mirror of
https://github.com/intel/llvm.git
synced 2026-02-04 20:00:11 +08:00
The end result is now we eagarly constant-fold symbols in the analyzer that are perfectly constrained to be a constant value. This allows us to recover some path-sensitivity in some cases by lowering the required level of reasoning power needed to evaluate some expressions. The net win from this change is that the false positive in PR 8015 is fixed, and we also find more idempotent operations bugs. We do, however, regress with the BugReporterVisitors, which need to be modified to understand this constant folding (and look past it). This causes some diagnostic regressions in plist-output.m which will get addressed in a future patch. plist-output.m is now marked XFAIL, while plist-output-alternate.m now tests that the plist output is working, but with the suboptimal diagnostics. This second test file will eventually be removed. llvm-svn: 113477
788 lines
26 KiB
C++
788 lines
26 KiB
C++
//==- IdempotentOperationChecker.cpp - Idempotent Operations ----*- C++ -*-==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a set of path-sensitive checks for idempotent and/or
|
|
// tautological operations. Each potential operation is checked along all paths
|
|
// to see if every path results in a pointless operation.
|
|
// +-------------------------------------------+
|
|
// |Table of idempotent/tautological operations|
|
|
// +-------------------------------------------+
|
|
//+--------------------------------------------------------------------------+
|
|
//|Operator | x op x | x op 1 | 1 op x | x op 0 | 0 op x | x op ~0 | ~0 op x |
|
|
//+--------------------------------------------------------------------------+
|
|
// +, += | | | | x | x | |
|
|
// -, -= | | | | x | -x | |
|
|
// *, *= | | x | x | 0 | 0 | |
|
|
// /, /= | 1 | x | | N/A | 0 | |
|
|
// &, &= | x | | | 0 | 0 | x | x
|
|
// |, |= | x | | | x | x | ~0 | ~0
|
|
// ^, ^= | 0 | | | x | x | |
|
|
// <<, <<= | | | | x | 0 | |
|
|
// >>, >>= | | | | x | 0 | |
|
|
// || | 1 | 1 | 1 | x | x | 1 | 1
|
|
// && | 1 | x | x | 0 | 0 | x | x
|
|
// = | x | | | | | |
|
|
// == | 1 | | | | | |
|
|
// >= | 1 | | | | | |
|
|
// <= | 1 | | | | | |
|
|
// > | 0 | | | | | |
|
|
// < | 0 | | | | | |
|
|
// != | 0 | | | | | |
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Things TODO:
|
|
// - Improved error messages
|
|
// - Handle mixed assumptions (which assumptions can belong together?)
|
|
// - Finer grained false positive control (levels)
|
|
// - Handling ~0 values
|
|
|
|
#include "GRExprEngineExperimentalChecks.h"
|
|
#include "clang/Analysis/CFGStmtMap.h"
|
|
#include "clang/Analysis/Analyses/PseudoConstantAnalysis.h"
|
|
#include "clang/Checker/BugReporter/BugReporter.h"
|
|
#include "clang/Checker/BugReporter/BugType.h"
|
|
#include "clang/Checker/PathSensitive/CheckerHelpers.h"
|
|
#include "clang/Checker/PathSensitive/CheckerVisitor.h"
|
|
#include "clang/Checker/PathSensitive/GRCoreEngine.h"
|
|
#include "clang/Checker/PathSensitive/SVals.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <deque>
|
|
|
|
using namespace clang;
|
|
|
|
namespace {
|
|
class IdempotentOperationChecker
|
|
: public CheckerVisitor<IdempotentOperationChecker> {
|
|
public:
|
|
static void *getTag();
|
|
void PreVisitBinaryOperator(CheckerContext &C, const BinaryOperator *B);
|
|
void PostVisitBinaryOperator(CheckerContext &C, const BinaryOperator *B);
|
|
void VisitEndAnalysis(ExplodedGraph &G, BugReporter &B, GRExprEngine &Eng);
|
|
|
|
private:
|
|
// Our assumption about a particular operation.
