mirror of
https://github.com/intel/llvm.git
synced 2026-01-26 21:53:12 +08:00
A weak undefined should not fetch archive members, so we have to keep the Lazy symbol. That means the lazy symbol has to encode information about the original weak undef. Fixes pr25762. llvm-svn: 261591
359 lines
12 KiB
C++
359 lines
12 KiB
C++
//===- SymbolTable.cpp ----------------------------------------------------===//
|
|
//
|
|
// The LLVM Linker
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Symbol table is a bag of all known symbols. We put all symbols of
|
|
// all input files to the symbol table. The symbol table is basically
|
|
// a hash table with the logic to resolve symbol name conflicts using
|
|
// the symbol types.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SymbolTable.h"
|
|
#include "Config.h"
|
|
#include "Error.h"
|
|
#include "Symbols.h"
|
|
#include "llvm/Bitcode/ReaderWriter.h"
|
|
#include "llvm/IR/LegacyPassManager.h"
|
|
#include "llvm/Linker/Linker.h"
|
|
#include "llvm/Support/StringSaver.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
using namespace llvm::ELF;
|
|
|
|
using namespace lld;
|
|
using namespace lld::elf2;
|
|
|
|
// All input object files must be for the same architecture
|
|
// (e.g. it does not make sense to link x86 object files with
|
|
// MIPS object files.) This function checks for that error.
|
|
template <class ELFT> static bool isCompatible(InputFile *FileP) {
|
|
auto *F = dyn_cast<ELFFileBase<ELFT>>(FileP);
|
|
if (!F)
|
|
return true;
|
|
if (F->getELFKind() == Config->EKind && F->getEMachine() == Config->EMachine)
|
|
return true;
|
|
StringRef A = F->getName();
|
|
StringRef B = Config->Emulation;
|
|
if (B.empty())
|
|
B = Config->FirstElf->getName();
|
|
error(A + " is incompatible with " + B);
|
|
return false;
|
|
}
|
|
|
|
// Add symbols in File to the symbol table.
|
|
template <class ELFT>
|
|
void SymbolTable<ELFT>::addFile(std::unique_ptr<InputFile> File) {
|
|
InputFile *FileP = File.get();
|
|
if (!isCompatible<ELFT>(FileP))
|
|
return;
|
|
|
|
// .a file
|
|
if (auto *F = dyn_cast<ArchiveFile>(FileP)) {
|
|
ArchiveFiles.emplace_back(cast<ArchiveFile>(File.release()));
|
|
F->parse();
|
|
for (Lazy &Sym : F->getLazySymbols())
|
|
addLazy(&Sym);
|
|
return;
|
|
}
|
|
|
|
// .so file
|
|
if (auto *F = dyn_cast<SharedFile<ELFT>>(FileP)) {
|
|
// DSOs are uniquified not by filename but by soname.
|
|
F->parseSoName();
|
|
if (!SoNames.insert(F->getSoName()).second)
|
|
return;
|
|
|
|
SharedFiles.emplace_back(cast<SharedFile<ELFT>>(File.release()));
|
|
F->parseRest();
|
|
for (SharedSymbol<ELFT> &B : F->getSharedSymbols())
|
|
resolve(&B);
|
|
return;
|
|
}
|
|
|
|
// LLVM bitcode file.
|
|
if (auto *F = dyn_cast<BitcodeFile>(FileP)) {
|
|
BitcodeFiles.emplace_back(cast<BitcodeFile>(File.release()));
|
|
F->parse();
|
|
for (SymbolBody *B : F->SymbolBodies)
|
|
resolve(B);
|
|
return;
|
|
}
|
|
|
|
// .o file
|
|
auto *F = cast<ObjectFile<ELFT>>(FileP);
|
|
ObjectFiles.emplace_back(cast<ObjectFile<ELFT>>(File.release()));
|
|
F->parse(ComdatGroups);
|
|
for (SymbolBody *B : F->getSymbols())
|
|
resolve(B);
|
|
}
|
|
|
|
// Codegen the module M and returns the resulting InputFile.
