Files
llvm/mlir/lib/Dialect/Affine/EDSC/Builders.cpp
Sean Silva 98eead8186 [mlir][Value] Add v.getDefiningOp<OpTy>()
Summary:
This makes a common pattern of
`dyn_cast_or_null<OpTy>(v.getDefiningOp())` more concise.

Differential Revision: https://reviews.llvm.org/D79681
2020-05-11 12:55:27 -07:00

280 lines
11 KiB
C++

//===- Builders.cpp - MLIR Declarative Builder Classes --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/EDSC/Builders.h"
#include "mlir/Dialect/StandardOps/EDSC/Builders.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
using namespace mlir;
using namespace mlir::edsc;
static Optional<Value> emitStaticFor(ArrayRef<Value> lbs, ArrayRef<Value> ubs,
int64_t step) {
if (lbs.size() != 1 || ubs.size() != 1)
return Optional<Value>();
auto *lbDef = lbs.front().getDefiningOp();
auto *ubDef = ubs.front().getDefiningOp();
if (!lbDef || !ubDef)
return Optional<Value>();
auto lbConst = dyn_cast<ConstantIndexOp>(lbDef);
auto ubConst = dyn_cast<ConstantIndexOp>(ubDef);
if (!lbConst || !ubConst)
return Optional<Value>();
return ScopedContext::getBuilderRef()
.create<AffineForOp>(ScopedContext::getLocation(), lbConst.getValue(),
ubConst.getValue(), step)
.getInductionVar();
}
LoopBuilder mlir::edsc::makeAffineLoopBuilder(Value *iv, ArrayRef<Value> lbs,
ArrayRef<Value> ubs,
int64_t step) {
mlir::edsc::LoopBuilder result;
if (auto staticForIv = emitStaticFor(lbs, ubs, step))
*iv = staticForIv.getValue();
else
*iv = ScopedContext::getBuilderRef()
.create<AffineForOp>(
ScopedContext::getLocation(), lbs,
ScopedContext::getBuilderRef().getMultiDimIdentityMap(
lbs.size()),
ubs,
ScopedContext::getBuilderRef().getMultiDimIdentityMap(
ubs.size()),
step)
.getInductionVar();
auto *body = getForInductionVarOwner(*iv).getBody();
result.enter(body);
return result;
}
mlir::edsc::AffineLoopNestBuilder::AffineLoopNestBuilder(Value *iv,
ArrayRef<Value> lbs,
ArrayRef<Value> ubs,
int64_t step) {
loops.emplace_back(makeAffineLoopBuilder(iv, lbs, ubs, step));
}
mlir::edsc::AffineLoopNestBuilder::AffineLoopNestBuilder(
MutableArrayRef<Value> ivs, ArrayRef<Value> lbs, ArrayRef<Value> ubs,
ArrayRef<int64_t> steps) {
assert(ivs.size() == lbs.size() && "Mismatch in number of arguments");
assert(ivs.size() == ubs.size() && "Mismatch in number of arguments");
assert(ivs.size() == steps.size() && "Mismatch in number of arguments");
for (auto it : llvm::zip(ivs, lbs, ubs, steps))
loops.emplace_back(makeAffineLoopBuilder(&std::get<0>(it), std::get<1>(it),
std::get<2>(it), std::get<3>(it)));
}
void mlir::edsc::AffineLoopNestBuilder::operator()(
function_ref<void(void)> fun) {
if (fun)
fun();
// Iterate on the calling operator() on all the loops in the nest.