|
|
enum Assumption { Possible = 0, Impossible, Equal, LHSis1, RHSis1, LHSis0,
|
|
RHSis0 };
|
|
|
|
void UpdateAssumption(Assumption &A, const Assumption &New);
|
|
|
|
// False positive reduction methods
|
|
static bool isSelfAssign(const Expr *LHS, const Expr *RHS);
|
|
static bool isUnused(const Expr *E, AnalysisContext *AC);
|
|
static bool isTruncationExtensionAssignment(const Expr *LHS,
|
|
const Expr *RHS);
|
|
bool PathWasCompletelyAnalyzed(const CFG *C,
|
|
const CFGBlock *CB,
|
|
const GRCoreEngine &CE);
|
|
static bool CanVary(const Expr *Ex,
|
|
AnalysisContext *AC);
|
|
static bool isConstantOrPseudoConstant(const DeclRefExpr *DR,
|
|
AnalysisContext *AC);
|
|
static bool containsNonLocalVarDecl(const Stmt *S);
|
|
const ExplodedNodeSet getLastRelevantNodes(const CFGBlock *Begin,
|
|
const ExplodedNode *N);
|
|
|
|
// Hash table and related data structures
|
|
struct BinaryOperatorData {
|
|
BinaryOperatorData() : assumption(Possible), analysisContext(0) {}
|
|
|
|
Assumption assumption;
|
|
AnalysisContext *analysisContext;
|
|
ExplodedNodeSet explodedNodes; // Set of ExplodedNodes that refer to a
|
|
// BinaryOperator
|
|
};
|
|
typedef llvm::DenseMap<const BinaryOperator *, BinaryOperatorData>
|
|
AssumptionMap;
|
|
AssumptionMap hash;
|
|
|
|
// A class that performs reachability queries for CFGBlocks. Several internal
|
|
// checks in this checker require reachability information. The requests all
|
|
// tend to have a common destination, so we lazily do a predecessor search
|
|
// from the destination node and cache the results to prevent work
|
|
// duplication.
|
|
class CFGReachabilityAnalysis {
|
|
typedef llvm::SmallSet<unsigned, 32> ReachableSet;
|
|
typedef llvm::DenseMap<unsigned, ReachableSet> ReachableMap;
|
|
ReachableSet analyzed;
|
|
ReachableMap reachable;
|
|
public:
|
|
inline bool isReachable(const CFGBlock *Src, const CFGBlock *Dst);
|
|
private:
|
|
void MapReachability(const CFGBlock *Dst);
|
|
};
|
|
CFGReachabilityAnalysis CRA;
|
|
};
|
|
}
|
|
|
|
void *IdempotentOperationChecker::getTag() {
|
|
static int x = 0;
|
|
return &x;
|
|
}
|
|
|
|
void clang::RegisterIdempotentOperationChecker(GRExprEngine &Eng) {
|
|
Eng.registerCheck(new IdempotentOperationChecker());
|
|
}
|
|
|
|
void IdempotentOperationChecker::PreVisitBinaryOperator(
|
|
CheckerContext &C,
|
|
const BinaryOperator *B) {
|
|
// Find or create an entry in the hash for this BinaryOperator instance.
|
|
// If we haven't done a lookup before, it will get default initialized to
|
|
// 'Possible'. At this stage we do not store the ExplodedNode, as it has not
|
|
// been created yet.
|
|
BinaryOperatorData &Data = hash[B];
|
|
Assumption &A = Data.assumption;
|
|
AnalysisContext *AC = C.getCurrentAnalysisContext();
|
|
Data.analysisContext = AC;
|
|
|
|
// If we already have visited this node on a path that does not contain an
|
|
// idempotent operation, return immediately.
|
|
if (A == Impossible)
|
|
return;
|
|
|
|
// Retrieve both sides of the operator and determine if they can vary (which
|
|
// may mean this is a false positive.
|
|
const Expr *LHS = B->getLHS();
|
|
const Expr *RHS = B->getRHS();
|
|
|
|
// At this stage we can calculate whether each side contains a false positive
|
|
// that applies to all operators. We only need to calculate this the first
|
|
// time.
|
|
bool LHSContainsFalsePositive = false, RHSContainsFalsePositive = false;
|
|
if (A == Possible) {
|
|
// An expression contains a false positive if it can't vary, or if it
|
|
// contains a known false positive VarDecl.
