mirror of
https://github.com/intel/llvm.git
synced 2026-01-25 10:55:58 +08:00
Right now we have one large AST for all types in LLDB. All ODR violations in types we reconstruct are resolved by just letting the ASTImporter handle the conflicts (either by merging types or somehow trying to introduce a duplicated declaration in the AST). This works ok for the normal types we build from debug information as most of them are just simple CXXRecordDecls or empty template declarations. However, with a loaded `std` C++ module we have alternative versions of pretty much all declarations in the `std` namespace that are much more fleshed out than the debug information declarations. They have all the information that is lost when converting to DWARF, such as default arguments, template default arguments, the actual uninstantiated template declarations and so on. When we merge these C++ module types into the big scratch AST (that might already contain debug information types) we give the ASTImporter the tricky task of somehow creating a consistent AST out of all these declarations. Usually this ends in a messy AST that contains a mostly broken mix of both module and debug info declarations. The ASTImporter in LLDB is also importing types with the MinimalImport setting, which usually means the only information we have when merging two types is often just the name of the declaration and the information that it contains some child declarations. This makes it pretty much impossible to even implement a better merging logic (as the names of C++ module declarations and debug info declarations are identical). This patch works around this whole merging problem by separating C++ module types from debug information types. This is done by splitting up the single scratch AST into two: One default AST for debug information and a dedicated AST for C++ module types. The C++ module AST is implemented as a 'specialised AST' that lives within the default ScratchTypeSystemClang. When we select the scratch AST we can explicitly request that we want such a isolated sub-AST of the scratch AST. I kept the infrastructure more general as we probably can use the same mechanism for other features that introduce conflicting types (such as programs that are compiled with a custom -wchar-size= option). There are just two places where we explicitly have request the C++ module AST: When we export persistent declarations (`$mytype`) and when we create our persistent result variable (`$0`, `$1`, ...). There are a few formatters that were previously assuming that there is only one scratch AST which I cleaned up in a preparation revision here (D92757). Reviewed By: aprantl Differential Revision: https://reviews.llvm.org/D92759
511 lines
14 KiB
C++
511 lines
14 KiB
C++
//===-- ASTResultSynthesizer.cpp ------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ASTResultSynthesizer.h"
|
|
|
|
#include "ClangASTImporter.h"
|
|
#include "ClangPersistentVariables.h"
|
|
|
|
#include "Plugins/TypeSystem/Clang/TypeSystemClang.h"
|
|
#include "lldb/Target/Target.h"
|
|
#include "lldb/Utility/LLDBAssert.h"
|
|
#include "lldb/Utility/Log.h"
|
|
#include "stdlib.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclGroup.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "clang/Parse/Parser.h"
|
|
#include "clang/Sema/SemaDiagnostic.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
using namespace clang;
|
|
using namespace lldb_private;
|
|
|
|
ASTResultSynthesizer::ASTResultSynthesizer(ASTConsumer *passthrough,
|
|
bool top_level, Target &target)
|
|
: m_ast_context(nullptr), m_passthrough(passthrough),
|
|
m_passthrough_sema(nullptr), m_target(target), m_sema(nullptr),