|
|
template <class ELFT>
|
|
std::unique_ptr<InputFile> SymbolTable<ELFT>::codegen(Module &M) {
|
|
StringRef TripleStr = M.getTargetTriple();
|
|
Triple TheTriple(TripleStr);
|
|
|
|
// FIXME: Should we have a default triple? The gold plugin uses
|
|
// sys::getDefaultTargetTriple(), but that is probably wrong given that this
|
|
// might be a cross linker.
|
|
|
|
std::string ErrMsg;
|
|
const Target *TheTarget = TargetRegistry::lookupTarget(TripleStr, ErrMsg);
|
|
if (!TheTarget)
|
|
fatal("Target not found: " + ErrMsg);
|
|
|
|
TargetOptions Options;
|
|
std::unique_ptr<TargetMachine> TM(
|
|
TheTarget->createTargetMachine(TripleStr, "", "", Options));
|
|
|
|
raw_svector_ostream OS(OwningLTOData);
|
|
legacy::PassManager CodeGenPasses;
|
|
if (TM->addPassesToEmitFile(CodeGenPasses, OS,
|
|
TargetMachine::CGFT_ObjectFile))
|
|
fatal("Failed to setup codegen");
|
|
CodeGenPasses.run(M);
|
|
LtoBuffer = MemoryBuffer::getMemBuffer(OwningLTOData, "", false);
|
|
return createObjectFile(*LtoBuffer);
|
|
}
|
|
|
|
// Merge all the bitcode files we have seen, codegen the result and return
|
|
// the resulting ObjectFile.
|
|
template <class ELFT>
|
|
ObjectFile<ELFT> *SymbolTable<ELFT>::createCombinedLtoObject() {
|
|
LLVMContext Context;
|
|
Module Combined("ld-temp.o", Context);
|
|
Linker L(Combined);
|
|
for (const std::unique_ptr<BitcodeFile> &F : BitcodeFiles) {
|
|
std::unique_ptr<MemoryBuffer> Buffer =
|
|
MemoryBuffer::getMemBuffer(F->MB, false);
|
|
ErrorOr<std::unique_ptr<Module>> MOrErr =
|
|
getLazyBitcodeModule(std::move(Buffer), Context,
|
|
/*ShouldLazyLoadMetadata*/ true);
|
|
fatal(MOrErr);
|
|
std::unique_ptr<Module> &M = *MOrErr;
|
|
L.linkInModule(std::move(M));
|
|
}
|
|
std::unique_ptr<InputFile> F = codegen(Combined);
|
|
ObjectFiles.emplace_back(cast<ObjectFile<ELFT>>(F.release()));
|
|
return &*ObjectFiles.back();
|
|
}
|
|
|
|
template <class ELFT> void SymbolTable<ELFT>::addCombinedLtoObject() {
|
|
if (BitcodeFiles.empty())
|
|
return;
|
|
ObjectFile<ELFT> *Obj = createCombinedLtoObject();
|
|
// FIXME: We probably have to ignore comdats here.
|
|
Obj->parse(ComdatGroups);
|
|
for (SymbolBody *Body : Obj->getSymbols()) {
|
|
Symbol *Sym = insert(Body);
|
|
assert(isa<DefinedBitcode>(Sym->Body));
|
|
Sym->Body = Body;
|
|
}
|
|
}
|
|
|
|
// Add an undefined symbol.
|
|
template <class ELFT>
|
|
SymbolBody *SymbolTable<ELFT>::addUndefined(StringRef Name) {
|
|
auto *Sym = new (Alloc) Undefined(Name, false, STV_DEFAULT, false);
|
|
resolve(Sym);
|
|
return Sym;
|
|
}
|
|
|
|
// Add an undefined symbol. Unlike addUndefined, that symbol
|
|
// doesn't have to be resolved, thus "opt" (optional).
|
|
template <class ELFT>
|
|
SymbolBody *SymbolTable<ELFT>::addUndefinedOpt(StringRef Name) {
|
|
auto *Sym = new (Alloc) Undefined(Name, false, STV_HIDDEN, true);
|
|
resolve(Sym);
|
|
return Sym;
|
|
}
|
|
|
|
template <class ELFT>
|
|
SymbolBody *SymbolTable<ELFT>::addAbsolute(StringRef Name, Elf_Sym &ESym) {
|
|
// Pass nullptr because absolute symbols have no corresponding input sections.