|
|
LHSContainsFalsePositive = !CanVary(LHS, AC)
|
|
|| containsNonLocalVarDecl(LHS);
|
|
RHSContainsFalsePositive = !CanVary(RHS, AC)
|
|
|| containsNonLocalVarDecl(RHS);
|
|
}
|
|
|
|
const GRState *state = C.getState();
|
|
|
|
SVal LHSVal = state->getSVal(LHS);
|
|
SVal RHSVal = state->getSVal(RHS);
|
|
|
|
// If either value is unknown, we can't be 100% sure of all paths.
|
|
if (LHSVal.isUnknownOrUndef() || RHSVal.isUnknownOrUndef()) {
|
|
A = Impossible;
|
|
return;
|
|
}
|
|
BinaryOperator::Opcode Op = B->getOpcode();
|
|
|
|
// Dereference the LHS SVal if this is an assign operation
|
|
switch (Op) {
|
|
default:
|
|
break;
|
|
|
|
// Fall through intentional
|
|
case BO_AddAssign:
|
|
case BO_SubAssign:
|
|
case BO_MulAssign:
|
|
case BO_DivAssign:
|
|
case BO_AndAssign:
|
|
case BO_OrAssign:
|
|
case BO_XorAssign:
|
|
case BO_ShlAssign:
|
|
case BO_ShrAssign:
|
|
case BO_Assign:
|
|
// Assign statements have one extra level of indirection
|
|
if (!isa<Loc>(LHSVal)) {
|
|
A = Impossible;
|
|
return;
|
|
}
|
|
LHSVal = state->getSVal(cast<Loc>(LHSVal), LHS->getType());
|
|
}
|
|
|
|
|
|
// We now check for various cases which result in an idempotent operation.
|
|
|
|
// x op x
|
|
switch (Op) {
|
|
default:
|
|
break; // We don't care about any other operators.
|
|
|
|
// Fall through intentional
|
|
case BO_Assign:
|
|
// x Assign x can be used to silence unused variable warnings intentionally.
|
|
// If this is a self assignment and the variable is referenced elsewhere,
|
|
// and the assignment is not a truncation or extension, then it is a false
|
|
// positive.
|
|
if (isSelfAssign(LHS, RHS)) {
|
|
if (!isUnused(LHS, AC) && !isTruncationExtensionAssignment(LHS, RHS)) {
|
|
UpdateAssumption(A, Equal);
|
|
return;
|
|
}
|
|
else {
|
|
A = Impossible;
|
|
return;
|
|
}
|
|
}
|
|
|
|
case BO_SubAssign:
|
|
case BO_DivAssign:
|
|
case BO_AndAssign:
|
|
case BO_OrAssign:
|
|
case BO_XorAssign:
|
|
case BO_Sub:
|
|
case BO_Div:
|
|
case BO_And:
|
|
case BO_Or:
|
|
case BO_Xor:
|
|
case BO_LOr:
|
|
case BO_LAnd:
|
|
case BO_EQ:
|
|
case BO_NE:
|
|
if (LHSVal != RHSVal || LHSContainsFalsePositive
|
|
|| RHSContainsFalsePositive)
|
|
break;
|
|
UpdateAssumption(A, Equal);
|
|
return;
|
|
}
|
|
|
|
// x op 1
|
|
switch (Op) {
|
|
default:
|
|
break; // We don't care about any other operators.
|
|
|
|
// Fall through intentional
|
|
case BO_MulAssign:
|
|
case BO_DivAssign:
|
|
case BO_Mul:
|
|
case BO_Div:
|
|
case BO_LOr:
|
|
case BO_LAnd:
|
|
if (!RHSVal.isConstant(1) || RHSContainsFalsePositive)
|
|
break;
|
|
UpdateAssumption(A, RHSis1);
|
|
return;
|
|
}
|
|
|
|
// 1 op x
|
|
switch (Op) {
|
|
default:
|
|
break; // We don't care about any other operators.