|
|
m_top_level(top_level) {
|
|
if (!m_passthrough)
|
|
return;
|
|
|
|
m_passthrough_sema = dyn_cast<SemaConsumer>(passthrough);
|
|
}
|
|
|
|
ASTResultSynthesizer::~ASTResultSynthesizer() {}
|
|
|
|
void ASTResultSynthesizer::Initialize(ASTContext &Context) {
|
|
m_ast_context = &Context;
|
|
|
|
if (m_passthrough)
|
|
m_passthrough->Initialize(Context);
|
|
}
|
|
|
|
void ASTResultSynthesizer::TransformTopLevelDecl(Decl *D) {
|
|
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
|
|
|
|
if (NamedDecl *named_decl = dyn_cast<NamedDecl>(D)) {
|
|
if (log && log->GetVerbose()) {
|
|
if (named_decl->getIdentifier())
|
|
LLDB_LOGF(log, "TransformTopLevelDecl(%s)",
|
|
named_decl->getIdentifier()->getNameStart());
|
|
else if (ObjCMethodDecl *method_decl = dyn_cast<ObjCMethodDecl>(D))
|
|
LLDB_LOGF(log, "TransformTopLevelDecl(%s)",
|
|
method_decl->getSelector().getAsString().c_str());
|
|
else
|
|
LLDB_LOGF(log, "TransformTopLevelDecl(<complex>)");
|
|
}
|
|
|
|
if (m_top_level) {
|
|
RecordPersistentDecl(named_decl);
|
|
}
|
|
}
|
|
|
|
if (LinkageSpecDecl *linkage_spec_decl = dyn_cast<LinkageSpecDecl>(D)) {
|
|
RecordDecl::decl_iterator decl_iterator;
|
|
|
|
for (decl_iterator = linkage_spec_decl->decls_begin();
|
|
decl_iterator != linkage_spec_decl->decls_end(); ++decl_iterator) {
|
|
TransformTopLevelDecl(*decl_iterator);
|
|
}
|
|
} else if (!m_top_level) {
|
|
if (ObjCMethodDecl *method_decl = dyn_cast<ObjCMethodDecl>(D)) {
|
|
if (m_ast_context &&
|
|
!method_decl->getSelector().getAsString().compare("$__lldb_expr:")) {
|
|
RecordPersistentTypes(method_decl);
|
|
SynthesizeObjCMethodResult(method_decl);
|
|
}
|
|
} else if (FunctionDecl *function_decl = dyn_cast<FunctionDecl>(D)) {
|
|
// When completing user input the body of the function may be a nullptr.
|
|
if (m_ast_context && function_decl->hasBody() &&
|
|
!function_decl->getNameInfo().getAsString().compare("$__lldb_expr")) {
|
|
RecordPersistentTypes(function_decl);
|
|
SynthesizeFunctionResult(function_decl);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool ASTResultSynthesizer::HandleTopLevelDecl(DeclGroupRef D) {
|
|
DeclGroupRef::iterator decl_iterator;
|
|
|
|
for (decl_iterator = D.begin(); decl_iterator != D.end(); ++decl_iterator) {
|
|
Decl *decl = *decl_iterator;
|
|
|
|
TransformTopLevelDecl(decl);
|
|
}
|
|
|
|
if (m_passthrough)
|
|
return m_passthrough->HandleTopLevelDecl(D);
|
|
return true;
|
|
}
|
|
|
|
bool ASTResultSynthesizer::SynthesizeFunctionResult(FunctionDecl *FunDecl) {
|
|
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
|
|
|
|
if (!m_sema)
|
|
return false;
|
|
|
|
FunctionDecl *function_decl = FunDecl;
|
|
|
|
if (!function_decl)
|
|
return false;
|
|
|
|
if (log && log->GetVerbose()) {
|
|
std::string s;
|
|
raw_string_ostream os(s);
|
|
|
|
function_decl->print(os);
|
|
|
|
os.flush();
|
|
|
|
LLDB_LOGF(log, "Untransformed function AST:\n%s", s.c_str());
|
|
}
|
|
|
|
Stmt *function_body = function_decl->getBody();
|
|
CompoundStmt *compound_stmt = dyn_cast<CompoundStmt>(function_body);
|
|
|
|
bool ret = SynthesizeBodyResult(compound_stmt, function_decl);
|
|
|
|
if (log && log->GetVerbose()) {
|
|
std::string s;
|
|
raw_string_ostream os(s);
|
|
|
|
function_decl->print(os);
|
|
|
|
os.flush();
|
|
|
|
LLDB_LOGF(log, "Transformed function AST:\n%s", s.c_str());
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool ASTResultSynthesizer::SynthesizeObjCMethodResult(
|
|
ObjCMethodDecl *MethodDecl) {
|
|
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
|
|
|
|
if (!m_sema)
|
|
return false;
|
|
|
|
if (!MethodDecl)
|
|
return false;
|
|
|
|
if (log && log->GetVerbose()) {
