Files
llvm/libc/utils/gpu/loader/amdgpu/Loader.cpp
Joseph Huber 8e4f9b1fcb [libc] Add initial support for an RPC mechanism for the GPU
This patch adds initial support for an RPC client / server architecture.
The GPU is unable to perform several system utilities on its own, so in
order to implement features like printing or memory allocation we need
to be able to communicate with the executing process. This is done via a
buffer of "sharable" memory. That is, a buffer with a unified pointer
that both the client and server can use to communicate.

The implementation here is based off of Jon Chesterfields minimal RPC
example in his work. We use an `inbox` and `outbox` to communicate
between if there is an RPC request and to signify when work is done.
We use a fixed-size buffer for the communication channel. This is fixed
size so that we can ensure that there is enough space for all
compute-units on the GPU to issue work to any of the ports. Right now
the implementation is single threaded so there is only a single buffer
that is not shared.

This implementation still has several features missing to be complete.
Such as multi-threaded support and asynchrnonous calls.

Depends on D145912

Reviewed By: sivachandra

Differential Revision: https://reviews.llvm.org/D145913
2023-03-17 12:55:31 -05:00

436 lines
16 KiB
C++

//===-- Loader Implementation for AMDHSA devices --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file impelements a simple loader to run images supporting the AMDHSA
// architecture. The file launches the '_start' kernel which should be provided
// by the device application start code and call ultimately call the 'main'
// function.
//
//===----------------------------------------------------------------------===//
#include "Loader.h"
#include "src/__support/RPC/rpc.h"
#include <hsa/hsa.h>
#include <hsa/hsa_ext_amd.h>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <utility>
/// The name of the kernel we will launch. All AMDHSA kernels end with '.kd'.
constexpr const char *KERNEL_START = "_start.kd";
/// The arguments to the '_start' kernel.
struct kernel_args_t {
int argc;
void *argv;
void *ret;
void *inbox;
void *outbox;
void *buffer;
};
static __llvm_libc::rpc::Server server;
/// Queries the RPC client at least once and performs server-side work if there
/// are any active requests.
void handle_server() {
while (server.run(
[&](__llvm_libc::rpc::Buffer *buffer) {
switch (static_cast<__llvm_libc::rpc::Opcode>(buffer->data[0])) {
case __llvm_libc::rpc::Opcode::PRINT_TO_STDERR: {
fputs(reinterpret_cast<const char *>(&buffer->data[1]), stderr);
break;
}
case __llvm_libc::rpc::Opcode::EXIT: {
exit(buffer->data[1]);
break;
}
default:
return;
};
},
[](__llvm_libc::rpc::Buffer *buffer) {}))
;
}
/// Print the error code and exit if \p code indicates an error.
static void handle_error(hsa_status_t code) {
if (code == HSA_STATUS_SUCCESS || code == HSA_STATUS_INFO_BREAK)
return;
const char *desc;
if (hsa_status_string(code, &desc) != HSA_STATUS_SUCCESS)
desc = "Unknown error";
fprintf(stderr, "%s\n", desc);
exit(EXIT_FAILURE);
}
/// Generic interface for iterating using the HSA callbacks.
template <typename elem_ty, typename func_ty, typename callback_ty>
hsa_status_t iterate(func_ty func, callback_ty cb) {
auto l = [](elem_ty elem, void *data) -> hsa_status_t {
callback_ty *unwrapped = static_cast<callback_ty *>(data);
return (*unwrapped)(elem);
};
return func(l, static_cast<void *>(&cb));
}
/// Generic interface for iterating using the HSA callbacks.
template <typename elem_ty, typename func_ty, typename func_arg_ty,
typename callback_ty>
hsa_status_t iterate(func_ty func, func_arg_ty func_arg, callback_ty cb) {
auto l = [](elem_ty elem, void *data) -> hsa_status_t {
callback_ty *unwrapped = static_cast<callback_ty *>(data);
return (*unwrapped)(elem);
};
return func(func_arg, l, static_cast<void *>(&cb));
}