|
|
|
|
// Fall through intentional
|
|
case BO_MulAssign:
|
|
case BO_Mul:
|
|
case BO_LOr:
|
|
case BO_LAnd:
|
|
if (!LHSVal.isConstant(1) || LHSContainsFalsePositive)
|
|
break;
|
|
UpdateAssumption(A, LHSis1);
|
|
return;
|
|
}
|
|
|
|
// x op 0
|
|
switch (Op) {
|
|
default:
|
|
break; // We don't care about any other operators.
|
|
|
|
// Fall through intentional
|
|
case BO_AddAssign:
|
|
case BO_SubAssign:
|
|
case BO_MulAssign:
|
|
case BO_AndAssign:
|
|
case BO_OrAssign:
|
|
case BO_XorAssign:
|
|
case BO_Add:
|
|
case BO_Sub:
|
|
case BO_Mul:
|
|
case BO_And:
|
|
case BO_Or:
|
|
case BO_Xor:
|
|
case BO_Shl:
|
|
case BO_Shr:
|
|
case BO_LOr:
|
|
case BO_LAnd:
|
|
if (!RHSVal.isConstant(0) || RHSContainsFalsePositive)
|
|
break;
|
|
UpdateAssumption(A, RHSis0);
|
|
return;
|
|
}
|
|
|
|
// 0 op x
|
|
switch (Op) {
|
|
default:
|
|
break; // We don't care about any other operators.
|
|
|
|
// Fall through intentional
|
|
//case BO_AddAssign: // Common false positive
|
|
case BO_SubAssign: // Check only if unsigned
|
|
case BO_MulAssign:
|
|
case BO_DivAssign:
|
|
case BO_AndAssign:
|
|
//case BO_OrAssign: // Common false positive
|
|
//case BO_XorAssign: // Common false positive
|
|
case BO_ShlAssign:
|
|
case BO_ShrAssign:
|
|
case BO_Add:
|
|
case BO_Sub:
|
|
case BO_Mul:
|
|
case BO_Div:
|
|
case BO_And:
|
|
case BO_Or:
|
|
case BO_Xor:
|
|
case BO_Shl:
|
|
case BO_Shr:
|
|
case BO_LOr:
|
|
case BO_LAnd:
|
|
if (!LHSVal.isConstant(0) || LHSContainsFalsePositive)
|
|
break;
|
|
UpdateAssumption(A, LHSis0);
|
|
return;
|
|
}
|
|
|
|
// If we get to this point, there has been a valid use of this operation.
|
|
A = Impossible;
|
|
}
|
|
|
|
// At the post visit stage, the predecessor ExplodedNode will be the
|
|
// BinaryOperator that was just created. We use this hook to collect the
|
|
// ExplodedNode.
|
|
void IdempotentOperationChecker::PostVisitBinaryOperator(
|
|
CheckerContext &C,
|
|
const BinaryOperator *B) {
|
|
// Add the ExplodedNode we just visited
|
|
BinaryOperatorData &Data = hash[B];
|
|
assert(isa<BinaryOperator>(cast<StmtPoint>(C.getPredecessor()
|
|
->getLocation()).getStmt()));
|
|
Data.explodedNodes.Add(C.getPredecessor());
|
|
}
|
|
|
|
void IdempotentOperationChecker::VisitEndAnalysis(ExplodedGraph &G,
|
|
BugReporter &BR,
|
|
GRExprEngine &Eng) {
|
|
BugType *BT = new BugType("Idempotent operation", "Dead code");
|
|
// Iterate over the hash to see if we have any paths with definite
|
|
// idempotent operations.
|
|
for (AssumptionMap::const_iterator i = hash.begin(); i != hash.end(); ++i) {
|
|
// Unpack the hash contents
|
|
const BinaryOperatorData &Data = i->second;
|
|
const Assumption &A = Data.assumption;
|
|
AnalysisContext *AC = Data.analysisContext;
|
|
const ExplodedNodeSet &ES = Data.explodedNodes;
|
|
|
|
const BinaryOperator *B = i->first;
|
|
|
|
if (A == Impossible)
|
|
continue;
|
|
|
|
// If the analyzer did not finish, check to see if we can still emit this
|
|
// warning
|
|
if (Eng.hasWorkRemaining()) {
|
|
const CFGStmtMap *CBM = CFGStmtMap::Build(AC->getCFG(),
|
|
&AC->getParentMap());
|
|
|
|
// If we can trace back
|
|
if (!PathWasCompletelyAnalyzed(AC->getCFG(),
|
|
CBM->getBlock(B),
|
|
Eng.getCoreEngine()))
|
|
continue;
|
|
|
|
delete CBM;
|
|
}
|
|
|
|
// Select the error message and SourceRanges to report.