|
|
auto *Sym = new (Alloc) DefinedRegular<ELFT>(Name, ESym, nullptr);
|
|
resolve(Sym);
|
|
return Sym;
|
|
}
|
|
|
|
template <class ELFT>
|
|
SymbolBody *SymbolTable<ELFT>::addSynthetic(StringRef Name,
|
|
OutputSectionBase<ELFT> &Section,
|
|
uintX_t Value) {
|
|
auto *Sym = new (Alloc) DefinedSynthetic<ELFT>(Name, Value, Section);
|
|
resolve(Sym);
|
|
return Sym;
|
|
}
|
|
|
|
// Add Name as an "ignored" symbol. An ignored symbol is a regular
|
|
// linker-synthesized defined symbol, but it is not recorded to the output
|
|
// file's symbol table. Such symbols are useful for some linker-defined symbols.
|
|
template <class ELFT>
|
|
SymbolBody *SymbolTable<ELFT>::addIgnored(StringRef Name) {
|
|
return addAbsolute(Name, ElfSym<ELFT>::Ignored);
|
|
}
|
|
|
|
// Rename SYM as __wrap_SYM. The original symbol is preserved as __real_SYM.
|
|
// Used to implement --wrap.
|
|
template <class ELFT> void SymbolTable<ELFT>::wrap(StringRef Name) {
|
|
if (Symtab.count(Name) == 0)
|
|
return;
|
|
StringSaver Saver(Alloc);
|
|
Symbol *Sym = addUndefined(Name)->getSymbol();
|
|
Symbol *Real = addUndefined(Saver.save("__real_" + Name))->getSymbol();
|
|
Symbol *Wrap = addUndefined(Saver.save("__wrap_" + Name))->getSymbol();
|
|
Real->Body = Sym->Body;
|
|
Sym->Body = Wrap->Body;
|
|
}
|
|
|
|
// Returns a file from which symbol B was created.
|
|
// If B does not belong to any file, returns a nullptr.
|
|
template <class ELFT>
|
|
ELFFileBase<ELFT> *SymbolTable<ELFT>::findFile(SymbolBody *B) {
|
|
for (const std::unique_ptr<ObjectFile<ELFT>> &F : ObjectFiles) {
|
|
ArrayRef<SymbolBody *> Syms = F->getSymbols();
|
|
if (std::find(Syms.begin(), Syms.end(), B) != Syms.end())
|
|
return F.get();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Returns "(internal)", "foo.a(bar.o)" or "baz.o".
|
|
template <class ELFT> static std::string getFilename(ELFFileBase<ELFT> *F) {
|
|
if (!F)
|
|
return "(internal)";
|
|
if (!F->ArchiveName.empty())
|
|
return (F->ArchiveName + "(" + F->getName() + ")").str();
|
|
return F->getName();
|
|
}
|
|
|
|
// Construct a string in the form of "Sym in File1 and File2".
|
|
// Used to construct an error message.
|
|
template <class ELFT>
|
|
std::string SymbolTable<ELFT>::conflictMsg(SymbolBody *Old, SymbolBody *New) {
|
|
ELFFileBase<ELFT> *F1 = findFile(Old);
|
|
ELFFileBase<ELFT> *F2 = findFile(New);
|
|
StringRef Sym = Old->getName();
|
|
return demangle(Sym) + " in " + getFilename(F1) + " and " + getFilename(F2);
|
|
}
|
|
|
|
// This function resolves conflicts if there's an existing symbol with
|
|
// the same name. Decisions are made based on symbol type.
|
|
template <class ELFT> void SymbolTable<ELFT>::resolve(SymbolBody *New) {
|
|
Symbol *Sym = insert(New);
|
|
if (Sym->Body == New)
|
|
return;
|
|
|
|
SymbolBody *Existing = Sym->Body;
|
|
|
|
if (Lazy *L = dyn_cast<Lazy>(Existing)) {
|
|
if (auto *Undef = dyn_cast<Undefined>(New)) {
|
|
addMemberFile(Undef, L);
|
|
return;
|
|
}
|
|
// Found a definition for something also in an archive.
|
|
// Ignore the archive definition.