/// Iterate through all availible agents.
template <typename callback_ty>
hsa_status_t iterate_agents(callback_ty callback) {
return iterate<hsa_agent_t>(hsa_iterate_agents, callback);
}
/// Iterate through all availible memory pools.
template <typename callback_ty>
hsa_status_t iterate_agent_memory_pools(hsa_agent_t agent, callback_ty cb) {
return iterate<hsa_amd_memory_pool_t>(hsa_amd_agent_iterate_memory_pools,
agent, cb);
}
template <hsa_device_type_t flag>
hsa_status_t get_agent(hsa_agent_t *output_agent) {
// Find the first agent with a matching device type.
auto cb = [&](hsa_agent_t hsa_agent) -> hsa_status_t {
hsa_device_type_t type;
hsa_status_t status =
hsa_agent_get_info(hsa_agent, HSA_AGENT_INFO_DEVICE, &type);
if (status != HSA_STATUS_SUCCESS)
return status;
if (type == flag) {
// Ensure that a GPU agent supports kernel dispatch packets.
if (type == HSA_DEVICE_TYPE_GPU) {
hsa_agent_feature_t features;
status =
hsa_agent_get_info(hsa_agent, HSA_AGENT_INFO_FEATURE, &features);
if (status != HSA_STATUS_SUCCESS)
return status;
if (features & HSA_AGENT_FEATURE_KERNEL_DISPATCH)
*output_agent = hsa_agent;
} else {
*output_agent = hsa_agent;
}
return HSA_STATUS_INFO_BREAK;
}
return HSA_STATUS_SUCCESS;
};
return iterate_agents(cb);
}
/// Retrieve a global memory pool with a \p flag from the agent.
template <hsa_amd_memory_pool_global_flag_t flag>
hsa_status_t get_agent_memory_pool(hsa_agent_t agent,
hsa_amd_memory_pool_t *output_pool) {
auto cb = [&](hsa_amd_memory_pool_t memory_pool) {
uint32_t flags;
hsa_amd_segment_t segment;
if (auto err = hsa_amd_memory_pool_get_info(
memory_pool, HSA_AMD_MEMORY_POOL_INFO_SEGMENT, &segment))
return err;
if (auto err = hsa_amd_memory_pool_get_info(
memory_pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &flags))
return err;
if (segment != HSA_AMD_SEGMENT_GLOBAL)
return HSA_STATUS_SUCCESS;
if (flags & flag)
*output_pool = memory_pool;
return HSA_STATUS_SUCCESS;
};
return iterate_agent_memory_pools(agent, cb);
}
int load(int argc, char **argv, void *image, size_t size) {
// Initialize the HSA runtime used to communicate with the device.
if (hsa_status_t err = hsa_init())
handle_error(err);
// Register a callback when the device encounters a memory fault.
if (hsa_status_t err = hsa_amd_register_system_event_handler(
[](const hsa_amd_event_t *event, void *) -> hsa_status_t {
if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT)
return HSA_STATUS_ERROR;
return HSA_STATUS_SUCCESS;
},
nullptr))
handle_error(err);
// Obtain an agent for the device and host to use the HSA memory model.
hsa_agent_t dev_agent;
hsa_agent_t host_agent;
if (hsa_status_t err = get_agent<HSA_DEVICE_TYPE_GPU>(&dev_agent))
handle_error(err);
if (hsa_status_t err = get_agent<HSA_DEVICE_TYPE_CPU>(&host_agent))
handle_error(err);
// Obtain a queue with the minimum (power of two) size, used to send commands
// to the HSA runtime and launch execution on the device.
uint64_t queue_size;
if (hsa_status_t err = hsa_agent_get_info(
dev_agent, HSA_AGENT_INFO_QUEUE_MIN_SIZE, &queue_size))
handle_error(err);
hsa_queue_t *queue = nullptr;
if (hsa_status_t err =
hsa_queue_create(dev_agent, queue_size, HSA_QUEUE_TYPE_SINGLE,
nullptr, nullptr, UINT32_MAX, UINT32_MAX, &queue))
handle_error(err);
// Load the code object's ISA information and executable data segments.
hsa_code_object_t object;
if (hsa_status_t err = hsa_code_object_deserialize(image, size, "", &object))
handle_error(err);
hsa_executable_t executable;
if (hsa_status_t err = hsa_executable_create_alt(
HSA_PROFILE_FULL, HSA_DEFAULT_FLOAT_ROUNDING_MODE_ZERO, "",
&executable))
handle_error(err);
if (hsa_status_t err =
hsa_executable_load_code_object(executable, dev_agent, object, ""))
handle_error(err);
// No modifications to the executable are allowed after this point.
if (hsa_status_t err = hsa_executable_freeze(executable, ""))
handle_error(err);
