mirror of
https://github.com/intel/llvm.git
synced 2026-01-28 01:04:49 +08:00
This functionality is now moved to a new class, ModuleManager. This class allows for inserting functions into a module, and will auto-rename them on insert to ensure a unique name. This now means that users adding new functions to a module must ensure that the function name is unique, as the Module will no longer do it automatically. This also means that Module::getNamedFunction now operates in O(N) instead of the O(c) time it did before. This simplifies the move of Modules to Operations as the ModuleOp will not be able to have this functionality. PiperOrigin-RevId: 255846088
931 lines
35 KiB
C++
931 lines
35 KiB
C++
//===- pybind.cpp - MLIR Python bindings ----------------------------------===//
|
|
//
|
|
// Copyright 2019 The MLIR Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
// =============================================================================
|
|
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/TargetSelect.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cstddef>
|
|
#include <unordered_map>
|
|
|
|
#include "mlir-c/Core.h"
|
|
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
|
|
#include "mlir/EDSC/Builders.h"
|
|
#include "mlir/EDSC/Helpers.h"
|
|
#include "mlir/EDSC/Intrinsics.h"
|
|
#include "mlir/ExecutionEngine/ExecutionEngine.h"
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/Function.h"
|
|
#include "mlir/IR/Module.h"
|
|
#include "mlir/IR/Types.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Pass/PassManager.h"
|
|
#include "mlir/Target/LLVMIR.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
#include "pybind11/pybind11.h"
|
|
#include "pybind11/pytypes.h"
|
|
#include "pybind11/stl.h"
|
|
|
|
static bool inited = [] {
|
|
llvm::InitializeNativeTarget();
|
|
llvm::InitializeNativeTargetAsmPrinter();
|
|
return true;
|
|
}();
|
|
|
|
namespace mlir {
|
|
namespace edsc {
|
|
namespace python {
|
|
|
|
namespace py = pybind11;
|
|
|
|
struct PythonAttribute;
|
|
struct PythonAttributedType;
|
|
struct PythonBindable;
|
|
struct PythonExpr;
|
|
struct PythonFunctionContext;
|
|
struct PythonStmt;
|
|
struct PythonBlock;
|
|
|
|
struct PythonType {
|
|
PythonType() : type{nullptr} {}
|
|
PythonType(mlir_type_t t) : type{t} {}
|
|
|
|
operator mlir_type_t() const { return type; }
|
|
|
|
PythonAttributedType attachAttributeDict(
|
|
const std::unordered_map<std::string, PythonAttribute> &attrs) const;
|
|
|
|
std::string str() {
|
|
mlir::Type f = mlir::Type::getFromOpaquePointer(type);
|
|
std::string res;
|
|
llvm::raw_string_ostream os(res);
|
|
f.print(os);
|
|
return res;
|
|
}
|
|
|
|
mlir_type_t type;
|
|
};
|
|
|
|
struct PythonValueHandle {
|
|
PythonValueHandle(PythonType type)
|
|
: value(mlir::Type::getFromOpaquePointer(type.type)) {}
|
|
PythonValueHandle(const PythonValueHandle &other) = default;
|
|
PythonValueHandle(const mlir::edsc::ValueHandle &other) : value(other) {}
|
|
operator ValueHandle() const { return value; }
|
|
operator ValueHandle &() { return value; }
|
|
|
|
std::string str() const {
|
|
return std::to_string(reinterpret_cast<intptr_t>(value.getValue()));
|
|
}
|
|
|
|
PythonValueHandle call(const std::vector<PythonValueHandle> &args) {
|
|
assert(value.hasType() && value.getType().isa<FunctionType>() &&
|
|
"can only call function-typed values");
|
|
|
|
std::vector<Value *> argValues;
|
|
argValues.reserve(args.size());
|
|
for (auto arg : args)
|
|
argValues.push_back(arg.value.getValue());
|
|
return ValueHandle::create<CallIndirectOp>(value, argValues);
|
|
}
|
|
|
|
mlir::edsc::ValueHandle value;
|
|
};
|
|
|
|
struct PythonFunction {
|
|
PythonFunction() : function{nullptr} {}
|
|
PythonFunction(mlir_func_t f) : function{f} {}
|
|
PythonFunction(mlir::Function *f) : function{f} {}
|
|
operator mlir_func_t() { return function; }
|
|
std::string str() {
|
|
mlir::Function *f = reinterpret_cast<mlir::Function *>(function);
|
|
std::string res;
|
|
llvm::raw_string_ostream os(res);
|
|
f->print(os);
|
|
return res;
|
|
}
|
|
|
|
// If the function does not yet have an entry block, i.e. if it is a function
|
|
// declaration, add the entry block, transforming the declaration into a
|
|
// definition. Return true if the block was added, false otherwise.
|
|
bool define() {
|
|
auto *f = reinterpret_cast<mlir::Function *>(function);
|
|
if (!f->getBlocks().empty())
|
|
return false;
|
|
|
|
f->addEntryBlock();
|
|
return true;
|
|
}
|
|
|
|
PythonValueHandle arg(unsigned index) {
|
|
Function *f = static_cast<Function *>(function);
|
|
assert(index < f->getNumArguments() && "argument index out of bounds");
|
|
return PythonValueHandle(ValueHandle(f->getArgument(index)));
|
|
}
|
|
|
|
mlir_func_t function;
|
|
};
|
|
|
|
/// Trivial C++ wrappers make use of the EDSC C API.