|
|
llvm::SmallString<128> buf;
|
|
llvm::raw_svector_ostream os(buf);
|
|
bool LHSRelevant = false, RHSRelevant = false;
|
|
switch (A) {
|
|
case Equal:
|
|
LHSRelevant = true;
|
|
RHSRelevant = true;
|
|
if (B->getOpcode() == BO_Assign)
|
|
os << "Assigned value is always the same as the existing value";
|
|
else
|
|
os << "Both operands to '" << B->getOpcodeStr()
|
|
<< "' always have the same value";
|
|
break;
|
|
case LHSis1:
|
|
LHSRelevant = true;
|
|
os << "The left operand to '" << B->getOpcodeStr() << "' is always 1";
|
|
break;
|
|
case RHSis1:
|
|
RHSRelevant = true;
|
|
os << "The right operand to '" << B->getOpcodeStr() << "' is always 1";
|
|
break;
|
|
case LHSis0:
|
|
LHSRelevant = true;
|
|
os << "The left operand to '" << B->getOpcodeStr() << "' is always 0";
|
|
break;
|
|
case RHSis0:
|
|
RHSRelevant = true;
|
|
os << "The right operand to '" << B->getOpcodeStr() << "' is always 0";
|
|
break;
|
|
case Possible:
|
|
llvm_unreachable("Operation was never marked with an assumption");
|
|
case Impossible:
|
|
llvm_unreachable(0);
|
|
}
|
|
|
|
// Add a report for each ExplodedNode
|
|
for (ExplodedNodeSet::iterator I = ES.begin(), E = ES.end(); I != E; ++I) {
|
|
EnhancedBugReport *report = new EnhancedBugReport(*BT, os.str(), *I);
|
|
|
|
// Add source ranges and visitor hooks
|
|
if (LHSRelevant) {
|
|
const Expr *LHS = i->first->getLHS();
|
|
report->addRange(LHS->getSourceRange());
|
|
report->addVisitorCreator(bugreporter::registerVarDeclsLastStore, LHS);
|
|
}
|
|
if (RHSRelevant) {
|
|
const Expr *RHS = i->first->getRHS();
|
|
report->addRange(i->first->getRHS()->getSourceRange());
|
|
report->addVisitorCreator(bugreporter::registerVarDeclsLastStore, RHS);
|
|
}
|
|
|
|
BR.EmitReport(report);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Updates the current assumption given the new assumption
|
|
inline void IdempotentOperationChecker::UpdateAssumption(Assumption &A,
|
|
const Assumption &New) {
|
|
// If the assumption is the same, there is nothing to do
|
|
if (A == New)
|
|
return;
|
|
|
|
switch (A) {
|
|
// If we don't currently have an assumption, set it
|
|
case Possible:
|
|
A = New;
|
|
return;
|
|
|
|
// If we have determined that a valid state happened, ignore the new
|
|
// assumption.
|
|
case Impossible:
|
|
return;
|
|
|
|
// Any other case means that we had a different assumption last time. We don't
|
|
// currently support mixing assumptions for diagnostic reasons, so we set
|
|
// our assumption to be impossible.
|
|
default:
|
|
A = Impossible;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Check for a statement where a variable is self assigned to possibly avoid an
|
|
// unused variable warning.
