Files
llvm/lld/ELF/SymbolTable.cpp
Rafael Espindola 8db87291ef Internalize common variables.
Before this lld was always creating common symbols itself. It worked,
but prevented them from being internalized when possible.

Now it preserves common symbols is the bitcode and they are internalized.

Fixes pr30184.

llvm-svn: 280242
2016-08-31 13:42:08 +00:00

702 lines
24 KiB
C++

//===- SymbolTable.cpp ----------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Symbol table is a bag of all known symbols. We put all symbols of
// all input files to the symbol table. The symbol table is basically
// a hash table with the logic to resolve symbol name conflicts using
// the symbol types.
//
//===----------------------------------------------------------------------===//
#include "SymbolTable.h"
#include "Config.h"
#include "Error.h"
#include "LinkerScript.h"
#include "Strings.h"
#include "SymbolListFile.h"
#include "Symbols.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/Support/StringSaver.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
// All input object files must be for the same architecture
// (e.g. it does not make sense to link x86 object files with
// MIPS object files.) This function checks for that error.
template <class ELFT> static bool isCompatible(InputFile *F) {
if (!isa<ELFFileBase<ELFT>>(F) && !isa<BitcodeFile>(F))
return true;
if (F->EKind == Config->EKind && F->EMachine == Config->EMachine)
return true;
StringRef A = F->getName();
StringRef B = Config->Emulation;
if (B.empty())
B = Config->FirstElf->getName();
error(A + " is incompatible with " + B);
return false;
}
// Add symbols in File to the symbol table.
template <class ELFT>
void SymbolTable<ELFT>::addFile(std::unique_ptr<InputFile> File) {
InputFile *FileP = File.get();
if (!isCompatible<ELFT>(FileP))
return;
// .a file
if (auto *F = dyn_cast<ArchiveFile>(FileP)) {
ArchiveFiles.emplace_back(cast<ArchiveFile>(File.release()));
F->parse<ELFT>();
return;
}
// Lazy object file
if (auto *F = dyn_cast<LazyObjectFile>(FileP)) {
LazyObjectFiles.emplace_back(cast<LazyObjectFile>(File.release()));
F->parse<ELFT>();
return;
}
if (Config->Trace)
outs() << getFilename(FileP) << "\n";
// .so file
if (auto *F = dyn_cast<SharedFile<ELFT>>(FileP)) {
// DSOs are uniquified not by filename but by soname.
F->parseSoName();
if (!SoNames.insert(F->getSoName()).second)
return;
SharedFiles.emplace_back(cast<SharedFile<ELFT>>(File.release()));
F->parseRest();
return;
}
// LLVM bitcode file
if (auto *F = dyn_cast<BitcodeFile>(FileP)) {
BitcodeFiles.emplace_back(cast<BitcodeFile>(File.release()));
F->parse<ELFT>(ComdatGroups);
return;
}
// Regular object file
auto *F = cast<ObjectFile<ELFT>>(FileP);
ObjectFiles.emplace_back(cast<ObjectFile<ELFT>>(File.release()));
F->parse(ComdatGroups);
}
// This function is where all the optimizations of link-time
// optimization happens. When LTO is in use, some input files are
// not in native object file format but in the LLVM bitcode format.
// This function compiles bitcode files into a few big native files
// using LLVM functions and replaces bitcode symbols with the results.
// Because all bitcode files that consist of a program are passed
// to the compiler at once, it can do whole-program optimization.
template <class ELFT> void SymbolTable<ELFT>::addCombinedLtoObject() {
if (BitcodeFiles.empty())
return;
// Compile bitcode files.
Lto.reset(new BitcodeCompiler);
for (const std::unique_ptr<BitcodeFile> &F : BitcodeFiles)
Lto->add(*F);
std::vector<std::unique_ptr<InputFile>> IFs = Lto->compile();
// Replace bitcode symbols.
for (auto &IF : IFs) {
ObjectFile<ELFT> *Obj = cast<ObjectFile<ELFT>>(IF.release());
DenseSet<StringRef> DummyGroups;
Obj->parse(DummyGroups);
ObjectFiles.emplace_back(Obj);
}
}
template <class ELFT>
DefinedRegular<ELFT> *SymbolTable<ELFT>::addAbsolute(StringRef Name,
uint8_t Visibility) {
return cast<DefinedRegular<ELFT>>(
addRegular(Name, STB_GLOBAL, Visibility)->body());
}
// Add Name as an "ignored" symbol. An ignored symbol is a regular
// linker-synthesized defined symbol, but is only defined if needed.