|
|
struct PythonMLIRModule {
|
|
PythonMLIRModule()
|
|
: mlirContext(), module(new mlir::Module(&mlirContext)),
|
|
moduleManager(module.get()) {}
|
|
|
|
PythonType makeScalarType(const std::string &mlirElemType,
|
|
unsigned bitwidth) {
|
|
return ::makeScalarType(mlir_context_t{&mlirContext}, mlirElemType.c_str(),
|
|
bitwidth);
|
|
}
|
|
PythonType makeMemRefType(PythonType elemType, std::vector<int64_t> sizes) {
|
|
return ::makeMemRefType(mlir_context_t{&mlirContext}, elemType,
|
|
int64_list_t{sizes.data(), sizes.size()});
|
|
}
|
|
PythonType makeIndexType() {
|
|
return ::makeIndexType(mlir_context_t{&mlirContext});
|
|
}
|
|
|
|
// Declare a function with the given name, input types and their attributes,
|
|
// output types, and function attributes, but do not define it.
|
|
PythonFunction declareFunction(const std::string &name,
|
|
const py::list &inputs,
|
|
const std::vector<PythonType> &outputTypes,
|
|
const py::kwargs &funcAttributes);
|
|
|
|
// Declare a function with the given name, input types and their attributes,
|
|
// output types, and function attributes.
|
|
PythonFunction makeFunction(const std::string &name, const py::list &inputs,
|
|
const std::vector<PythonType> &outputTypes,
|
|
const py::kwargs &funcAttributes) {
|
|
auto declaration =
|
|
declareFunction(name, inputs, outputTypes, funcAttributes);
|
|
declaration.define();
|
|
return declaration;
|
|
}
|
|
|
|
// Create a custom op given its name and arguments.
|
|
PythonExpr op(const std::string &name, PythonType type,
|
|
const py::list &arguments, const py::list &successors,
|
|
py::kwargs attributes);
|
|
|
|
// Create an integer attribute.
|
|
PythonAttribute integerAttr(PythonType type, int64_t value);
|
|
|
|
// Create a boolean attribute.
|
|
PythonAttribute boolAttr(bool value);
|
|
|
|
void compile() {
|
|
PassManager manager;
|
|
manager.addPass(mlir::createCanonicalizerPass());
|
|
manager.addPass(mlir::createCSEPass());
|
|
manager.addPass(mlir::createLowerAffinePass());
|
|
manager.addPass(mlir::createConvertToLLVMIRPass());
|
|
if (failed(manager.run(module.get()))) {
|
|
llvm::errs() << "conversion to the LLVM IR dialect failed\n";
|
|
return;
|
|
}
|
|
|
|
auto created = mlir::ExecutionEngine::create(module.get());
|
|
llvm::handleAllErrors(created.takeError(),
|
|
[](const llvm::ErrorInfoBase &b) {
|
|
b.log(llvm::errs());
|
|
assert(false);
|
|
});
|
|
engine = std::move(*created);
|
|
}
|
|
|
|
std::string getIR() {
|
|
std::string res;
|
|
llvm::raw_string_ostream os(res);
|
|
module->print(os);
|
|
return res;
|
|
}
|
|
|
|
uint64_t getEngineAddress() {
|
|
assert(engine && "module must be compiled into engine first");
|
|
return reinterpret_cast<uint64_t>(reinterpret_cast<void *>(engine.get()));
|
|
}
|
|
|
|
PythonFunction getNamedFunction(const std::string &name) {
|
|
return moduleManager.getNamedFunction(name);
|
|
}
|
|
|
|
PythonFunctionContext
|
|
makeFunctionContext(const std::string &name, const py::list &inputs,
|
|
const std::vector<PythonType> &outputs,
|
|
const py::kwargs &attributes);
|
|
|
|
private:
|
|
mlir::MLIRContext mlirContext;
|
|
// One single module in a python-exposed MLIRContext for now.