|
|
bool IdempotentOperationChecker::isSelfAssign(const Expr *LHS, const Expr *RHS) {
|
|
LHS = LHS->IgnoreParenCasts();
|
|
RHS = RHS->IgnoreParenCasts();
|
|
|
|
const DeclRefExpr *LHS_DR = dyn_cast<DeclRefExpr>(LHS);
|
|
if (!LHS_DR)
|
|
return false;
|
|
|
|
const VarDecl *VD = dyn_cast<VarDecl>(LHS_DR->getDecl());
|
|
if (!VD)
|
|
return false;
|
|
|
|
const DeclRefExpr *RHS_DR = dyn_cast<DeclRefExpr>(RHS);
|
|
if (!RHS_DR)
|
|
return false;
|
|
|
|
if (VD != RHS_DR->getDecl())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Returns true if the Expr points to a VarDecl that is not read anywhere
|
|
// outside of self-assignments.
|
|
bool IdempotentOperationChecker::isUnused(const Expr *E,
|
|
AnalysisContext *AC) {
|
|
if (!E)
|
|
return false;
|
|
|
|
const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
|
|
if (!DR)
|
|
return false;
|
|
|
|
const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
|
|
if (!VD)
|
|
return false;
|
|
|
|
if (AC->getPseudoConstantAnalysis()->wasReferenced(VD))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check for self casts truncating/extending a variable
|
|
bool IdempotentOperationChecker::isTruncationExtensionAssignment(
|
|
const Expr *LHS,
|
|
const Expr *RHS) {
|
|
|
|
const DeclRefExpr *LHS_DR = dyn_cast<DeclRefExpr>(LHS->IgnoreParenCasts());
|
|
if (!LHS_DR)
|
|
return false;
|
|
|
|
const VarDecl *VD = dyn_cast<VarDecl>(LHS_DR->getDecl());
|
|
if (!VD)
|
|
return false;
|
|
|
|
const DeclRefExpr *RHS_DR = dyn_cast<DeclRefExpr>(RHS->IgnoreParenCasts());
|
|
if (!RHS_DR)
|
|
return false;
|
|
|
|
if (VD != RHS_DR->getDecl())
|
|
return false;
|
|
|
|
return dyn_cast<DeclRefExpr>(RHS->IgnoreParens()) == NULL;
|
|
}
|
|
|
|
// Returns false if a path to this block was not completely analyzed, or true
|
|
// otherwise.
|
|
bool IdempotentOperationChecker::PathWasCompletelyAnalyzed(
|
|
const CFG *C,
|
|
const CFGBlock *CB,
|
|
const GRCoreEngine &CE) {
|
|
// Test for reachability from any aborted blocks to this block
|
|
typedef GRCoreEngine::BlocksAborted::const_iterator AbortedIterator;
|
|
for (AbortedIterator I = CE.blocks_aborted_begin(),
|
|
E = CE.blocks_aborted_end(); I != E; ++I) {
|
|
const BlockEdge &BE = I->first;
|
|
|
|
// The destination block on the BlockEdge is the first block that was not
|
|
// analyzed. If we can reach this block from the aborted block, then this
|
|
// block was not completely analyzed.
|
|
if (CRA.isReachable(BE.getDst(), CB))
|
|
return false;
|
|
}
|
|
|
|
// Verify that this block is reachable from the entry block
|
|
if (!CRA.isReachable(&C->getEntry(), CB))
|
|
return false;
|
|
|
|
// If we get to this point, there is no connection to the entry block or an
|
|
// aborted block. This path is unreachable and we can report the error.
|
|
return true;
|
|
}
|
|
|
|
// Recursive function that determines whether an expression contains any element
|
|
// that varies. This could be due to a compile-time constant like sizeof. An
|
|
// expression may also involve a variable that behaves like a constant. The
|
|
// function returns true if the expression varies, and false otherwise.