template <class ELFT>
DefinedRegular<ELFT> *SymbolTable<ELFT>::addIgnored(StringRef Name,
uint8_t Visibility) {
if (!find(Name))
return nullptr;
return addAbsolute(Name, Visibility);
}
// Set a flag for --trace-symbol so that we can print out a log message
// if a new symbol with the same name is inserted into the symbol table.
template <class ELFT> void SymbolTable<ELFT>::trace(StringRef Name) {
Symtab.insert({Name, {-1, true}});
}
// Rename SYM as __wrap_SYM. The original symbol is preserved as __real_SYM.
// Used to implement --wrap.
template <class ELFT> void SymbolTable<ELFT>::wrap(StringRef Name) {
SymbolBody *B = find(Name);
if (!B)
return;
StringSaver Saver(Alloc);
Symbol *Sym = B->symbol();
Symbol *Real = addUndefined(Saver.save("__real_" + Name));
Symbol *Wrap = addUndefined(Saver.save("__wrap_" + Name));
// We rename symbols by replacing the old symbol's SymbolBody with the new
// symbol's SymbolBody. This causes all SymbolBody pointers referring to the
// old symbol to instead refer to the new symbol.
memcpy(Real->Body.buffer, Sym->Body.buffer, sizeof(Sym->Body));
memcpy(Sym->Body.buffer, Wrap->Body.buffer, sizeof(Wrap->Body));
}
static uint8_t getMinVisibility(uint8_t VA, uint8_t VB) {
if (VA == STV_DEFAULT)
return VB;
if (VB == STV_DEFAULT)
return VA;
return std::min(VA, VB);
}
// Parses a symbol in the form of <name>@<version> or <name>@@<version>.
static std::pair<StringRef, uint16_t> getSymbolVersion(StringRef S) {
if (Config->VersionDefinitions.empty())
return {S, Config->DefaultSymbolVersion};
size_t Pos = S.find('@');
if (Pos == 0 || Pos == StringRef::npos)
return {S, Config->DefaultSymbolVersion};
StringRef Name = S.substr(0, Pos);
StringRef Verstr = S.substr(Pos + 1);
if (Verstr.empty())
return {S, Config->DefaultSymbolVersion};
// '@@' in a symbol name means the default version.
// It is usually the most recent one.
bool IsDefault = (Verstr[0] == '@');
if (IsDefault)
Verstr = Verstr.substr(1);
for (VersionDefinition &V : Config->VersionDefinitions) {
if (V.Name == Verstr)
return {Name, IsDefault ? V.Id : (V.Id | VERSYM_HIDDEN)};
}
// It is an error if the specified version was not defined.
error("symbol " + S + " has undefined version " + Verstr);
return {S, Config->DefaultSymbolVersion};
}
// Find an existing symbol or create and insert a new one.
template <class ELFT>
std::pair<Symbol *, bool> SymbolTable<ELFT>::insert(StringRef &Name) {
auto P = Symtab.insert({Name, SymIndex((int)SymVector.size(), false)});
SymIndex &V = P.first->second;
bool IsNew = P.second;
if (V.Idx == -1) {
IsNew = true;
V = SymIndex((int)SymVector.size(), true);
}
Symbol *Sym;
if (IsNew) {
Sym = new (Alloc) Symbol;
Sym->Binding = STB_WEAK;
Sym->Visibility = STV_DEFAULT;
Sym->IsUsedInRegularObj = false;
Sym->HasUnnamedAddr = true;
Sym->ExportDynamic = false;
Sym->Traced = V.Traced;
std::tie(Name, Sym->VersionId) = getSymbolVersion(Name);
SymVector.push_back(Sym);
} else {
Sym = SymVector[V.Idx];
}
return {Sym, IsNew};
}
// Find an existing symbol or create and insert a new one, then apply the given
// attributes.
template <class ELFT>
std::pair<Symbol *, bool>
SymbolTable<ELFT>::insert(StringRef &Name, uint8_t Type, uint8_t Visibility,
bool CanOmitFromDynSym, bool HasUnnamedAddr,
bool IsUsedInRegularObj, InputFile *File) {
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) = insert(Name);
// Merge in the new unnamed_addr attribute.