|
|
std::unique_ptr<mlir::Module> module;
|
|
mlir::ModuleManager moduleManager;
|
|
std::unique_ptr<mlir::ExecutionEngine> engine;
|
|
};
|
|
|
|
struct PythonFunctionContext {
|
|
PythonFunctionContext(PythonFunction f) : function(f) {}
|
|
PythonFunctionContext(PythonMLIRModule &module, const std::string &name,
|
|
const py::list &inputs,
|
|
const std::vector<PythonType> &outputs,
|
|
const py::kwargs &attributes) {
|
|
auto function = module.declareFunction(name, inputs, outputs, attributes);
|
|
function.define();
|
|
}
|
|
|
|
PythonFunction enter() {
|
|
assert(function.function && "function is not set up");
|
|
auto *mlirFunc = static_cast<mlir::Function *>(function.function);
|
|
contextBuilder.emplace(mlirFunc->getBody());
|
|
context =
|
|
new mlir::edsc::ScopedContext(*contextBuilder, mlirFunc->getLoc());
|
|
return function;
|
|
}
|
|
|
|
void exit(py::object, py::object, py::object) {
|
|
delete context;
|
|
context = nullptr;
|
|
contextBuilder.reset();
|
|
}
|
|
|
|
PythonFunction function;
|
|
mlir::edsc::ScopedContext *context;
|
|
llvm::Optional<OpBuilder> contextBuilder;
|
|
};
|
|
|
|
PythonFunctionContext PythonMLIRModule::makeFunctionContext(
|
|
const std::string &name, const py::list &inputs,
|
|
const std::vector<PythonType> &outputs, const py::kwargs &attributes) {
|
|
auto func = declareFunction(name, inputs, outputs, attributes);
|
|
func.define();
|
|
return PythonFunctionContext(func);
|
|
}
|
|
|
|
struct PythonBlockHandle {
|
|
PythonBlockHandle() : value(nullptr) {}
|
|
PythonBlockHandle(const PythonBlockHandle &other) = default;
|
|
PythonBlockHandle(const mlir::edsc::BlockHandle &other) : value(other) {}
|
|
operator mlir::edsc::BlockHandle() const { return value; }
|
|
|
|
PythonValueHandle arg(int index) { return arguments[index]; }
|
|
|
|
std::string str() {
|
|
std::string s;
|
|
llvm::raw_string_ostream os(s);
|
|
value.getBlock()->print(os);
|
|
return os.str();
|
|
}
|
|
|
|
mlir::edsc::BlockHandle value;
|
|
std::vector<mlir::edsc::ValueHandle> arguments;
|
|
};
|
|
|
|
struct PythonLoopContext {
|
|
PythonLoopContext(PythonValueHandle lb, PythonValueHandle ub, int64_t step)
|
|
: lb(lb), ub(ub), step(step) {}
|
|
PythonLoopContext(const PythonLoopContext &) = delete;
|
|
PythonLoopContext(PythonLoopContext &&) = default;
|
|
PythonLoopContext &operator=(const PythonLoopContext &) = delete;
|
|
PythonLoopContext &operator=(PythonLoopContext &&) = default;
|
|
~PythonLoopContext() { assert(!builder && "did not exit from the context"); }
|
|
|
|
PythonValueHandle enter() {
|
|
ValueHandle iv(lb.value.getType());
|
|
builder = new LoopBuilder(&iv, lb.value, ub.value, step);
|
|
return iv;
|
|
}
|
|
|
|
void exit(py::object, py::object, py::object) {
|
|
(*builder)({}); // exit from the builder's scope.
|
|
delete builder;
|
|
builder = nullptr;
|
|
}
|
|
|
|
PythonValueHandle lb, ub;
|
|
int64_t step;
|
|
LoopBuilder *builder = nullptr;
|
|
};
|
|
|
|
struct PythonLoopNestContext {
|
|
PythonLoopNestContext(const std::vector<PythonValueHandle> &lbs,
|
|
const std::vector<PythonValueHandle> &ubs,
|
|
const std::vector<int64_t> steps)
|
|
: lbs(lbs), ubs(ubs), steps(steps) {
|
|
assert(lbs.size() == ubs.size() && lbs.size() == steps.size() &&
|
|
"expected the same number of lower, upper bounds, and steps");
|
|
}
|
|
PythonLoopNestContext(const PythonLoopNestContext &) = delete;
|
|
PythonLoopNestContext(PythonLoopNestContext &&) = default;
|
|
PythonLoopNestContext &operator=(const PythonLoopNestContext &) = delete;
|
|
PythonLoopNestContext &operator=(PythonLoopNestContext &&) = default;
|
|
~PythonLoopNestContext() {
|
|
assert(!builder && "did not exit from the context");
|
|
}
|
|
|
|
std::vector<PythonValueHandle> enter() {
|
|
if (steps.empty())
|
|
return {};
|
|
|
|
auto type = mlir_type_t(lbs.front().value.getType().getAsOpaquePointer());
|
|
std::vector<PythonValueHandle> handles(steps.size(),
|
|
PythonValueHandle(type));
|
|
std::vector<ValueHandle *> handlePtrs;
|
|
handlePtrs.reserve(steps.size());
|
|
for (auto &h : handles)
|
|
handlePtrs.push_back(&h.value);
|
|
builder = new LoopNestBuilder(
|
|
handlePtrs, std::vector<ValueHandle>(lbs.begin(), lbs.end()),
|
|
std::vector<ValueHandle>(ubs.begin(), ubs.end()), steps);
|
|
return handles;
|
|
}
|
|
|
|
void exit(py::object, py::object, py::object) {
|
|
(*builder)({}); // exit from the builder's scope.