|
|
std::string s;
|
|
raw_string_ostream os(s);
|
|
|
|
MethodDecl->print(os);
|
|
|
|
os.flush();
|
|
|
|
LLDB_LOGF(log, "Untransformed method AST:\n%s", s.c_str());
|
|
}
|
|
|
|
Stmt *method_body = MethodDecl->getBody();
|
|
|
|
if (!method_body)
|
|
return false;
|
|
|
|
CompoundStmt *compound_stmt = dyn_cast<CompoundStmt>(method_body);
|
|
|
|
bool ret = SynthesizeBodyResult(compound_stmt, MethodDecl);
|
|
|
|
if (log && log->GetVerbose()) {
|
|
std::string s;
|
|
raw_string_ostream os(s);
|
|
|
|
MethodDecl->print(os);
|
|
|
|
os.flush();
|
|
|
|
LLDB_LOGF(log, "Transformed method AST:\n%s", s.c_str());
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool ASTResultSynthesizer::SynthesizeBodyResult(CompoundStmt *Body,
|
|
DeclContext *DC) {
|
|
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
|
|
|
|
ASTContext &Ctx(*m_ast_context);
|
|
|
|
if (!Body)
|
|
return false;
|
|
|
|
if (Body->body_empty())
|
|
return false;
|
|
|
|
Stmt **last_stmt_ptr = Body->body_end() - 1;
|
|
Stmt *last_stmt = *last_stmt_ptr;
|
|
|
|
while (dyn_cast<NullStmt>(last_stmt)) {
|
|
if (last_stmt_ptr != Body->body_begin()) {
|
|
last_stmt_ptr--;
|
|
last_stmt = *last_stmt_ptr;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
Expr *last_expr = dyn_cast<Expr>(last_stmt);
|
|
|
|
if (!last_expr)
|
|
// No auxiliary variable necessary; expression returns void
|
|
return true;
|
|
|
|
// In C++11, last_expr can be a LValueToRvalue implicit cast. Strip that off
|
|
// if that's the case.
|
|
|
|
do {
|
|
ImplicitCastExpr *implicit_cast = dyn_cast<ImplicitCastExpr>(last_expr);
|
|
|
|
if (!implicit_cast)
|
|
break;
|
|
|
|
if (implicit_cast->getCastKind() != CK_LValueToRValue)
|
|
break;
|
|
|
|
last_expr = implicit_cast->getSubExpr();
|
|
} while (false);
|
|
|
|
// is_lvalue is used to record whether the expression returns an assignable
|
|
// Lvalue or an Rvalue. This is relevant because they are handled
|
|
// differently.
|
|
//
|
|
// For Lvalues
|
|
//
|
|
// - In AST result synthesis (here!) the expression E is transformed into an
|
|
// initialization T *$__lldb_expr_result_ptr = &E.
|
|
//
|
|
// - In structure allocation, a pointer-sized slot is allocated in the
|
|
// struct that is to be passed into the expression.
|
|
//
|
|
// - In IR transformations, reads and writes to $__lldb_expr_result_ptr are
|
|
// redirected at an entry in the struct ($__lldb_arg) passed into the
|
|
// expression. (Other persistent variables are treated similarly, having
|
|
// been materialized as references, but in those cases the value of the
|
|
// reference itself is never modified.)
|
|
//
|
|
// - During materialization, $0 (the result persistent variable) is ignored.
|
|
//
|
|
// - During dematerialization, $0 is marked up as a load address with value
|
|
// equal to the contents of the structure entry.
|
|
//
|
|
// For Rvalues
|
|
//
|
|
// - In AST result synthesis the expression E is transformed into an
|
|
// initialization static T $__lldb_expr_result = E.
|
|
//
|
|
// - In structure allocation, a pointer-sized slot is allocated in the
|
|
// struct that is to be passed into the expression.
|
|
//
|
|
// - In IR transformations, an instruction is inserted at the beginning of
|
|
// the function to dereference the pointer resident in the slot. Reads and
|
|
// writes to $__lldb_expr_result are redirected at that dereferenced
|
|
// version. Guard variables for the static variable are excised.
|
|
//
|
|
// - During materialization, $0 (the result persistent variable) is
|
|
// populated with the location of a newly-allocated area of memory.
|
|
//
|
|
// - During dematerialization, $0 is ignored.