S->HasUnnamedAddr &= HasUnnamedAddr;
// Merge in the new symbol's visibility.
S->Visibility = getMinVisibility(S->Visibility, Visibility);
if (!CanOmitFromDynSym && (Config->Shared || Config->ExportDynamic))
S->ExportDynamic = true;
if (IsUsedInRegularObj)
S->IsUsedInRegularObj = true;
if (!WasInserted && S->body()->Type != SymbolBody::UnknownType &&
((Type == STT_TLS) != S->body()->isTls()))
error("TLS attribute mismatch for symbol: " +
conflictMsg(S->body(), File));
return {S, WasInserted};
}
// Construct a string in the form of "Sym in File1 and File2".
// Used to construct an error message.
template <typename ELFT>
std::string SymbolTable<ELFT>::conflictMsg(SymbolBody *Existing,
InputFile *NewFile) {
std::string Sym = Existing->getName();
if (Config->Demangle)
Sym = demangle(Sym);
return Sym + " in " + getFilename(Existing->File) + " and " +
getFilename(NewFile);
}
template <class ELFT> Symbol *SymbolTable<ELFT>::addUndefined(StringRef Name) {
return addUndefined(Name, STB_GLOBAL, STV_DEFAULT, /*Type*/ 0,
/*CanOmitFromDynSym*/ false, /*HasUnnamedAddr*/ false,
/*File*/ nullptr);
}
template <class ELFT>
Symbol *SymbolTable<ELFT>::addUndefined(StringRef Name, uint8_t Binding,
uint8_t StOther, uint8_t Type,
bool CanOmitFromDynSym,
bool HasUnnamedAddr, InputFile *File) {
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) =
insert(Name, Type, StOther & 3, CanOmitFromDynSym, HasUnnamedAddr,
/*IsUsedInRegularObj*/ !File || !isa<BitcodeFile>(File), File);
if (WasInserted) {
S->Binding = Binding;
replaceBody<Undefined>(S, Name, StOther, Type, File);
return S;
}
if (Binding != STB_WEAK) {
if (S->body()->isShared() || S->body()->isLazy())
S->Binding = Binding;
if (auto *SS = dyn_cast<SharedSymbol<ELFT>>(S->body()))
SS->file()->IsUsed = true;
}
if (auto *L = dyn_cast<Lazy>(S->body())) {
// An undefined weak will not fetch archive members, but we have to remember
// its type. See also comment in addLazyArchive.
if (S->isWeak())
L->Type = Type;
else if (auto F = L->fetch())
addFile(std::move(F));
}
return S;
}
// We have a new defined symbol with the specified binding. Return 1 if the new
// symbol should win, -1 if the new symbol should lose, or 0 if both symbols are
// strong defined symbols.
static int compareDefined(Symbol *S, bool WasInserted, uint8_t Binding) {
if (WasInserted)
return 1;
SymbolBody *Body = S->body();
if (Body->isLazy() || Body->isUndefined() || Body->isShared())
return 1;
if (Binding == STB_WEAK)
return -1;
if (S->isWeak())
return 1;
return 0;
}
// We have a new non-common defined symbol with the specified binding. Return 1
// if the new symbol should win, -1 if the new symbol should lose, or 0 if there
// is a conflict. If the new symbol wins, also update the binding.
static int compareDefinedNonCommon(Symbol *S, bool WasInserted,
uint8_t Binding) {
if (int Cmp = compareDefined(S, WasInserted, Binding)) {
if (Cmp > 0)
S->Binding = Binding;
return Cmp;
}
if (isa<DefinedCommon>(S->body())) {
// Non-common symbols take precedence over common symbols.
if (Config->WarnCommon)
warning("common " + S->body()->getName() + " is overridden");
return 1;
}
return 0;
}
template <class ELFT>
Symbol *SymbolTable<ELFT>::addCommon(StringRef N, uint64_t Size,
uint64_t Alignment, uint8_t Binding,
uint8_t StOther, uint8_t Type,
bool HasUnnamedAddr, InputFile *File) {
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) =
insert(N, Type, StOther & 3, /*CanOmitFromDynSym*/ false, HasUnnamedAddr,
!isa<BitcodeFile>(File), File);
int Cmp = compareDefined(S, WasInserted, Binding);
if (Cmp > 0) {
S->Binding = Binding;
replaceBody<DefinedCommon>(S, N, Size, Alignment, StOther, Type, File);
} else if (Cmp == 0) {
auto *C = dyn_cast<DefinedCommon>(S->body());
if (!C) {
// Non-common symbols take precedence over common symbols.