|
|
delete builder;
|
|
builder = nullptr;
|
|
}
|
|
|
|
std::vector<PythonValueHandle> lbs;
|
|
std::vector<PythonValueHandle> ubs;
|
|
std::vector<int64_t> steps;
|
|
LoopNestBuilder *builder = nullptr;
|
|
};
|
|
|
|
struct PythonBlockAppender {
|
|
PythonBlockAppender(const PythonBlockHandle &handle) : handle(handle) {}
|
|
PythonBlockHandle handle;
|
|
};
|
|
|
|
struct PythonBlockContext {
|
|
public:
|
|
PythonBlockContext() {
|
|
createBlockBuilder();
|
|
clearBuilder();
|
|
}
|
|
PythonBlockContext(const std::vector<PythonType> &argTypes) {
|
|
handle.arguments.reserve(argTypes.size());
|
|
for (const auto &t : argTypes) {
|
|
auto type =
|
|
Type::getFromOpaquePointer(reinterpret_cast<const void *>(t.type));
|
|
handle.arguments.emplace_back(type);
|
|
}
|
|
createBlockBuilder();
|
|
clearBuilder();
|
|
}
|
|
PythonBlockContext(const PythonBlockAppender &a) : handle(a.handle) {}
|
|
PythonBlockContext(const PythonBlockContext &) = delete;
|
|
PythonBlockContext(PythonBlockContext &&) = default;
|
|
PythonBlockContext &operator=(const PythonBlockContext &) = delete;
|
|
PythonBlockContext &operator=(PythonBlockContext &&) = default;
|
|
~PythonBlockContext() {
|
|
assert(!builder && "did not exit from the block context");
|
|
}
|
|
|
|
// EDSC maintain an implicit stack of builders (mostly for keeping track of
|
|
// insretion points); every operation gets inserted using the top-of-the-stack
|
|
// builder. Creating a new EDSC Builder automatically puts it on the stack,
|
|
// effectively entering the block for it.
|
|
void createBlockBuilder() {
|
|
if (handle.value.getBlock()) {
|
|
builder = new BlockBuilder(handle.value, mlir::edsc::Append());
|
|
} else {
|
|
std::vector<ValueHandle *> args;
|
|
args.reserve(handle.arguments.size());
|
|
for (auto &a : handle.arguments)
|
|
args.push_back(&a);
|
|
builder = new BlockBuilder(&handle.value, args);
|
|
}
|
|
}
|
|
|
|
PythonBlockHandle enter() {
|
|
createBlockBuilder();
|
|
return handle;
|
|
}
|
|
|
|
void exit(py::object, py::object, py::object) { clearBuilder(); }
|
|
|
|
PythonBlockHandle getHandle() { return handle; }
|
|
|
|
// EDSC maintain an implicit stack of builders (mostly for keeping track of
|
|
// insretion points); every operation gets inserted using the top-of-the-stack
|
|
// builder. Calling operator() on a builder pops the builder from the stack,
|
|
// effectively resetting the insertion point to its position before we entered
|
|
// the block.
|
|
void clearBuilder() {
|
|
(*builder)({}); // exit from the builder's scope.
|
|
delete builder;
|
|
builder = nullptr;
|
|
}
|
|
|
|
PythonBlockHandle handle;
|
|
BlockBuilder *builder = nullptr;
|
|
};
|
|
|
|
struct PythonAttribute {
|
|
PythonAttribute() : attr(nullptr) {}
|
|
PythonAttribute(const mlir_attr_t &a) : attr(a) {}
|
|
PythonAttribute(const PythonAttribute &other) = default;
|
|
operator mlir_attr_t() { return attr; }
|
|
|
|
std::string str() const {
|
|
if (!attr)
|
|
return "##null attr##";
|
|
|
|
std::string res;
|
|
llvm::raw_string_ostream os(res);
|
|
Attribute::getFromOpaquePointer(reinterpret_cast<const void *>(attr))
|
|
.print(os);
|
|
return res;
|
|
}
|
|
|
|
mlir_attr_t attr;
|
|
};
|
|
|
|
struct PythonAttributedType {
|
|
PythonAttributedType() : type(nullptr) {}
|
|
PythonAttributedType(mlir_type_t t) : type(t) {}
|
|
PythonAttributedType(
|
|
PythonType t,
|
|
const std::unordered_map<std::string, PythonAttribute> &attributes =
|
|
std::unordered_map<std::string, PythonAttribute>())
|
|
: type(t), attrs(attributes) {}
|
|
|
|
operator mlir_type_t() const { return type.type; }
|
|
operator PythonType() const { return type; }
|
|
|
|
// Return a vector of named attribute descriptors. The vector owns the
|
|
// mlir_named_attr_t objects it contains, but not the names and attributes
|
|
// those objects point to (names and opaque pointers to attributes are owned
|
|
// by `this`).
|
|
std::vector<mlir_named_attr_t> getNamedAttrs() const {
|
|
std::vector<mlir_named_attr_t> result;
|
|
result.reserve(attrs.size());
|
|
for (const auto &namedAttr : attrs)
|
|
result.push_back({namedAttr.first.c_str(), namedAttr.second.attr});
|
|
return result;
|
|
}
|
|
|
|
std::string str() {
|
|
mlir::Type t = mlir::Type::getFromOpaquePointer(type);
|
|
std::string res;
|
|
llvm::raw_string_ostream os(res);
|
|
t.print(os);
|
|
if (attrs.empty())
|
|
return os.str();
|
|
|
|
os << '{';
|
|
bool first = true;
|
|
for (const auto &namedAttr : attrs) {
|
|
if (first)
|
|
first = false;
|
|
else
|
|
os << ", ";
|
|
os << namedAttr.first << ": " << namedAttr.second.str();
|
|
}
|
|
os << '}';
|
|
|
|
return os.str();
|
|
}
|
|
|
|
private:
|
|
PythonType type;
|
|
std::unordered_map<std::string, PythonAttribute> attrs;
|
|
};
|
|
|
|
struct PythonIndexedValue {
|
|
explicit PythonIndexedValue(PythonType type)
|
|
: indexed(Type::getFromOpaquePointer(type.type)) {}
|
|
explicit PythonIndexedValue(const IndexedValue &other) : indexed(other) {}
|
|
PythonIndexedValue(PythonValueHandle handle) : indexed(handle.value) {}
|
|
PythonIndexedValue(const PythonIndexedValue &other) = default;
|
|
|
|
// Create a new indexed value with the same base as this one but with indices
|
|
// provided as arguments.