// Check the validity of the loaded executable. If the agents ISA features do
// not match the executable's code object it will fail here.
uint32_t result;
if (hsa_status_t err = hsa_executable_validate(executable, &result))
handle_error(err);
if (result)
handle_error(HSA_STATUS_ERROR);
// Obtain memory pools to exchange data between the host and the device. The
// fine-grained pool acts as pinned memory on the host for DMA transfers to
// the device, the coarse-grained pool is for allocations directly on the
// device, and the kernerl-argument pool is for executing the kernel.
hsa_amd_memory_pool_t kernargs_pool;
hsa_amd_memory_pool_t finegrained_pool;
hsa_amd_memory_pool_t coarsegrained_pool;
if (hsa_status_t err =
get_agent_memory_pool<HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT>(
host_agent, &kernargs_pool))
handle_error(err);
if (hsa_status_t err =
get_agent_memory_pool<HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED>(
host_agent, &finegrained_pool))
handle_error(err);
if (hsa_status_t err =
get_agent_memory_pool<HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED>(
dev_agent, &coarsegrained_pool))
handle_error(err);
// Look up the '_start' kernel in the loaded executable.
hsa_executable_symbol_t symbol;
if (hsa_status_t err = hsa_executable_get_symbol_by_name(
executable, KERNEL_START, &dev_agent, &symbol))
handle_error(err);
// Retrieve different properties of the kernel symbol used for launch.
uint64_t kernel;
uint32_t args_size;
uint32_t group_size;
uint32_t private_size;
std::pair<hsa_executable_symbol_info_t, void *> symbol_infos[] = {
{HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT, &kernel},
{HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, &args_size},
{HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE, &group_size},
{HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE, &private_size}};
for (auto &[info, value] : symbol_infos)
if (hsa_status_t err = hsa_executable_symbol_get_info(symbol, info, value))
handle_error(err);
// Allocate space for the kernel arguments on the host and allow the GPU agent
// to access it.
void *args;
if (hsa_status_t err = hsa_amd_memory_pool_allocate(kernargs_pool, args_size,
/*flags=*/0, &args))
handle_error(err);
hsa_amd_agents_allow_access(1, &dev_agent, nullptr, args);
// Allocate fine-grained memory on the host to hold the pointer array for the
// copied argv and allow the GPU agent to access it.
void *dev_argv;
if (hsa_status_t err =
hsa_amd_memory_pool_allocate(finegrained_pool, argc * sizeof(char *),
/*flags=*/0, &dev_argv))
handle_error(err);
hsa_amd_agents_allow_access(1, &dev_agent, nullptr, dev_argv);
// Copy each string in the argument vector to global memory on the device.
for (int i = 0; i < argc; ++i) {
size_t size = strlen(argv[i]) + 1;
void *dev_str;
if (hsa_status_t err = hsa_amd_memory_pool_allocate(finegrained_pool, size,
/*flags=*/0, &dev_str))
handle_error(err);
hsa_amd_agents_allow_access(1, &dev_agent, nullptr, dev_str);
// Load the host memory buffer with the pointer values of the newly
// allocated strings.
std::memcpy(dev_str, argv[i], size);
static_cast<void **>(dev_argv)[i] = dev_str;
}
// Allocate space for the return pointer and initialize it to zero.
void *dev_ret;
if (hsa_status_t err =
hsa_amd_memory_pool_allocate(coarsegrained_pool, sizeof(int),
/*flags=*/0, &dev_ret))
handle_error(err);
hsa_amd_memory_fill(dev_ret, 0, sizeof(int));
// Allocate finegrained memory for the RPC server and client to share.
void *server_inbox;
void *server_outbox;
void *buffer;
if (hsa_status_t err = hsa_amd_memory_pool_allocate(
finegrained_pool, sizeof(__llvm_libc::cpp::Atomic<int>),
/*flags=*/0, &server_inbox))
handle_error(err);
if (hsa_status_t err = hsa_amd_memory_pool_allocate(
finegrained_pool, sizeof(__llvm_libc::cpp::Atomic<int>),
/*flags=*/0, &server_outbox))
handle_error(err);
if (hsa_status_t err = hsa_amd_memory_pool_allocate(