if (Config->WarnCommon)
warning("common " + S->body()->getName() + " is overridden");
return S;
}
if (Config->WarnCommon)
warning("multiple common of " + S->body()->getName());
Alignment = C->Alignment = std::max(C->Alignment, Alignment);
if (Size > C->Size)
replaceBody<DefinedCommon>(S, N, Size, Alignment, StOther, Type, File);
}
return S;
}
template <class ELFT>
void SymbolTable<ELFT>::reportDuplicate(SymbolBody *Existing,
InputFile *NewFile) {
std::string Msg = "duplicate symbol: " + conflictMsg(Existing, NewFile);
if (Config->AllowMultipleDefinition)
warning(Msg);
else
error(Msg);
}
template <typename ELFT>
Symbol *SymbolTable<ELFT>::addRegular(StringRef Name, const Elf_Sym &Sym,
InputSectionBase<ELFT> *Section) {
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) = insert(
Name, Sym.getType(), Sym.getVisibility(),
/*CanOmitFromDynSym*/ false, /*HasUnnamedAddr*/ false,
/*IsUsedInRegularObj*/ true, Section ? Section->getFile() : nullptr);
int Cmp = compareDefinedNonCommon(S, WasInserted, Sym.getBinding());
if (Cmp > 0)
replaceBody<DefinedRegular<ELFT>>(S, Name, Sym, Section);
else if (Cmp == 0)
reportDuplicate(S->body(), Section->getFile());
return S;
}
template <typename ELFT>
Symbol *SymbolTable<ELFT>::addRegular(StringRef Name, uint8_t Binding,
uint8_t StOther) {
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) =
insert(Name, STT_NOTYPE, StOther & 3, /*CanOmitFromDynSym*/ false,
/*HasUnnamedAddr*/ false, /*IsUsedInRegularObj*/ true, nullptr);
int Cmp = compareDefinedNonCommon(S, WasInserted, Binding);
if (Cmp > 0)
replaceBody<DefinedRegular<ELFT>>(S, Name, StOther);
else if (Cmp == 0)
reportDuplicate(S->body(), nullptr);
return S;
}
template <typename ELFT>
Symbol *SymbolTable<ELFT>::addSynthetic(StringRef N,
OutputSectionBase<ELFT> *Section,
uintX_t Value, uint8_t StOther) {
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) = insert(N, STT_NOTYPE, /*Visibility*/ StOther & 0x3,
/*CanOmitFromDynSym*/ false,
/*HasUnnamedAddr*/ false,
/*IsUsedInRegularObj*/ true, nullptr);
int Cmp = compareDefinedNonCommon(S, WasInserted, STB_GLOBAL);
if (Cmp > 0)
replaceBody<DefinedSynthetic<ELFT>>(S, N, Value, Section);
else if (Cmp == 0)
reportDuplicate(S->body(), nullptr);
return S;
}
template <typename ELFT>
void SymbolTable<ELFT>::addShared(SharedFile<ELFT> *F, StringRef Name,
const Elf_Sym &Sym,
const typename ELFT::Verdef *Verdef) {
// DSO symbols do not affect visibility in the output, so we pass STV_DEFAULT
// as the visibility, which will leave the visibility in the symbol table
// unchanged.
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) =
insert(Name, Sym.getType(), STV_DEFAULT, /*CanOmitFromDynSym*/ true,
/*HasUnnamedAddr*/ false, /*IsUsedInRegularObj*/ false, F);
// Make sure we preempt DSO symbols with default visibility.