|
|
PythonIndexedValue index(const std::vector<PythonValueHandle> &indices) {
|
|
std::vector<ValueHandle> handles(indices.begin(), indices.end());
|
|
return PythonIndexedValue(IndexedValue(indexed(handles)));
|
|
}
|
|
|
|
void store(const std::vector<PythonValueHandle> &indices,
|
|
PythonValueHandle value) {
|
|
// Uses the overloaded `opreator=` to emit a store.
|
|
index(indices).indexed = value.value;
|
|
}
|
|
|
|
PythonValueHandle load(const std::vector<PythonValueHandle> &indices) {
|
|
// Uses the overloaded cast to `ValueHandle` to emit a load.
|
|
return static_cast<ValueHandle>(index(indices).indexed);
|
|
}
|
|
|
|
IndexedValue indexed;
|
|
};
|
|
|
|
template <typename ListTy, typename PythonTy, typename Ty>
|
|
ListTy makeCList(SmallVectorImpl<Ty> &owning, const py::list &list) {
|
|
for (auto &inp : list) {
|
|
owning.push_back(Ty{inp.cast<PythonTy>()});
|
|
}
|
|
return ListTy{owning.data(), owning.size()};
|
|
}
|
|
|
|
static mlir_type_list_t makeCTypes(llvm::SmallVectorImpl<mlir_type_t> &owning,
|
|
const py::list &types) {
|
|
return makeCList<mlir_type_list_t, PythonType>(owning, types);
|
|
}
|
|
|
|
PythonFunction
|
|
PythonMLIRModule::declareFunction(const std::string &name,
|
|
const py::list &inputs,
|
|
const std::vector<PythonType> &outputTypes,
|
|
const py::kwargs &funcAttributes) {
|
|
|
|
std::vector<PythonAttributedType> attributedInputs;
|
|
attributedInputs.reserve(inputs.size());
|
|
for (const auto &in : inputs) {
|
|
std::string className = in.get_type().str();
|
|
if (className.find(".Type'") != std::string::npos)
|
|
attributedInputs.emplace_back(in.cast<PythonType>());
|
|
else
|
|
attributedInputs.push_back(in.cast<PythonAttributedType>());
|
|
}
|
|
|
|
// Create the function type.
|
|
std::vector<mlir_type_t> ins(attributedInputs.begin(),
|
|
attributedInputs.end());
|
|
std::vector<mlir_type_t> outs(outputTypes.begin(), outputTypes.end());
|
|
auto funcType = ::makeFunctionType(
|
|
mlir_context_t{&mlirContext}, mlir_type_list_t{ins.data(), ins.size()},
|
|
mlir_type_list_t{outs.data(), outs.size()});
|
|
|
|
// Build the list of function attributes.
|
|
std::vector<mlir::NamedAttribute> attrs;
|
|
attrs.reserve(funcAttributes.size());
|
|
for (const auto &named : funcAttributes)
|
|
attrs.emplace_back(
|
|
Identifier::get(std::string(named.first.str()), &mlirContext),
|
|
mlir::Attribute::getFromOpaquePointer(reinterpret_cast<const void *>(
|
|
named.second.cast<PythonAttribute>().attr)));
|
|
|
|
// Build the list of lists of function argument attributes.
|
|
std::vector<mlir::NamedAttributeList> inputAttrs;
|
|
inputAttrs.reserve(attributedInputs.size());
|
|
for (const auto &in : attributedInputs) {
|
|
std::vector<mlir::NamedAttribute> inAttrs;
|
|
for (const auto &named : in.getNamedAttrs())
|
|
inAttrs.emplace_back(Identifier::get(named.name, &mlirContext),
|
|
mlir::Attribute::getFromOpaquePointer(
|
|
reinterpret_cast<const void *>(named.value)));
|
|
inputAttrs.emplace_back(inAttrs);
|
|
}
|
|
|
|
// Create the function itself.