// The iteration order is from innermost to outermost because enter/exit needs
// to be asymmetric (i.e. enter() occurs on LoopBuilder construction, exit()
// occurs on calling operator()). The asymmetry is required for properly
// nesting imperfectly nested regions (see LoopBuilder::operator()).
for (auto lit = loops.rbegin(), eit = loops.rend(); lit != eit; ++lit)
(*lit)();
}
static std::pair<AffineExpr, Value>
categorizeValueByAffineType(MLIRContext *context, Value val, unsigned &numDims,
unsigned &numSymbols) {
AffineExpr d;
Value resultVal = nullptr;
if (auto constant = val.getDefiningOp<ConstantIndexOp>()) {
d = getAffineConstantExpr(constant.getValue(), context);
} else if (isValidSymbol(val) && !isValidDim(val)) {
d = getAffineSymbolExpr(numSymbols++, context);
resultVal = val;
} else {
d = getAffineDimExpr(numDims++, context);
resultVal = val;
}
return std::make_pair(d, resultVal);
}
static Value createBinaryIndexHandle(
Value lhs, Value rhs,
function_ref<AffineExpr(AffineExpr, AffineExpr)> affCombiner) {
MLIRContext *context = ScopedContext::getContext();
unsigned numDims = 0, numSymbols = 0;
AffineExpr d0, d1;
Value v0, v1;
std::tie(d0, v0) =
categorizeValueByAffineType(context, lhs, numDims, numSymbols);
std::tie(d1, v1) =
categorizeValueByAffineType(context, rhs, numDims, numSymbols);
SmallVector<Value, 2> operands;
if (v0)
operands.push_back(v0);
if (v1)
operands.push_back(v1);
auto map = AffineMap::get(numDims, numSymbols, affCombiner(d0, d1));
// TODO: createOrFold when available.
Operation *op =
makeComposedAffineApply(ScopedContext::getBuilderRef(),
ScopedContext::getLocation(), map, operands)
.getOperation();
assert(op->getNumResults() == 1 && "Expected single result AffineApply");
return op->getResult(0);
}
template <typename IOp, typename FOp>
static Value createBinaryHandle(
Value lhs, Value rhs,
function_ref<AffineExpr(AffineExpr, AffineExpr)> affCombiner) {
auto thisType = lhs.getType();
auto thatType = rhs.getType();
assert(thisType == thatType && "cannot mix types in operators");
(void)thisType;
(void)thatType;
if (thisType.isIndex()) {
return createBinaryIndexHandle(lhs, rhs, affCombiner);
} else if (thisType.isSignlessInteger()) {
return ValueBuilder<IOp>(lhs, rhs);
} else if (thisType.isa<FloatType>()) {
return ValueBuilder<FOp>(lhs, rhs);
} else if (thisType.isa<VectorType>() || thisType.isa<TensorType>()) {
auto aggregateType = thisType.cast<ShapedType>();
if (aggregateType.getElementType().isSignlessInteger())
return ValueBuilder<IOp>(lhs, rhs);
else if (aggregateType.getElementType().isa<FloatType>())
return ValueBuilder<FOp>(lhs, rhs);
}
llvm_unreachable("failed to create a Value");
}
Value mlir::edsc::op::operator+(Value lhs, Value rhs) {
return createBinaryHandle<AddIOp, AddFOp>(
lhs, rhs, [](AffineExpr d0, AffineExpr d1) { return d0 + d1; });
}
Value mlir::edsc::op::operator-(Value lhs, Value rhs) {
return createBinaryHandle<SubIOp, SubFOp>(
lhs, rhs, [](AffineExpr d0, AffineExpr d1) { return d0 - d1; });
}
Value mlir::edsc::op::operator*(Value lhs, Value rhs) {
return createBinaryHandle<MulIOp, MulFOp>(
lhs, rhs, [](AffineExpr d0, AffineExpr d1) { return d0 * d1; });
}
Value mlir::edsc::op::operator/(Value lhs, Value rhs) {
return createBinaryHandle<SignedDivIOp, DivFOp>(
lhs, rhs, [](AffineExpr d0, AffineExpr d1) -> AffineExpr {
llvm_unreachable("only exprs of non-index type support operator/");
});
}
Value mlir::edsc::op::operator%(Value lhs, Value rhs) {