|
|
|
|
bool is_lvalue = last_expr->getValueKind() == VK_LValue &&
|
|
last_expr->getObjectKind() == OK_Ordinary;
|
|
|
|
QualType expr_qual_type = last_expr->getType();
|
|
const clang::Type *expr_type = expr_qual_type.getTypePtr();
|
|
|
|
if (!expr_type)
|
|
return false;
|
|
|
|
if (expr_type->isVoidType())
|
|
return true;
|
|
|
|
if (log) {
|
|
std::string s = expr_qual_type.getAsString();
|
|
|
|
LLDB_LOGF(log, "Last statement is an %s with type: %s",
|
|
(is_lvalue ? "lvalue" : "rvalue"), s.c_str());
|
|
}
|
|
|
|
clang::VarDecl *result_decl = nullptr;
|
|
|
|
if (is_lvalue) {
|
|
IdentifierInfo *result_ptr_id;
|
|
|
|
if (expr_type->isFunctionType())
|
|
result_ptr_id =
|
|
&Ctx.Idents.get("$__lldb_expr_result"); // functions actually should
|
|
// be treated like function
|
|
// pointers
|
|
else
|
|
result_ptr_id = &Ctx.Idents.get("$__lldb_expr_result_ptr");
|
|
|
|
m_sema->RequireCompleteType(last_expr->getSourceRange().getBegin(),
|
|
expr_qual_type,
|
|
clang::diag::err_incomplete_type);
|
|
|
|
QualType ptr_qual_type;
|
|
|
|
if (expr_qual_type->getAs<ObjCObjectType>() != nullptr)
|
|
ptr_qual_type = Ctx.getObjCObjectPointerType(expr_qual_type);
|
|
else
|
|
ptr_qual_type = Ctx.getPointerType(expr_qual_type);
|
|
|
|
result_decl =
|
|
VarDecl::Create(Ctx, DC, SourceLocation(), SourceLocation(),
|
|
result_ptr_id, ptr_qual_type, nullptr, SC_Static);
|
|
|
|
if (!result_decl)
|
|
return false;
|
|
|
|
ExprResult address_of_expr =
|
|
m_sema->CreateBuiltinUnaryOp(SourceLocation(), UO_AddrOf, last_expr);
|
|
if (address_of_expr.get())
|
|
m_sema->AddInitializerToDecl(result_decl, address_of_expr.get(), true);
|
|
else
|
|
return false;
|
|
} else {
|
|
IdentifierInfo &result_id = Ctx.Idents.get("$__lldb_expr_result");
|
|
|
|
result_decl =
|
|
VarDecl::Create(Ctx, DC, SourceLocation(), SourceLocation(), &result_id,
|
|
expr_qual_type, nullptr, SC_Static);
|
|
|
|
if (!result_decl)
|
|
return false;
|
|
|
|
m_sema->AddInitializerToDecl(result_decl, last_expr, true);
|
|
}
|
|
|
|
DC->addDecl(result_decl);
|
|
|
|
///////////////////////////////
|
|
// call AddInitializerToDecl
|
|
//
|
|
|
|
// m_sema->AddInitializerToDecl(result_decl, last_expr);
|
|
|
|
/////////////////////////////////
|
|
// call ConvertDeclToDeclGroup
|
|
//
|
|
|
|
Sema::DeclGroupPtrTy result_decl_group_ptr;
|
|
|
|
result_decl_group_ptr = m_sema->ConvertDeclToDeclGroup(result_decl);
|
|
|
|
////////////////////////
|
|
// call ActOnDeclStmt
|
|
//
|
|
|
|
StmtResult result_initialization_stmt_result(m_sema->ActOnDeclStmt(
|
|
result_decl_group_ptr, SourceLocation(), SourceLocation()));
|
|
|
|
////////////////////////////////////////////////
|
|
// replace the old statement with the new one
|
|
//
|
|
|
|
*last_stmt_ptr = static_cast<Stmt *>(result_initialization_stmt_result.get());
|
|
|
|
return true;
|
|
}
|
|
|
|
void ASTResultSynthesizer::HandleTranslationUnit(ASTContext &Ctx) {
|
|
if (m_passthrough)
|
|
m_passthrough->HandleTranslationUnit(Ctx);
|
|
}
|
|
|
|
void ASTResultSynthesizer::RecordPersistentTypes(DeclContext *FunDeclCtx) {
|
|