|
|
auto *func = new mlir::Function(
|
|
UnknownLoc::get(&mlirContext), name,
|
|
mlir::Type::getFromOpaquePointer(funcType).cast<FunctionType>(), attrs,
|
|
inputAttrs);
|
|
moduleManager.insert(func);
|
|
return func;
|
|
}
|
|
|
|
PythonAttributedType PythonType::attachAttributeDict(
|
|
const std::unordered_map<std::string, PythonAttribute> &attrs) const {
|
|
return PythonAttributedType(*this, attrs);
|
|
}
|
|
|
|
PythonAttribute PythonMLIRModule::integerAttr(PythonType type, int64_t value) {
|
|
return PythonAttribute(::makeIntegerAttr(type, value));
|
|
}
|
|
|
|
PythonAttribute PythonMLIRModule::boolAttr(bool value) {
|
|
return PythonAttribute(::makeBoolAttr(&mlirContext, value));
|
|
}
|
|
|
|
PYBIND11_MODULE(pybind, m) {
|
|
m.doc() =
|
|
"Python bindings for MLIR Embedded Domain-Specific Components (EDSCs)";
|
|
m.def("version", []() { return "EDSC Python extensions v1.0"; });
|
|
|
|
py::class_<PythonLoopContext>(
|
|
m, "LoopContext", "A context for building the body of a 'for' loop")
|
|
.def(py::init<PythonValueHandle, PythonValueHandle, int64_t>())
|
|
.def("__enter__", &PythonLoopContext::enter)
|
|
.def("__exit__", &PythonLoopContext::exit);
|
|
|
|
py::class_<PythonLoopNestContext>(m, "LoopNestContext",
|
|
"A context for building the body of a the "
|
|
"innermost loop in a nest of 'for' loops")
|
|
.def(py::init<const std::vector<PythonValueHandle> &,
|
|
const std::vector<PythonValueHandle> &,
|
|
const std::vector<int64_t> &>())
|
|
.def("__enter__", &PythonLoopNestContext::enter)
|
|
.def("__exit__", &PythonLoopNestContext::exit);
|
|
|
|
m.def("constant_index", [](int64_t val) -> PythonValueHandle {
|
|
return ValueHandle(index_t(val));
|
|
});
|
|
m.def("constant_int", [](int64_t val, int width) -> PythonValueHandle {
|
|
return ValueHandle::create<ConstantIntOp>(val, width);
|
|
});
|
|
m.def("constant_float", [](double val, PythonType type) -> PythonValueHandle {
|
|
FloatType floatType =
|
|
Type::getFromOpaquePointer(type.type).cast<FloatType>();
|
|
assert(floatType);
|
|
auto value = APFloat(val);
|
|
bool lostPrecision;
|
|
value.convert(floatType.getFloatSemantics(), APFloat::rmNearestTiesToEven,
|
|
&lostPrecision);
|
|
return ValueHandle::create<ConstantFloatOp>(value, floatType);
|
|
});
|
|
m.def("constant_function", [](PythonFunction func) -> PythonValueHandle {
|
|
auto *function = reinterpret_cast<Function *>(func.function);
|
|
auto attr = FunctionAttr::get(function);
|
|
return ValueHandle::create<ConstantOp>(function->getType(), attr);
|
|
});
|
|
m.def("appendTo", [](const PythonBlockHandle &handle) {
|
|
return PythonBlockAppender(handle);
|
|
});
|
|
m.def(
|
|
"ret",
|
|
[](const std::vector<PythonValueHandle> &args) {
|
|
std::vector<ValueHandle> values(args.begin(), args.end());
|
|
(intrinsics::ret(ArrayRef<ValueHandle>{values})); // vexing parse
|
|
return PythonValueHandle(nullptr);
|
|
},
|
|
py::arg("args") = std::vector<PythonValueHandle>());
|
|
m.def(
|
|
"br",
|
|
[](const PythonBlockHandle &dest,
|
|
const std::vector<PythonValueHandle> &args) {
|
|
std::vector<ValueHandle> values(args.begin(), args.end());
|
|
intrinsics::br(dest, values);
|
|
return PythonValueHandle(nullptr);
|
|
},
|
|
py::arg("dest"), py::arg("args") = std::vector<PythonValueHandle>());
|
|
m.def(
|
|
"cond_br",
|
|
[](PythonValueHandle condition, const PythonBlockHandle &trueDest,
|
|
const std::vector<PythonValueHandle> &trueArgs,
|
|
const PythonBlockHandle &falseDest,
|
|
const std::vector<PythonValueHandle> &falseArgs) -> PythonValueHandle {
|
|
std::vector<ValueHandle> trueArguments(trueArgs.begin(),
|
|
trueArgs.end());
|
|
std::vector<ValueHandle> falseArguments(falseArgs.begin(),
|
|
falseArgs.end());
|
|
intrinsics::cond_br(condition, trueDest, trueArguments, falseDest,
|
|
falseArguments);
|
|
return PythonValueHandle(nullptr);
|
|
});
|
|
m.def("select",
|
|
[](PythonValueHandle condition, PythonValueHandle trueValue,
|
|
PythonValueHandle falseValue) -> PythonValueHandle {
|
|
return ValueHandle::create<SelectOp>(condition.value, trueValue.value,
|
|
falseValue.value);
|
|
});
|
|
m.def("op",
|
|
[](const std::string &name,
|
|
const std::vector<PythonValueHandle> &operands,
|
|
const std::vector<PythonType> &resultTypes,
|
|
const py::kwargs &attributes) -> PythonValueHandle {
|
|
std::vector<ValueHandle> operandHandles(operands.begin(),
|
|
operands.end());
|
|
std::vector<Type> types;
|
|
types.reserve(resultTypes.size());
|
|
for (auto t : resultTypes)
|
|
types.push_back(Type::getFromOpaquePointer(t.type));
|
|
|
|
std::vector<NamedAttribute> attrs;
|
|
attrs.reserve(attributes.size());
|
|
for (const auto &a : attributes) {
|
|
std::string name = a.first.str();
|
|
auto pyAttr = a.second.cast<PythonAttribute>();
|
|
auto cppAttr = Attribute::getFromOpaquePointer(pyAttr.attr);
|
|
auto identifier =
|
|
Identifier::get(name, ScopedContext::getContext());
|
|
attrs.emplace_back(identifier, cppAttr);
|
|
}
|
|
|
|
return ValueHandle::create(name, operandHandles, types, attrs);
|
|
});
|
|
|
|
py::class_<PythonFunction>(m, "Function",
|
|
"Wrapping class for mlir::Function.")