|
|
bool IdempotentOperationChecker::CanVary(const Expr *Ex,
|
|
AnalysisContext *AC) {
|
|
// Parentheses and casts are irrelevant here
|
|
Ex = Ex->IgnoreParenCasts();
|
|
|
|
if (Ex->getLocStart().isMacroID())
|
|
return false;
|
|
|
|
switch (Ex->getStmtClass()) {
|
|
// Trivially true cases
|
|
case Stmt::ArraySubscriptExprClass:
|
|
case Stmt::MemberExprClass:
|
|
case Stmt::StmtExprClass:
|
|
case Stmt::CallExprClass:
|
|
case Stmt::VAArgExprClass:
|
|
case Stmt::ShuffleVectorExprClass:
|
|
return true;
|
|
default:
|
|
return true;
|
|
|
|
// Trivially false cases
|
|
case Stmt::IntegerLiteralClass:
|
|
case Stmt::CharacterLiteralClass:
|
|
case Stmt::FloatingLiteralClass:
|
|
case Stmt::PredefinedExprClass:
|
|
case Stmt::ImaginaryLiteralClass:
|
|
case Stmt::StringLiteralClass:
|
|
case Stmt::OffsetOfExprClass:
|
|
case Stmt::CompoundLiteralExprClass:
|
|
case Stmt::AddrLabelExprClass:
|
|
case Stmt::TypesCompatibleExprClass:
|
|
case Stmt::GNUNullExprClass:
|
|
case Stmt::InitListExprClass:
|
|
case Stmt::DesignatedInitExprClass:
|
|
case Stmt::BlockExprClass:
|
|
case Stmt::BlockDeclRefExprClass:
|
|
return false;
|
|
|
|
// Cases requiring custom logic
|
|
case Stmt::SizeOfAlignOfExprClass: {
|
|
const SizeOfAlignOfExpr *SE = cast<const SizeOfAlignOfExpr>(Ex);
|
|
if (!SE->isSizeOf())
|
|
return false;
|
|
return SE->getTypeOfArgument()->isVariableArrayType();
|
|
}
|
|
case Stmt::DeclRefExprClass:
|
|
// Check for constants/pseudoconstants
|
|
return !isConstantOrPseudoConstant(cast<DeclRefExpr>(Ex), AC);
|
|
|
|
// The next cases require recursion for subexpressions
|
|
case Stmt::BinaryOperatorClass: {
|
|
const BinaryOperator *B = cast<const BinaryOperator>(Ex);
|
|
return CanVary(B->getRHS(), AC)
|
|
|| CanVary(B->getLHS(), AC);
|
|
}
|
|
case Stmt::UnaryOperatorClass: {
|
|
const UnaryOperator *U = cast<const UnaryOperator>(Ex);
|
|
// Handle trivial case first
|
|
switch (U->getOpcode()) {
|
|
case UO_Extension:
|
|
return false;
|
|
default:
|
|
return CanVary(U->getSubExpr(), AC);
|
|
}
|
|
}
|
|
case Stmt::ChooseExprClass:
|
|
return CanVary(cast<const ChooseExpr>(Ex)->getChosenSubExpr(
|
|
AC->getASTContext()), AC);
|
|
case Stmt::ConditionalOperatorClass:
|
|
return CanVary(cast<const ConditionalOperator>(Ex)->getCond(), AC);
|
|
}
|
|
}
|
|
|
|
// Returns true if a DeclRefExpr is or behaves like a constant.
|
|
bool IdempotentOperationChecker::isConstantOrPseudoConstant(
|
|
const DeclRefExpr *DR,
|
|
AnalysisContext *AC) {
|
|
// Check if the type of the Decl is const-qualified
|
|
if (DR->getType().isConstQualified())
|
|
return true;
|
|
|
|
// Check for an enum
|
|
if (isa<EnumConstantDecl>(DR->getDecl()))
|
|
return true;
|
|
|
|
const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
|
|
if (!VD)
|
|
return true;
|
|
|
|
// Check if the Decl behaves like a constant. This check also takes care of
|
|
// static variables, which can only change between function calls if they are
|
|
// modified in the AST.
|
|
PseudoConstantAnalysis *PCA = AC->getPseudoConstantAnalysis();
|
|
if (PCA->isPseudoConstant(VD))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Recursively find any substatements containing VarDecl's with storage other
|
|
// than local
|
|
bool IdempotentOperationChecker::containsNonLocalVarDecl(const Stmt *S) {
|
|
const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(S);
|
|
|
|
if (DR)
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl()))
|
|
if (!VD->hasLocalStorage())
|
|
return true;
|
|
|
|
for (Stmt::const_child_iterator I = S->child_begin(); I != S->child_end();
|
|
++I)
|
|
if (const Stmt *child = *I)
|
|
if (containsNonLocalVarDecl(child))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Returns the successor nodes of N whose CFGBlocks cannot reach N's CFGBlock.
