getFragmentNum());
|
|
TrampolineBB->setExecutionCount(LPBlock->getExecutionCount());
|
|
TrampolineBB->addSuccessor(LPBlock, TrampolineBB->getExecutionCount());
|
|
TrampolineBB->setCFIState(LPBlock->getCFIState());
|
|
TrampolineLabel = TrampolineBB->getLabel();
|
|
LPTrampolines.insert(std::make_pair(Key, TrampolineLabel));
|
|
}
|
|
|
|
// Substitute the landing pad with the trampoline.
|
|
MIB->updateEHInfo(Instr,
|
|
MCPlus::MCLandingPad(TrampolineLabel, EHInfo->second));
|
|
}
|
|
}
|
|
|
|
if (LPTrampolines.empty())
|
|
return LPTrampolines;
|
|
|
|
// All trampoline blocks were added to the end of the function. Place them at
|
|
// the end of corresponding fragments.
|
|
BinaryFunction::BasicBlockOrderType NewLayout(BF.getLayout().block_begin(),
|
|
BF.getLayout().block_end());
|
|
stable_sort(NewLayout, [&](BinaryBasicBlock *A, BinaryBasicBlock *B) {
|
|
return A->getFragmentNum() < B->getFragmentNum();
|
|
});
|
|
BF.getLayout().update(NewLayout);
|
|
|
|
// Conservatively introduce branch instructions.
|
|
BF.fixBranches();
|
|
|
|
// Update exception-handling CFG for the function.
|
|
BF.recomputeLandingPads();
|
|
|
|
return LPTrampolines;
|
|
}
|
|
|
|
SplitFunctions::BasicBlockOrderType SplitFunctions::mergeEHTrampolines(
|
|
BinaryFunction &BF, SplitFunctions::BasicBlockOrderType &Layout,
|
|
const SplitFunctions::TrampolineSetType &Trampolines) const {
|
|
DenseMap<const MCSymbol *, SmallVector<const MCSymbol *, 0>>
|
|
IncomingTrampolines;
|
|
for (const auto &Entry : Trampolines) {
|
|
IncomingTrampolines[Entry.getFirst().Target].emplace_back(
|
|
Entry.getSecond());
|
|
}
|
|
|
|
BasicBlockOrderType MergedLayout;
|
|
for (BinaryBasicBlock *BB : Layout) {
|
|
auto Iter = IncomingTrampolines.find(BB->getLabel());
|
|
if (Iter != IncomingTrampolines.end()) {
|
|
for (const MCSymbol *const Trampoline : Iter->getSecond()) {
|
|
BinaryBasicBlock *LPBlock = BF.getBasicBlockForLabel(Trampoline);
|
|
assert(LPBlock && "Could not find matching landing pad block.");
|
|
MergedLayout.push_back(LPBlock);
|
|
}
|
|
}
|
|
MergedLayout.push_back(BB);
|
|
}
|
|
|
|
return MergedLayout;
|
|
}
|
|
|
|
} // namespace bolt
|
|
} // namespace llvm
|