|
|
.def(py::init<PythonFunction>())
|
|
.def("__str__", &PythonFunction::str)
|
|
.def("define", &PythonFunction::define,
|
|
"Adds a body to the function if it does not already have one. "
|
|
"Returns true if the body was added")
|
|
.def("arg", &PythonFunction::arg,
|
|
"Get the ValueHandle to the indexed argument of the function");
|
|
|
|
py::class_<PythonAttribute>(m, "Attribute",
|
|
"Wrapping class for mlir::Attribute")
|
|
.def(py::init<PythonAttribute>())
|
|
.def("__str__", &PythonAttribute::str);
|
|
|
|
py::class_<PythonType>(m, "Type", "Wrapping class for mlir::Type.")
|
|
.def(py::init<PythonType>())
|
|
.def("__call__", &PythonType::attachAttributeDict,
|
|
"Attach the attributes to these type, making it suitable for "
|
|
"constructing functions with argument attributes")
|
|
.def("__str__", &PythonType::str);
|
|
|
|
py::class_<PythonAttributedType>(
|
|
m, "AttributedType",
|
|
"A class containing a wrapped mlir::Type and a wrapped "
|
|
"mlir::NamedAttributeList that are used together, e.g. in function "
|
|
"argument declaration")
|
|
.def(py::init<PythonAttributedType>())
|
|
.def("__str__", &PythonAttributedType::str);
|
|
|
|
py::class_<PythonMLIRModule>(
|
|
m, "MLIRModule",
|
|
"An MLIRModule is the abstraction that owns the allocations to support "
|
|
"compilation of a single mlir::Module into an ExecutionEngine backed by "
|
|
"the LLVM ORC JIT. A typical flow consists in creating an MLIRModule, "
|
|
"adding functions, compiling the module to obtain an ExecutionEngine on "
|
|
"which named functions may be called. For now the only means to retrieve "
|
|
"the ExecutionEngine is by calling `get_engine_address`. This mode of "
|
|
"execution is limited to passing the pointer to C++ where the function "
|
|
"is called. Extending the API to allow calling JIT compiled functions "
|
|
"directly require integration with a tensor library (e.g. numpy). This "
|
|
"is left as the prerogative of libraries and frameworks for now.")
|
|
.def(py::init<>())
|
|
.def("boolAttr", &PythonMLIRModule::boolAttr,
|
|
"Creates an mlir::BoolAttr with the given value")
|
|
.def(
|
|
"integerAttr", &PythonMLIRModule::integerAttr,
|
|
"Creates an mlir::IntegerAttr of the given type with the given value "
|
|
"in the context associated with this MLIR module.")
|
|
.def("declare_function", &PythonMLIRModule::declareFunction,
|
|
"Declares a new mlir::Function in the current mlir::Module. The "
|
|
"function arguments can have attributes. The function has no "
|
|
"definition and can be linked to an external library.")
|
|
.def("make_function", &PythonMLIRModule::makeFunction,
|
|
"Defines a new mlir::Function in the current mlir::Module.")
|
|
.def("function_context", &PythonMLIRModule::makeFunctionContext,
|
|
"Defines a new mlir::Function in the mlir::Module and creates the "
|
|
"function context for building the body of the function.")
|
|
.def("get_function", &PythonMLIRModule::getNamedFunction,
|
|
"Looks up the function with the given name in the module.")
|
|
.def(
|
|
"make_scalar_type",
|
|
[](PythonMLIRModule &instance, const std::string &type,
|
|
unsigned bitwidth) {
|
|
return instance.makeScalarType(type, bitwidth);
|
|
},
|
|
py::arg("type"), py::arg("bitwidth") = 0,
|
|
"Returns a scalar mlir::Type using the following convention:\n"
|
|
" - makeScalarType(c, \"bf16\") return an "
|
|
"`mlir::FloatType::getBF16`\n"
|
|
" - makeScalarType(c, \"f16\") return an `mlir::FloatType::getF16`\n"
|
|
" - makeScalarType(c, \"f32\") return an `mlir::FloatType::getF32`\n"
|
|
" - makeScalarType(c, \"f64\") return an `mlir::FloatType::getF64`\n"
|
|
" - makeScalarType(c, \"index\") return an `mlir::IndexType::get`\n"
|
|
" - makeScalarType(c, \"i\", bitwidth) return an "
|
|
"`mlir::IntegerType::get(bitwidth)`\n\n"
|
|
" No other combinations are currently supported.")
|
|
.def("make_memref_type", &PythonMLIRModule::makeMemRefType,
|
|
"Returns an mlir::MemRefType of an elemental scalar. -1 is used to "
|
|
"denote symbolic dimensions in the resulting memref shape.")
|
|
.def("make_index_type", &PythonMLIRModule::makeIndexType,
|
|
"Returns an mlir::IndexType")
|
|
.def("compile", &PythonMLIRModule::compile,
|
|
"Compiles the mlir::Module to LLVMIR a creates new opaque "
|
|
"ExecutionEngine backed by the ORC JIT.")