|
|
Sym->Body = New;
|
|
return;
|
|
}
|
|
|
|
if (New->IsTls != Existing->IsTls) {
|
|
error("TLS attribute mismatch for symbol: " + conflictMsg(Existing, New));
|
|
return;
|
|
}
|
|
|
|
// compare() returns -1, 0, or 1 if the lhs symbol is less preferable,
|
|
// equivalent (conflicting), or more preferable, respectively.
|
|
int Comp = Existing->compare<ELFT>(New);
|
|
if (Comp == 0) {
|
|
std::string S = "duplicate symbol: " + conflictMsg(Existing, New);
|
|
if (Config->AllowMultipleDefinition)
|
|
warning(S);
|
|
else
|
|
error(S);
|
|
return;
|
|
}
|
|
if (Comp < 0)
|
|
Sym->Body = New;
|
|
}
|
|
|
|
// Find an existing symbol or create and insert a new one.
|
|
template <class ELFT> Symbol *SymbolTable<ELFT>::insert(SymbolBody *New) {
|
|
StringRef Name = New->getName();
|
|
Symbol *&Sym = Symtab[Name];
|
|
if (!Sym)
|
|
Sym = new (Alloc) Symbol{New};
|
|
New->setBackref(Sym);
|
|
return Sym;
|
|
}
|
|
|
|
template <class ELFT> SymbolBody *SymbolTable<ELFT>::find(StringRef Name) {
|
|
auto It = Symtab.find(Name);
|
|
if (It == Symtab.end())
|
|
return nullptr;
|
|
return It->second->Body;
|
|
}
|
|
|
|
template <class ELFT> void SymbolTable<ELFT>::addLazy(Lazy *L) {
|
|
Symbol *Sym = insert(L);
|
|
if (Sym->Body == L)
|
|
return;
|
|
if (auto *Undef = dyn_cast<Undefined>(Sym->Body)) {
|
|
Sym->Body = L;
|
|
addMemberFile(Undef, L);
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void SymbolTable<ELFT>::addMemberFile(Undefined *Undef, Lazy *L) {
|
|
// Weak undefined symbols should not fetch members from archives.
|
|
// If we were to keep old symbol we would not know that an archive member was
|
|
// available if a strong undefined symbol shows up afterwards in the link.
|
|
// If a strong undefined symbol never shows up, this lazy symbol will
|
|
// get to the end of the link and must be treated as the weak undefined one.
|
|
// We set UsedInRegularObj in a similar way to what is done with shared
|
|
// symbols and copy information to reduce how many special cases are needed.
|
|
if (Undef->isWeak()) {
|
|
L->setUsedInRegularObj();
|
|
L->setWeak();
|
|
|
|
// FIXME: Do we need to copy more?
|
|
L->IsTls = Undef->IsTls;
|
|
return;
|
|
}
|
|
|
|
// Fetch a member file that has the definition for L.
|
|
// getMember returns nullptr if the member was already read from the library.
|
|
if (std::unique_ptr<InputFile> File = L->getMember())
|
|
addFile(std::move(File));
|
|
}
|
|
|
|
// This function takes care of the case in which shared libraries depend on
|
|
// the user program (not the other way, which is usual). Shared libraries
|
|
// may have undefined symbols, expecting that the user program provides
|
|
// the definitions for them. An example is BSD's __progname symbol.
|
|
// We need to put such symbols to the main program's .dynsym so that
|
|
// shared libraries can find them.
|
|
// Except this, we ignore undefined symbols in DSOs.
|
|
template <class ELFT> void SymbolTable<ELFT>::scanShlibUndefined() {
|
|
for (std::unique_ptr<SharedFile<ELFT>> &File : SharedFiles)
|
|
for (StringRef U : File->getUndefinedSymbols())
|
|
if (SymbolBody *Sym = find(U))
|
|
if (Sym->isDefined())
|
|
Sym->MustBeInDynSym = true;
|
|
}
|
|
|
|
template class elf2::SymbolTable<ELF32LE>;
|
|
template class elf2::SymbolTable<ELF32BE>;
|
|
template class elf2::SymbolTable<ELF64LE>;
|
|
template class elf2::SymbolTable<ELF64BE>;
|