finegrained_pool, sizeof(__llvm_libc::rpc::Buffer),
/*flags=*/0, &buffer))
handle_error(err);
hsa_amd_agents_allow_access(1, &dev_agent, nullptr, server_inbox);
hsa_amd_agents_allow_access(1, &dev_agent, nullptr, server_outbox);
hsa_amd_agents_allow_access(1, &dev_agent, nullptr, buffer);
// Initialie all the arguments (explicit and implicit) to zero, then set the
// explicit arguments to the values created above.
std::memset(args, 0, args_size);
kernel_args_t *kernel_args = reinterpret_cast<kernel_args_t *>(args);
kernel_args->argc = argc;
kernel_args->argv = dev_argv;
kernel_args->ret = dev_ret;
kernel_args->inbox = server_outbox;
kernel_args->outbox = server_inbox;
kernel_args->buffer = buffer;
// Obtain a packet from the queue.
uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1);
while (packet_id - hsa_queue_load_read_index_scacquire(queue) >= queue_size)
;
const uint32_t mask = queue_size - 1;
hsa_kernel_dispatch_packet_t *packet =
(hsa_kernel_dispatch_packet_t *)queue->base_address + (packet_id & mask);
// Set up the packet for exeuction on the device. We currently only launch
// with one thread on the device, forcing the rest of the wavefront to be
// masked off.
std::memset(packet, 0, sizeof(hsa_kernel_dispatch_packet_t));
packet->setup = 1 << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS;
packet->workgroup_size_x = 1;
packet->workgroup_size_y = 1;
packet->workgroup_size_z = 1;
packet->grid_size_x = 1;
packet->grid_size_y = 1;
packet->grid_size_z = 1;
packet->private_segment_size = private_size;
packet->group_segment_size = group_size;
packet->kernel_object = kernel;
packet->kernarg_address = args;
// Create a signal to indicate when this packet has been completed.
if (hsa_status_t err =
hsa_signal_create(1, 0, nullptr, &packet->completion_signal))
handle_error(err);
// Initialize the RPC server's buffer for host-device communication.
server.reset(server_inbox, server_outbox, buffer);
// Initialize the packet header and set the doorbell signal to begin execution
// by the HSA runtime.
uint16_t header =
(HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE) |
(HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE) |
(HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE);
__atomic_store_n(&packet->header, header | (packet->setup << 16),
__ATOMIC_RELEASE);
hsa_signal_store_relaxed(queue->doorbell_signal, packet_id);
// Wait until the kernel has completed execution on the device. Periodically
// check the RPC client for work to be performed on the server.
while (hsa_signal_wait_scacquire(
packet->completion_signal, HSA_SIGNAL_CONDITION_EQ, 0,
/*timeout_hint=*/1024, HSA_WAIT_STATE_ACTIVE) != 0)
handle_server();
// Create a memory signal and copy the return value back from the device into
// a new buffer.
hsa_signal_t memory_signal;
if (hsa_status_t err = hsa_signal_create(1, 0, nullptr, &memory_signal))
handle_error(err);
void *host_ret;
if (hsa_status_t err =
hsa_amd_memory_pool_allocate(finegrained_pool, sizeof(int),
/*flags=*/0, &host_ret))
handle_error(err);
hsa_amd_agents_allow_access(1, &dev_agent, nullptr, host_ret);
if (hsa_status_t err =
hsa_amd_memory_async_copy(host_ret, host_agent, dev_ret, dev_agent,
sizeof(int), 0, nullptr, memory_signal))
handle_error(err);
while (hsa_signal_wait_scacquire(memory_signal, HSA_SIGNAL_CONDITION_EQ, 0,
UINT64_MAX, HSA_WAIT_STATE_ACTIVE) != 0)
;
// Save the return value and perform basic clean-up.
int ret = *static_cast<int *>(host_ret);
if (hsa_status_t err = hsa_signal_destroy(memory_signal))
handle_error(err);
if (hsa_status_t err = hsa_signal_destroy(packet->completion_signal))
handle_error(err);
if (hsa_status_t err = hsa_queue_destroy(queue))
handle_error(err);
if (hsa_status_t err = hsa_executable_destroy(executable))
handle_error(err);
if (hsa_status_t err = hsa_code_object_destroy(object))
handle_error(err);
if (hsa_status_t err = hsa_shut_down())
handle_error(err);
return ret;
}