return createBinaryHandle<SignedRemIOp, RemFOp>(
lhs, rhs, [](AffineExpr d0, AffineExpr d1) { return d0 % d1; });
}
Value mlir::edsc::op::floorDiv(Value lhs, Value rhs) {
return createBinaryIndexHandle(
lhs, rhs, [](AffineExpr d0, AffineExpr d1) { return d0.floorDiv(d1); });
}
Value mlir::edsc::op::ceilDiv(Value lhs, Value rhs) {
return createBinaryIndexHandle(
lhs, rhs, [](AffineExpr d0, AffineExpr d1) { return d0.ceilDiv(d1); });
}
Value mlir::edsc::op::negate(Value value) {
assert(value.getType().isInteger(1) && "expected boolean expression");
return ValueBuilder<ConstantIntOp>(1, 1) - value;
}
Value mlir::edsc::op::operator&&(Value lhs, Value rhs) {
assert(lhs.getType().isInteger(1) && "expected boolean expression on LHS");
assert(rhs.getType().isInteger(1) && "expected boolean expression on RHS");
return ValueBuilder<AndOp>(lhs, rhs);
}
Value mlir::edsc::op::operator||(Value lhs, Value rhs) {
assert(lhs.getType().isInteger(1) && "expected boolean expression on LHS");
assert(rhs.getType().isInteger(1) && "expected boolean expression on RHS");
return ValueBuilder<OrOp>(lhs, rhs);
}
static Value createIComparisonExpr(CmpIPredicate predicate, Value lhs,
Value rhs) {
auto lhsType = lhs.getType();
auto rhsType = rhs.getType();
(void)lhsType;
(void)rhsType;
assert(lhsType == rhsType && "cannot mix types in operators");
assert((lhsType.isa<IndexType>() || lhsType.isSignlessInteger()) &&
"only integer comparisons are supported");
return ScopedContext::getBuilderRef().create<CmpIOp>(
ScopedContext::getLocation(), predicate, lhs, rhs);
}
static Value createFComparisonExpr(CmpFPredicate predicate, Value lhs,
Value rhs) {
auto lhsType = lhs.getType();
auto rhsType = rhs.getType();
(void)lhsType;
(void)rhsType;
assert(lhsType == rhsType && "cannot mix types in operators");
assert(lhsType.isa<FloatType>() && "only float comparisons are supported");
return ScopedContext::getBuilderRef().create<CmpFOp>(
ScopedContext::getLocation(), predicate, lhs, rhs);
}
// All floating point comparison are ordered through EDSL
Value mlir::edsc::op::eq(Value lhs, Value rhs) {
auto type = lhs.getType();
return type.isa<FloatType>()
? createFComparisonExpr(CmpFPredicate::OEQ, lhs, rhs)
: createIComparisonExpr(CmpIPredicate::eq, lhs, rhs);
}
Value mlir::edsc::op::ne(Value lhs, Value rhs) {
auto type = lhs.getType();
return type.isa<FloatType>()
? createFComparisonExpr(CmpFPredicate::ONE, lhs, rhs)
: createIComparisonExpr(CmpIPredicate::ne, lhs, rhs);
}
Value mlir::edsc::op::operator<(Value lhs, Value rhs) {
auto type = lhs.getType();
return type.isa<FloatType>()
? createFComparisonExpr(CmpFPredicate::OLT, lhs, rhs)
:
// TODO(ntv,zinenko): signed by default, how about unsigned?
createIComparisonExpr(CmpIPredicate::slt, lhs, rhs);
}
Value mlir::edsc::op::operator<=(Value lhs, Value rhs) {
auto type = lhs.getType();
return type.isa<FloatType>()
? createFComparisonExpr(CmpFPredicate::OLE, lhs, rhs)
: createIComparisonExpr(CmpIPredicate::sle, lhs, rhs);
}
Value mlir::edsc::op::operator>(Value lhs, Value rhs) {
auto type = lhs.getType();
return type.isa<FloatType>()
? createFComparisonExpr(CmpFPredicate::OGT, lhs, rhs)
: createIComparisonExpr(CmpIPredicate::sgt, lhs, rhs);
}
Value mlir::edsc::op::operator>=(Value lhs, Value rhs) {
auto type = lhs.getType();
return type.isa<FloatType>()
? createFComparisonExpr(CmpFPredicate::OGE, lhs, rhs)
: createIComparisonExpr(CmpIPredicate::sge, lhs, rhs);
}