typedef DeclContext::specific_decl_iterator<TypeDecl> TypeDeclIterator;
|
|
|
|
for (TypeDeclIterator i = TypeDeclIterator(FunDeclCtx->decls_begin()),
|
|
e = TypeDeclIterator(FunDeclCtx->decls_end());
|
|
i != e; ++i) {
|
|
MaybeRecordPersistentType(*i);
|
|
}
|
|
}
|
|
|
|
void ASTResultSynthesizer::MaybeRecordPersistentType(TypeDecl *D) {
|
|
if (!D->getIdentifier())
|
|
return;
|
|
|
|
StringRef name = D->getName();
|
|
|
|
if (name.size() == 0 || name[0] != '$')
|
|
return;
|
|
|
|
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
|
|
|
|
ConstString name_cs(name.str().c_str());
|
|
|
|
LLDB_LOGF(log, "Recording persistent type %s\n", name_cs.GetCString());
|
|
|
|
m_decls.push_back(D);
|
|
}
|
|
|
|
void ASTResultSynthesizer::RecordPersistentDecl(NamedDecl *D) {
|
|
lldbassert(m_top_level);
|
|
|
|
if (!D->getIdentifier())
|
|
return;
|
|
|
|
StringRef name = D->getName();
|
|
|
|
if (name.size() == 0)
|
|
return;
|
|
|
|
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
|
|
|
|
ConstString name_cs(name.str().c_str());
|
|
|
|
LLDB_LOGF(log, "Recording persistent decl %s\n", name_cs.GetCString());
|
|
|
|
m_decls.push_back(D);
|
|
}
|
|
|
|
void ASTResultSynthesizer::CommitPersistentDecls() {
|
|
auto *state =
|
|
m_target.GetPersistentExpressionStateForLanguage(lldb::eLanguageTypeC);
|
|
if (!state)
|
|
return;
|
|
|
|
auto *persistent_vars = llvm::cast<ClangPersistentVariables>(state);
|
|
|
|
TypeSystemClang *scratch_ctx = ScratchTypeSystemClang::GetForTarget(
|
|
m_target, m_ast_context->getLangOpts());
|
|
|
|
for (clang::NamedDecl *decl : m_decls) {
|
|
StringRef name = decl->getName();
|
|
ConstString name_cs(name.str().c_str());
|
|
|
|
Decl *D_scratch = persistent_vars->GetClangASTImporter()->DeportDecl(
|
|
&scratch_ctx->getASTContext(), decl);
|
|
|
|
if (!D_scratch) {
|
|
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
|
|
|
|
if (log) {
|
|
std::string s;
|
|
llvm::raw_string_ostream ss(s);
|
|
decl->dump(ss);
|
|
ss.flush();
|
|
|
|
LLDB_LOGF(log, "Couldn't commit persistent decl: %s\n", s.c_str());
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
if (NamedDecl *NamedDecl_scratch = dyn_cast<NamedDecl>(D_scratch))
|
|
persistent_vars->RegisterPersistentDecl(name_cs, NamedDecl_scratch,
|
|
scratch_ctx);
|
|
}
|
|
}
|
|
|
|
void ASTResultSynthesizer::HandleTagDeclDefinition(TagDecl *D) {
|
|
if (m_passthrough)
|
|
m_passthrough->HandleTagDeclDefinition(D);
|
|
}
|
|
|
|
void ASTResultSynthesizer::CompleteTentativeDefinition(VarDecl *D) {
|
|
if (m_passthrough)
|
|
m_passthrough->CompleteTentativeDefinition(D);
|
|
}
|
|
|
|
void ASTResultSynthesizer::HandleVTable(CXXRecordDecl *RD) {
|
|
if (m_passthrough)
|
|
m_passthrough->HandleVTable(RD);
|
|
}
|
|
|
|
void ASTResultSynthesizer::PrintStats() {
|
|
if (m_passthrough)
|
|
m_passthrough->PrintStats();
|
|
}
|
|
|
|
void ASTResultSynthesizer::InitializeSema(Sema &S) {
|
|
m_sema = &S;
|
|
|
|
if (m_passthrough_sema)
|
|
m_passthrough_sema->InitializeSema(S);
|
|
}
|
|
|
|
void ASTResultSynthesizer::ForgetSema() {
|
|
m_sema = nullptr;
|
|
|
|
if (m_passthrough_sema)
|
|
m_passthrough_sema->ForgetSema();
|
|
}
|