|
|
// This effectively gives us a set of points in the ExplodedGraph where
|
|
// subsequent execution could not affect the idempotent operation on this path.
|
|
// This is useful for displaying paths after the point of the error, providing
|
|
// an example of how this idempotent operation cannot change.
|
|
const ExplodedNodeSet IdempotentOperationChecker::getLastRelevantNodes(
|
|
const CFGBlock *Begin, const ExplodedNode *N) {
|
|
std::deque<const ExplodedNode *> WorkList;
|
|
llvm::SmallPtrSet<const ExplodedNode *, 32> Visited;
|
|
ExplodedNodeSet Result;
|
|
|
|
WorkList.push_back(N);
|
|
|
|
while (!WorkList.empty()) {
|
|
const ExplodedNode *Head = WorkList.front();
|
|
WorkList.pop_front();
|
|
Visited.insert(Head);
|
|
|
|
const ProgramPoint &PP = Head->getLocation();
|
|
if (const BlockEntrance *BE = dyn_cast<BlockEntrance>(&PP)) {
|
|
// Get the CFGBlock and test the reachability
|
|
const CFGBlock *CB = BE->getBlock();
|
|
|
|
// If we cannot reach the beginning CFGBlock from this block, then we are
|
|
// finished
|
|
if (!CRA.isReachable(CB, Begin)) {
|
|
Result.Add(const_cast<ExplodedNode *>(Head));
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Add unvisited children to the worklist
|
|
for (ExplodedNode::const_succ_iterator I = Head->succ_begin(),
|
|
E = Head->succ_end(); I != E; ++I)
|
|
if (!Visited.count(*I))
|
|
WorkList.push_back(*I);
|
|
}
|
|
|
|
// Return the ExplodedNodes that were found
|
|
return Result;
|
|
}
|
|
|
|
bool IdempotentOperationChecker::CFGReachabilityAnalysis::isReachable(
|
|
const CFGBlock *Src,
|
|
const CFGBlock *Dst) {
|
|
const unsigned DstBlockID = Dst->getBlockID();
|
|
|
|
// If we haven't analyzed the destination node, run the analysis now
|
|
if (!analyzed.count(DstBlockID)) {
|
|
MapReachability(Dst);
|
|
analyzed.insert(DstBlockID);
|
|
}
|
|
|
|
// Return the cached result
|
|
return reachable[DstBlockID].count(Src->getBlockID());
|
|
}
|
|
|
|
// Maps reachability to a common node by walking the predecessors of the
|
|
// destination node.
|
|
void IdempotentOperationChecker::CFGReachabilityAnalysis::MapReachability(
|
|
const CFGBlock *Dst) {
|
|
std::deque<const CFGBlock *> WorkList;
|
|
// Maintain a visited list to ensure we don't get stuck on cycles
|
|
llvm::SmallSet<unsigned, 32> Visited;
|
|
ReachableSet &DstReachability = reachable[Dst->getBlockID()];
|
|
|
|
// Start searching from the destination node, since we commonly will perform
|
|
// multiple queries relating to a destination node.
|
|
WorkList.push_back(Dst);
|
|
|
|
bool firstRun = true;
|
|
while (!WorkList.empty()) {
|
|
const CFGBlock *Head = WorkList.front();
|
|
WorkList.pop_front();
|
|
Visited.insert(Head->getBlockID());
|
|
|
|
// Update reachability information for this node -> Dst
|
|
if (!firstRun)
|
|
// Don't insert Dst -> Dst unless it was a predecessor of itself
|
|
DstReachability.insert(Head->getBlockID());
|
|
else
|
|
firstRun = false;
|
|
|
|
// Add the predecessors to the worklist unless we have already visited them
|
|
for (CFGBlock::const_pred_iterator I = Head->pred_begin();
|
|
I != Head->pred_end(); ++I)
|
|
if (!Visited.count((*I)->getBlockID()))
|
|
WorkList.push_back(*I);
|
|
}
|
|
}
|