if (Sym.getVisibility() == STV_DEFAULT)
S->ExportDynamic = true;
if (WasInserted || isa<Undefined>(S->body())) {
replaceBody<SharedSymbol<ELFT>>(S, F, Name, Sym, Verdef);
if (!S->isWeak())
F->IsUsed = true;
}
}
template <class ELFT>
Symbol *SymbolTable<ELFT>::addBitcode(StringRef Name, uint8_t Binding,
uint8_t StOther, uint8_t Type,
bool CanOmitFromDynSym,
bool HasUnnamedAddr, BitcodeFile *F) {
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) =
insert(Name, Type, StOther & 3, CanOmitFromDynSym, HasUnnamedAddr,
/*IsUsedInRegularObj*/ false, F);
int Cmp = compareDefinedNonCommon(S, WasInserted, Binding);
if (Cmp > 0)
replaceBody<DefinedRegular<ELFT>>(S, Name, StOther, Type, F);
else if (Cmp == 0)
reportDuplicate(S->body(), F);
return S;
}
template <class ELFT> SymbolBody *SymbolTable<ELFT>::find(StringRef Name) {
auto It = Symtab.find(Name);
if (It == Symtab.end())
return nullptr;
SymIndex V = It->second;
if (V.Idx == -1)
return nullptr;
return SymVector[V.Idx]->body();
}
// Returns a list of defined symbols that match with a given glob pattern.
template <class ELFT>
std::vector<SymbolBody *> SymbolTable<ELFT>::findAll(StringRef Pattern) {
std::vector<SymbolBody *> Res;
for (Symbol *Sym : SymVector) {
SymbolBody *B = Sym->body();
if (!B->isUndefined() && globMatch(Pattern, B->getName()))
Res.push_back(B);
}
return Res;
}
template <class ELFT>
void SymbolTable<ELFT>::addLazyArchive(ArchiveFile *F,
const object::Archive::Symbol Sym) {
Symbol *S;
bool WasInserted;
StringRef Name = Sym.getName();
std::tie(S, WasInserted) = insert(Name);
if (WasInserted) {
replaceBody<LazyArchive>(S, *F, Sym, SymbolBody::UnknownType);
return;
}
if (!S->body()->isUndefined())
return;
// Weak undefined symbols should not fetch members from archives. If we were
// to keep old symbol we would not know that an archive member was available
// if a strong undefined symbol shows up afterwards in the link. If a strong
// undefined symbol never shows up, this lazy symbol will get to the end of
// the link and must be treated as the weak undefined one. We already marked
// this symbol as used when we added it to the symbol table, but we also need
// to preserve its type. FIXME: Move the Type field to Symbol.
if (S->isWeak()) {
replaceBody<LazyArchive>(S, *F, Sym, S->body()->Type);
return;
}
MemoryBufferRef MBRef = F->getMember(&Sym);
if (!MBRef.getBuffer().empty())
addFile(createObjectFile(MBRef, F->getName()));
}
template <class ELFT>
void SymbolTable<ELFT>::addLazyObject(StringRef Name, LazyObjectFile &Obj) {
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) = insert(Name);
if (WasInserted) {
replaceBody<LazyObject>(S, Name, Obj, SymbolBody::UnknownType);
return;
}
if (!S->body()->isUndefined())
return;
// See comment for addLazyArchive above.
if (S->isWeak()) {
replaceBody<LazyObject>(S, Name, Obj, S->body()->Type);
} else {
MemoryBufferRef MBRef = Obj.getBuffer();
if (!MBRef.getBuffer().empty())
addFile(createObjectFile(MBRef));
}
}
// Process undefined (-u) flags by loading lazy symbols named by those flags.
template <class ELFT> void SymbolTable<ELFT>::scanUndefinedFlags() {
for (StringRef S : Config->Undefined)
if (auto *L = dyn_cast_or_null<Lazy>(find(S)))
if (std::unique_ptr<InputFile> File = L->fetch())
addFile(std::move(File));
}
// This function takes care of the case in which shared libraries depend on
// the user program (not the other way, which is usual). Shared libraries
// may have undefined symbols, expecting that the user program provides
// the definitions for them. An example is BSD's __progname symbol.
// We need to put such symbols to the main program's .dynsym so that
// shared libraries can find them.