|
|
.def("get_ir", &PythonMLIRModule::getIR,
|
|
"Returns a dump of the MLIR representation of the module. This is "
|
|
"used for serde to support out-of-process execution as well as "
|
|
"debugging purposes.")
|
|
.def("get_engine_address", &PythonMLIRModule::getEngineAddress,
|
|
"Returns the address of the compiled ExecutionEngine. This is used "
|
|
"for in-process execution.")
|
|
.def("__str__", &PythonMLIRModule::getIR,
|
|
"Get the string representation of the module");
|
|
|
|
py::class_<PythonFunctionContext>(
|
|
m, "FunctionContext", "A wrapper around mlir::edsc::ScopedContext")
|
|
.def(py::init<PythonFunction>())
|
|
.def("__enter__", &PythonFunctionContext::enter)
|
|
.def("__exit__", &PythonFunctionContext::exit);
|
|
|
|
{
|
|
using namespace mlir::edsc::op;
|
|
py::class_<PythonValueHandle>(m, "ValueHandle",
|
|
"A wrapper around mlir::edsc::ValueHandle")
|
|
.def(py::init<PythonType>())
|
|
.def(py::init<PythonValueHandle>())
|
|
.def("__add__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return lhs.value + rhs.value; })
|
|
.def("__sub__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return lhs.value - rhs.value; })
|
|
.def("__mul__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return lhs.value * rhs.value; })
|
|
.def("__div__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return lhs.value / rhs.value; })
|
|
.def("__truediv__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return lhs.value / rhs.value; })
|
|
.def("__floordiv__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return floorDiv(lhs, rhs); })
|
|
.def("__mod__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return lhs.value % rhs.value; })
|
|
.def("__lt__",
|
|
[](PythonValueHandle lhs,
|
|
PythonValueHandle rhs) -> PythonValueHandle {
|
|
return ValueHandle::create<CmpIOp>(CmpIPredicate::SLT, lhs.value,
|
|
rhs.value);
|
|
})
|
|
.def("__le__",
|
|
[](PythonValueHandle lhs,
|
|
PythonValueHandle rhs) -> PythonValueHandle {
|
|
return ValueHandle::create<CmpIOp>(CmpIPredicate::SLE, lhs.value,
|
|
rhs.value);
|
|
})
|
|
.def("__gt__",
|
|
[](PythonValueHandle lhs,
|
|
PythonValueHandle rhs) -> PythonValueHandle {
|
|
return ValueHandle::create<CmpIOp>(CmpIPredicate::SGT, lhs.value,
|
|
rhs.value);
|
|
})
|
|
.def("__ge__",
|
|
[](PythonValueHandle lhs,
|
|
PythonValueHandle rhs) -> PythonValueHandle {
|
|
return ValueHandle::create<CmpIOp>(CmpIPredicate::SGE, lhs.value,
|
|
rhs.value);
|
|
})
|
|
.def("__eq__",
|
|
[](PythonValueHandle lhs,
|
|
PythonValueHandle rhs) -> PythonValueHandle {
|
|
return ValueHandle::create<CmpIOp>(CmpIPredicate::EQ, lhs.value,
|
|
rhs.value);
|
|
})
|
|
.def("__ne__",
|
|
[](PythonValueHandle lhs,
|
|
PythonValueHandle rhs) -> PythonValueHandle {
|
|
return ValueHandle::create<CmpIOp>(CmpIPredicate::NE, lhs.value,
|
|
rhs.value);
|
|
})
|
|
.def("__invert__",
|
|
[](PythonValueHandle handle) -> PythonValueHandle {
|
|
return !handle.value;
|
|
})
|
|
.def("__and__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return lhs.value && rhs.value; })
|
|
.def("__or__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return lhs.value || rhs.value; })
|
|
.def("__call__", &PythonValueHandle::call);
|
|
}
|
|
|
|
py::class_<PythonBlockAppender>(
|
|
m, "BlockAppender",
|
|
"A dummy class signaling BlockContext to append IR to the given block "
|
|
"instead of creating a new block")
|
|
.def(py::init<const PythonBlockHandle &>());
|
|
py::class_<PythonBlockHandle>(m, "BlockHandle",
|
|
"A wrapper around mlir::edsc::BlockHandle")
|
|
.def(py::init<PythonBlockHandle>())
|
|
.def("arg", &PythonBlockHandle::arg);
|
|
|
|
py::class_<PythonBlockContext>(m, "BlockContext",
|
|
"A wrapper around mlir::edsc::BlockBuilder")
|
|
.def(py::init<>())
|
|
.def(py::init<const std::vector<PythonType> &>())
|
|
.def(py::init<const PythonBlockAppender &>())
|
|
.def("__enter__", &PythonBlockContext::enter)
|
|
.def("__exit__", &PythonBlockContext::exit)
|
|
.def("handle", &PythonBlockContext::getHandle);
|
|
|
|
py::class_<PythonIndexedValue>(m, "IndexedValue",
|
|
"A wrapper around mlir::edsc::IndexedValue")
|
|
.def(py::init<PythonValueHandle>())
|
|
.def("load", &PythonIndexedValue::load)
|
|
.def("store", &PythonIndexedValue::store);
|
|
}
|
|
|
|
} // namespace python
|
|
} // namespace edsc
|
|
} // namespace mlir
|