// Except this, we ignore undefined symbols in DSOs.
template <class ELFT> void SymbolTable<ELFT>::scanShlibUndefined() {
for (std::unique_ptr<SharedFile<ELFT>> &File : SharedFiles)
for (StringRef U : File->getUndefinedSymbols())
if (SymbolBody *Sym = find(U))
if (Sym->isDefined())
Sym->symbol()->ExportDynamic = true;
}
// This function process the dynamic list option by marking all the symbols
// to be exported in the dynamic table.
template <class ELFT> void SymbolTable<ELFT>::scanDynamicList() {
for (StringRef S : Config->DynamicList)
if (SymbolBody *B = find(S))
B->symbol()->ExportDynamic = true;
}
static bool hasWildcard(StringRef S) {
return S.find_first_of("?*") != StringRef::npos;
}
static void setVersionId(SymbolBody *Body, StringRef VersionName,
StringRef Name, uint16_t Version) {
if (!Body || Body->isUndefined()) {
if (Config->NoUndefinedVersion)
error("version script assignment of " + VersionName + " to symbol " +
Name + " failed: symbol not defined");
return;
}
Symbol *Sym = Body->symbol();
if (Sym->VersionId != Config->DefaultSymbolVersion)
warning("duplicate symbol " + Name + " in version script");
Sym->VersionId = Version;
}
template <class ELFT>
std::map<std::string, SymbolBody *> SymbolTable<ELFT>::getDemangledSyms() {
std::map<std::string, SymbolBody *> Result;
for (Symbol *Sym : SymVector) {
SymbolBody *B = Sym->body();
Result[demangle(B->getName())] = B;
}
return Result;
}
static bool hasExternCpp() {
for (VersionDefinition &V : Config->VersionDefinitions)
for (SymbolVersion Sym : V.Globals)
if (Sym.IsExternCpp)
return true;
return false;
}
static SymbolBody *findDemangled(const std::map<std::string, SymbolBody *> &D,
StringRef Name) {
auto I = D.find(Name);
if (I != D.end())
return I->second;
return nullptr;
}
static std::vector<SymbolBody *>
findAllDemangled(const std::map<std::string, SymbolBody *> &D,
StringRef Pattern) {
std::vector<SymbolBody *> Res;
for (auto &P : D) {
SymbolBody *Body = P.second;
if (!Body->isUndefined() && globMatch(Pattern, P.first))
Res.push_back(Body);
}
return Res;
}
// This function processes the --version-script option by marking all global
// symbols with the VersionScriptGlobal flag, which acts as a filter on the
// dynamic symbol table.
template <class ELFT> void SymbolTable<ELFT>::scanVersionScript() {
// If version script does not contain versions declarations,
// we just should mark global symbols.
if (!Config->VersionScriptGlobals.empty()) {
for (SymbolVersion &Sym : Config->VersionScriptGlobals)
if (SymbolBody *B = find(Sym.Name))
B->symbol()->VersionId = VER_NDX_GLOBAL;
return;
}
if (Config->VersionDefinitions.empty())
return;
// If we have symbols version declarations, we should
// assign version references for each symbol.
// Current rules are:
// * If there is an exact match for the mangled name or we have extern C++
// exact match, then we use it.
// * Otherwise, we look through the wildcard patterns. We look through the
// version tags in reverse order. We use the first match we find (the last
// matching version tag in the file).
// Handle exact matches and build a map of demangled externs for
// quick search during next step.
std::map<std::string, SymbolBody *> Demangled;
if (hasExternCpp())
Demangled = getDemangledSyms();
for (VersionDefinition &V : Config->VersionDefinitions) {
for (SymbolVersion Sym : V.Globals) {
if (hasWildcard(Sym.Name))
continue;
StringRef N = Sym.Name;
SymbolBody *B = Sym.IsExternCpp ? findDemangled(Demangled, N) : find(N);
setVersionId(B, V.Name, N, V.Id);
}
}
// Handle wildcards.
for (size_t I = Config->VersionDefinitions.size() - 1; I != (size_t)-1; --I) {
VersionDefinition &V = Config->VersionDefinitions[I];
for (SymbolVersion &Sym : V.Globals) {
if (!hasWildcard(Sym.Name))
continue;
std::vector<SymbolBody *> All =
Sym.IsExternCpp ? findAllDemangled(Demangled, Sym.Name)
: findAll(Sym.Name);
for (SymbolBody *B : All)
if (B->symbol()->VersionId == Config->DefaultSymbolVersion)
B->symbol()->VersionId = V.Id;
}
}
}
template class elf::SymbolTable<ELF32LE>;
template class elf::SymbolTable<ELF32BE>;
template class elf::SymbolTable<ELF64LE>;
template class elf::SymbolTable<ELF64BE>;